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Abstract— With the rapid development of the Indus-
trial Internet of Things (IIoT), log-based anomaly detection
has become vital for smart industrial construction that
has prompted many researchers to contribute. To detect
anomalies based on log data, semi-supervised approaches
stand out from supervised and unsupervised approaches
because they only require a portion of labeled data and
are relatively stable. However, the state-of-the-art semi-
supervised approaches still suffer from two main problems:
manual parameter setting and unsatisfactory performance
with high false positives. We propose AdaLog, an inte-
grated semi-supervised approach based on self-adaptive
clustering, for industrial anomaly detection. In particular,
the clustering step performs automatic label probability
estimation by distinguishing twelve situations so that the
label probability of each unlabeled data can be carefully
calculated, leading to high accuracy. In addition, AdaLog
employs a pre-trained model to learn contextual informa-
tion comprehensively and a transformer-based model to
detect anomalies efficiently. To alleviate class imbalance,
an undersampling method is incorporated. The results on
three popular datasets demonstrate that AdaLog signifi-
cantly outperforms three state-of-the-art semi-supervised
approaches by 17.8%–2,489.8% on average in terms of F1-
score, and is even superior to two supervised approaches
in most cases with average improvements of 10.9%–23.8%.

Index Terms— Intelligent anomaly detection, clustering,
transformer, deep learning.

I. INTRODUCTION

DUE to the needs of intelligent data processing and anal-
ysis [1]–[3] in the Industrial Internet of Things (IIoT),

anomaly detection has attracted a lot of attention [4]. A trivial
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industrial system anomaly can lead to a series of problems,
such as data corruption and product performance degradation
[5], [6]. To this end, logs have been widely utilized in various
reliability enhancement tasks, such as system status checks,
monitoring facility identification, and anomaly detection, be-
cause logs are essential data for recording system runtime
information [7]. In particular, log-based anomaly detection has
inspired a line of research using machine learning and deep
learning. Generally, existing approaches can be categorized
into supervised (e.g., LogRobust [8], NeuralLog [5]), semi-
supervised (e.g., DeepLog [9], LogAnomaly [10], and PLELog
[11]), and unsupervised approaches (e.g., LogCluster [12]).

Typically, supervised approaches perform better than the
others since tons of data with labels (i.e., normal or abnormal)
are used during model training. However, these approaches are
not practical in the industry because of their high demand for
large labeled datasets and the sensitivity to mislabeled data [6],
[11]. Regarding unsupervised techniques, non-negligible log
data instability can lead to unfavorable performance. Because
of frequent log modifications, some incoming log sequences
do not appear in the training set [11]. Therefore, effectively
deploying unsupervised approaches in the industry can be very
challenging.

Compared with supervised approaches, semi-supervised ap-
proaches only require a small amount of labeled data in
model training. It dramatically reduces the cost of manual
labeling and the reliance on labeled data. Compared with
unsupervised approaches, semi-supervised approaches know
part of the training label information (e.g., the correlations
between features and labels), which can be utilized by semi-
supervised approaches to maximize the training objective.

Although existing semi-supervised approaches achieve de-
cent accuracy on public log datasets (e.g., HDFS [13]), several
crucial problems have been overlooked and remain unresolved,
hindering their usage in practice. First, real-world logs data
are significantly imbalanced, i.e., there are many more normal
logs than abnormal logs. For example, only 0.82% of the logs
in Thunderbird dataset are anomalous. The highly imbalanced
real-world data lead to a situation where anomalies are often
identified as normal cases by existing approaches. Second,
most semi-supervised approaches rely on clustering algorithms
that cluster the unlabeled training data into different groups.
This process is notoriously sensitive to the parameter settings
(e.g., cluster size and minimum samples [11] and similarity
threshold [14]), which often requires extensive manual efforts.
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Third, the adopted clustering algorithms have a huge impact on
the performance of the whole semi-supervised pipeline [11],
[14]. Existing clustering algorithms simply predict labels for
unlabeled samples without distinguishing different situations
(e.g., the correlation between samples in a cluster). This rough
labeling often results in severe performance degradation (e.g.,
lower precision and specificity) in the subsequent steps due to
high false positives (FP).

To address these problems, we propose AdaLog, a semi-
supervised approach based on self-Adaptive clustering for
Log-based anomaly detection. AdaLog adopts a self-adaptive
clustering method based on K-Means by dividing label prob-
ability calculation into twelve situations, which largely en-
hances the clustering performance. Specifically, AdaLog con-
siders the distance between each unlabeled sample and its
cluster centroid and the distance averages of labeled two class
samples. In this way, the label probability of each unlabeled
data is carefully calculated and used for the subsequent model
training. In addition, by employing the Elbow method [15] to
compute the sum of squared distances between each log and its
corresponding cluster centroid, AdaLog mitigates the burden
of manual parameter tuning, allowing for the recommended
number of clusters to be automatically determined. To tackle
dataset imbalance, AdaLog incorporates an undersampling
method before clustering to reduce the imbalanced ratio of
normal and abnormal data. Moreover, AdaLog employs a pre-
trained BERT model [16] for semantic representation and a
Transformer-based model [17] for log sequence classification.

We evaluate the performance of AdaLog with comprehen-
sive experiments on three widely-used log anomaly datasets
(i.e., HDFS [13], BGL [18], and Thunderbird [18]). The results
demonstrate that AdaLog remarkably outperforms three state-
of-the-art (SOTA) semi-supervised approaches with an average
improvement (in terms of F1-score) of 2489.8% (DeepLog
[9]), 2448.9% (LogAnomaly [10]), and 17.8% (PLELog [11]),
respectively. Moreover, AdaLog even outperforms two SOTA
supervised approaches in F1-score by 23.8% (LogRobust [8])
and 10.9% (NeuralLog [5]). The ablation studies also indi-
cate the effectiveness of our proposed self-adaptive clustering
method and the necessity of the undersampling method.

The main contributions of this paper are as follows:

• We propose AdaLog, a semi-supervised log-based
anomaly detection approach that addresses the three main
concerns of existing semi-supervised approaches.

• The core of AdaLog is a self-adaptive clustering method
with twelve specially-designed situations for label prob-
ability calculation.

• The experimental results show that AdaLog outperforms
SOTA semi-supervised and supervised methods in F1-
score by 17.8%–2489.8% and 10.9%–23.8%, respec-
tively.

• Our implementation is publicly accessible1.

II. RELATED WORK

1https://github.com/AdaLog2023/AdaLog

A. Anomaly Detection with Supervised Techniques

In existing log-based anomaly detection papers, supervised
approaches often achieve better performance compared with
semi-supervised and unsupervised approaches because super-
vised approaches leverage a large amount of labeled training
data in their evaluation. Many machine learning-based meth-
ods were proposed to detect anomalies in the early years.
Liang et al. [19] introduced four classifiers to predict failure
log events. The decision tree model applied by Chen et al. [20]
was used to classify logs on eBay’s web request logging sys-
tem, and the regression-based approach presented by Farshchi
et al. [21] was used to detect application operation failures.
Subsequently, deep learning-based methods were proposed to
detect log-based anomalies. For example, Zhang et al. [22]
combined a log template extraction method with TF-IDF to
represent templates as vectors and applied an LSTM model for
log-based system failure prediction. Similarly, Vinayakumar et
al. [17] employed a Stacked-LSTM network for log anomaly
detection. Wu et al. [23] provided an agile solution EdgeLSTM
for sequential computation in IoT data, which uses Grid
LSTM and multi-class SVM. This method was deployed for
anomaly detection applications. To further optimize the LSTM
model applied in time-series data analysis, a hyperparameter
optimization method was proposed by Wu et al. [24] to reduce
the time cost and enhance the performance. LogRobust [8]
and NeuralLog [5], as state-of-the-art supervised approaches
mentioned in Section IV-B, utilize a pre-trained model (i.e.,
FastText and BERT) for embedding and a deep learning
model (i.e., BLSTM and Transformer) combining with atten-
tion mechanism for prediction. Supervised approaches require
substantial labeled data, which is often infeasible in practice.
Different from these approaches, AdaLog is semi-supervised,
which only needs a small amount of labeled data yet achieves
comparable accuracy as supervised approaches.

B. Anomaly Detection with Semi-supervised and
Unsupervised Techniques

Compared with supervised approaches, semi-supervised and
unsupervised approaches are more likely to be applied in
practice due to their less reliance on labeled data. DeepLog [9]
used an LSTM model to learn log patterns from normal log
sequences automatically, it can detect anomalies if incoming
log sequences cause the model to deviate from normal execu-
tion. To learn normal patterns, LogAnomaly [10] considered
semantic information by matching log sequences against their
generated templates. Wu et al. [3] adopted an LSTM model
and a Gaussian Bayes model for outlier detection in the IIoT.
PLELog [11]) combined the HDBSCAN clustering method
for probabilistic label estimation and an attention-based GRU
model for log sequence classification. LogCluster [12], an un-
supervised approach, considered the weights of log events and
grouped log sequences via a hierarchical clustering algorithm.
However, the unsupervised approach usually performs worse
than those semi-supervised approaches that combine a part
of normal labeled data and deep learning techniques. Unlike
existing semi-supervised approaches, AdaLog effectively en-
hances anomaly detection performance because it considers
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Fig. 1. The four-phrase framework of AdaLog.

various cases of label probability estimation via a self-adaptive
clustering method.

III. ADALOG

The workflow of AdaLog is illustrated in Fig. 1, which con-
tains four modules: data preprocessing, semantic embedding
and undersampling, self-adaptive clustering, and classification
model building.

AdaLog 1) preprocesses the log messages in a standard
format (Section III-A). The processed log data is 2) tok-
enized and transformed into vector representations by a pre-
trained BERT model (Section III-B). After that, the training
log messages are grouped into log sequences with/without
ground truth labels (i.e., labeled or unlabeled), and then
are processed through undersampling. 3) The remaining log
sequences are collected together for automatic clustering and
label probability estimation (Section III-C). AdaLog 4) builds
the Transformer-based model for classification (Section III-D)
and trains it using the training data with estimated labels. Once
deployed, AdaLog first generates log vectors by steps 1) and
2) given a test log sequence. The vectors are then fed into the
trained model, from which the predicted output will be normal
or abnormal.

A. Data Preprocessing
The first step of AdaLog is preprocessing the raw log

messages. To avoid the errors caused by log parsing (e.g.,
Drain, Spell, AEL, and IPLoM) due to the lack of semantic
information and semantic misunderstanding [5], we keep the
full information of each log message. The raw log messages
are tokenized into word-based tokens and then separated by
common delimiters (e.g., commas, semicolons, and white
spaces). Inspired by NeuralLog [5], AdaLog removes all non-
character tokens, such as numbers, operators, and punctua-
tions, which preserves most of the informative content. In
addition, AdaLog converts the capital letters to lower letters
to make the overall process case-insensitive. An example of
preprocessing is shown in Table I.

B. Semantic Embedding and Undersampling
To better understand the semantic information of log mes-

sages, we adopt a deep learning pre-trained model BERT [16]
to extract features and represent log messages as embedding

TABLE I
AN EXAMPLE OF PREPROCESSING ON BGL LOG

Original: - 1117958437 2005.06.05 R37-M0-N0-C:J13-U01 2005-06-05-
01.00.37.726577 R37-M0-N0-C:J13-U01 RAS KERNEL INFO 1 ddr
errors(s) detected and corrected on rank 0, symbol 12, bit 3
Preprocessed: ras kernel info ddr errors s detected and corrected on rank
symbol bit

vectors. The architecture of the pre-trained model consists
of multi-layers of bidirectional Transformer encoder. Every
encoder utilizes the self-attention mechanism to determine the
terms they should pay more attention on and draw global
dependencies between inputs and outputs. Hence, each input
log message from the training set is passed through the first-
layer encoder to generate embedding vectors, which serve
as the input of the next layer of the encoder. The word
embeddings generated by the last-layer encoder of BERT are
used for the next step. In this way, each log message can be
represented as a fix-length vector, i.e., V = {v1, v2, ..., vN},
where N is the number of tokens in each log message.
Subsequently, the log messages are grouped into log sequences
by session or fixed windows.

As we mentioned in Section I, class imbalance exists
in the log-based anomaly detection datasets. Therefore, we
employ an undersampling method [25] to remove a certain
proportion of normal log sequences to alleviate this problem.
We did not use oversampling since oversampling may lead to
overfitting during the model construction process, especially
when abnormal data is very limited. To handle the varying
degrees of imbalance in the datasets, we empirically design
the following heuristic rule: use an undersampling ratio range
and then specify three-quarters of the undersampling range
as the specific undersampling ratio to conduct undersampling.
Finally, we remove normal log sequences from the training
dataset according to the order of the collected data. The re-
maining normal log sequences and all abnormal log sequences
are sent to the clustering stage as training data.

C. Self-adaptive Clustering

Typically, the training dataset of semi-supervised ap-
proaches consists of labeled and unlabeled data. To utilize
labeled data, semi-supervised approaches employ clustering
algorithms to form groups of similar samples, based on which
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we can estimate the label probability of the unlabeled data
according to specially-designed different situations.

Existing clustering methods can be classified into four
categories. Since the hierarchical-based clustering technique
has the drawback of high time complexity, the density-based
and grid-based are sensitive to parameter selection, AdaLog
uses K-Means [26], a widely-used partition-based method to
cluster the samples. The principle of this method is to optimize
the squared error distortion between the samples and the
centroids to minimize the within-cluster variance by adjusting
the centroids.

(1) K-Means Clustering with Elbow Method. As ex-
plained above, we choose the effective and straightforward
method K-Means for rough clustering. To ensure the most
suitable k (i.e., the number of clusters), we use the Elbow
method [15] to compute the recommended k∗. The Elbow
method is centered around the computation of the sum of
squared errors (SSE). The SSE measures the sum of the
squared distances between each data sample and its corre-
sponding cluster centroid, which represents the within-cluster
variability. The SSE can be regarded as the clustering error of
all samples, and serves as an indicator of the clustering quality.
When the number of clusters, denoted by k, is smaller than the
true number of clusters, increasing k will lead to a significant
decrease in SSE due to the increased degree of aggregation
within each cluster. However, as k approaches the true number
of clusters, denoted by k∗, the rate of decrease in SSE will
begin to plateau, resulting in an elbow-shaped curve. The value
of k∗ corresponding to the elbow point represents the optimal
number of clusters for the given dataset. To compute the SSE
for each value of k within a range K = (0, 50), we sum the
squared distance as shown in the following equation:

SSEk =

k∑
i=1

∑
p∈Ci

|p−mi|2. (1)

where Ci represents the i-th cluster, p denotes a sample point
belonging to Ci, and mi indicates the centroid of Ci. Based
on our empirical findings, we recommend adopting the first
two optimal k∗ values for subsequent operations, as they may
be very close in certain scenarios. For each chosen k∗, we
employ K-Means to cluster our training data on the embedding
space. K-Means iteratively computes centroids by calculating
the index of the cluster to which each sample is assigned
and the distance between each sample and its nearest cluster
centroid. When the calculated index of each sample’s cluster
is its nearest cluster, the iteration stops, and the centroids will
no longer change. In this way, the labeled/unlabeled data has
its corresponding cluster under each optimal k∗.

(2) Label Probability Estimation. In this step, our aim
is to compute the probability Pnormal for each unlabeled
sample being normal under each k∗ value, and the final
Pnormal is obtained by taking the average. Compared to other
approaches, AdaLog proposes a novel way to leverage the
clustering results and existing labeled samples in the clusters
by considering twelve specially-design situations. By doing
so, existing labeled data can contribute to the label probability
estimation of unlabeled data. We discuss twelve scenarios and

demonstrate the computation in Table II. In addition, we keep
the Pnormal = 1 for labeled normal samples and Pnormal = 0
for labeled anomalous samples.

The twelve scenarios can be classified as five main situa-
tions (S 1-S 5) based on which cluster an unlabeled sample
belongs to. We calculate the label probability Pnormal for each
unlabeled sample by comparing the distances d, dA, and dN .

dN =
1

Nn

Nn∑
i

di,

dA =
1

Na

Na∑
j

dj ,

(2)

where d represents the distance from the unlabeled sample to
its corresponding cluster centroid. dN and dA are the average
distances between each labeled normal/anomalous sample in
this cluster and the cluster centroid. Nn and Na indicate the
number of labeled normal and abnormal samples, respectively.

The first situation S 1 is that the corresponding cluster only
contains one known category (normal or abnormal). S 1.1
indicates the cluster only has labeled normal samples (i.e., so
we have dN ). Therefore, this unlabeled sample is very likely
to be normal, and a large probability (Pnormal is almost closer
to 1) is given to this sample. In contrast, S 1.2 describes the
situation in that only labeled abnormal samples exist in the
cluster (i.e., so we have dA). Accordingly, a small probability
(Pnormal is almost closer to 0) is given to this sample. S 2
demonstrates another situation the cluster does not contain any
labeled samples. Since there is no preference for the possible
estimated categories, we assign a medium probability to the
unlabeled sample (i.e., Pnormal = 0.5).

For the S 3 and S 4 (i.e., the cluster contains two known
categories), the average distances dN and dA should be con-
sidered to decompose the situation. For each sub-situation, we
introduce two coefficient parameters P1 and P2 for calculating
Pnormal as shown in Table II. P1 represents the confidence
degree in which the sample is more inclined to be normal or
abnormal, according to the average distances (i.e., dN and
dA) from the normal and abnormal samples to the cluster
centroid. P2 refers to the confidence degree that the unlabeled
sample is more likely to be normal or abnormal, depending
on which category the sample is closer to (i.e., |d − dN |
and |d − dA|). In addition, we utilize constants (i.e., 0.5) to
ensure that the Pnormal is located in the reasonable range.
If dN < dA (i.e., S 3), it demonstrates that the cluster
may be more towards the normal category. For S 3.1, if the
situation satisfies d < dN , the unlabeled sample is closer to
the cluster centroid, so it is more likely to be normal (i.e.,
Pnormal ∈ (0.5, 1)). The coefficent parameters (P1 and P2)
expressed as dN

dA
and dN−d

dA−d are used to assess the degree to
which the sample tends to be normal. Take the scenario as
an example, 1) if the dN approximates to dA, it becomes
challenging to determine to which category the sample is more
likely to belong because known normal and abnormal data
are very close in distance within the cluster. Therefore, P1 as
a coefficient cannot excessively bias the sample towards the
normal category, even if the sample is closer to the normal
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TABLE II
SITUATIONS OF SELF-ADAPTIVE CLUSTERING.

Situation Pnormal

S 1. The cluster only has one known category. S 1.1 labeled normal samples dN P = 0.99

S 1.2 labeled abnormal samples dA P = 0.01

S 2. The cluster does not have any known category. The cluster only has unlabeled samples. P = 0.5

S 3. The cluster contains two known categories,
and dN < dA.

S 3.1 d ≤ dN < dA
P = 1 − (

dN−d
dA−d ∗ dN

dA
∗ 0.5),

P ∈ (0.5, 1)

S 3.2 dN ≤ d < dA
S 3.2.1 d − dN ≤ dA − d

P = 0.5 + (1 − d−dN
dA−d ) ∗ (1 − dN

dA
) ∗ 0.5,

P ∈ (0.5, 1)

S 3.2.2 d − dN > dA − d
P = 0.5 − (1 − dA−d

d−dN
) ∗ (1 − dN

dA
) ∗ 0.5,

P ∈ (0, 0.5)

S 3.3 dN < dA ≤ d
P = 0.5 − (1 − d−dA

d−dN
) ∗ (1 − dN

dA
) ∗ 0.5,

P ∈ (0, 0.5)

S 4. The cluster contains two known categories,
and dA < dN .

S 4.1 d < dA < dN
P = 0 + (

dA−d
dN−d ) ∗

dA
dN

∗ 0.5,

P ∈ (0, 0.5)

S 4.2 dA ≤ d < dN
S 4.2.1 d − dA ≤ dN − d

P = 0.5 − (1 − d−dA
dN−d ) ∗ (1 − dA

dN
) ∗ 0.5,

P ∈ (0, 0.5)

S 4.2.2 d − dA > dN − d
P = 0.5 + (1 − dN−d

d−dA
) ∗ (1 − dA

dN
) ∗ 0.5,

P ∈ (0.5, 1)

S 4.3 dA < dN ≤ d
P = 0.5 + (1 − d−dN

d−dA
) ∗ dA

dN
∗ 0.5,

P ∈ (0.5, 1)

S 5. The cluster contains two known categories, and dN = dA. P = 0.5

P represents the normal probability of each sample, which is calculated by comparing the clustering information of each unlabeled data (d) and labeled data (dA and dN ).

category. Similarly, Since the distance between this sample
and each category is very close, P2 does not make much effort
to push the sample to one of the categories. Consequently, P1

and P2 should be very close to 1, resulting in a more neutral
label probability for this sample; 2) In contrast, if the dA is
far away from dN , P1 and P2 should be more biased towards
0, which increases the probability of the sample being normal.

For S 3.2, when the sample lies between the two categories
(i.e., dN ≤ d < dA), two situations may arise. If (d− dN ) ≤
(dA − d) (S 3.2.1), this means that although the sample is
likely to be in either of the two categories, the sample is
closer to the normal category (i.e., Pnormal ∈ (0.5, 1)). These
two coefficient parameters (1− dN

dA
) and (1– d−dN

dA−d ) cause the
sample to be shifted in the normal direction; else if (d−dN ) >
(dA−d) (S 3.2.2), the sample is more likely to be an anomaly
(i.e., Pnormal ∈ (0, 0.5)), and P1 and P2 are formulated as
(1 − dN

dA
) and (1 − dA−d

d−dN
) to decide the degree to which the

sample is biased like an anomaly. S 3.3 indicates that the
sample is farther from the cluster centroid and even further
than the abnormal category (i.e., dN < dA ≤ d), therefore
it is more prone to be an anomaly (i.e., Pnormal ∈ (0, 0.5)).
(1 − dN

dA
) and (1– d−dA

d−dN
) are used to calculate the degree to

which the sample is inclined to the abnormal category.
Similarly, the S 4 with dA < dN is derived from the same

calculation idea of the S 3. This situation demonstrates that
the cluster is more likely to gravitate toward the abnormal
category due to the fact that known anomalous data are closer
to the cluster centroid. The last situation S 5 is that dN = dA.
Since we cannot judge which category of the unlabeled sample
is more likely to belong, we assign the P = 0.5 to it under

this condition. It can be regarded as a special case of the above
cases. Furthermore, we list the range of the calculated Pnormal

for each situation in Table II. It also implies that self-adaptive
clustering is reasonable and rigorous.

In this way, unlabeled log sequences can be automatically
classified into one of the twelve situations, then their corre-
sponding label probabilities of being normal are calculated.
We use (Pabnormal = 1 − Pnormal) to represent the prob-
ability that a sample is an anomaly. The probability pair
(Pnormal, Pabnormal) for each log sequence is sent to the next
classification model.

D. Classification Model Building
Based on the training data with ground-truth labels or label

probabilities computed by the clustering method, we finally
utilize a transformer-based classification model [17] to detect
anomalies. Since a log sequence contains many log messages,
relative position information should be incorporated. To this
end, a sinusoidal encoder [17] used to generate the embedding
pi at position i is added to the corresponding embedding vector
vi, which is fed into the classification model as illustrated in
step 4) of Fig. 1.

The network structure of the transformer encoder solves
the limitation of the parallel ability, and better deals with the
problem of long dependencies within log sequences. Typically,
the transformer encoder stacks several identical layers. Each
layer uses multi-head attention and a feed-forward network
that contains two fully connected layers, plus layer normal-
ization and residual connection. In this way, the combination
of attention scores for each log message is obtained through
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the fully connected layers [27]. Afterward, the output of this
transformer encoder is sequentially connected to a pooling
layer, a dropout layer, and a fully connected layer with a
softmax function. Since we train with the estimated label
probabilities of the log sequences rather than binary labels
(i.e., 0 or 1), the transformer-based model will try to optimize
the loss between the computed label probabilities and the
predicted binary labels. We have such a computation setup for
two reasons. The first reason explains why we utilize estimated
label probabilities. AdaLog as a semi-supervised method, there
is no guarantee that every unlabeled data will be correctly
classified by the predictions of the clustering method, and the
mislabeled data may bias the training. Hence, we compute the
label probabilities of the data to reduce the noise effect to some
extent. The second reason explains why we choose the binary
labels predicted by the transformer-based model to compute
the loss instead of the probabilistic ones. Owing to the binary
classification task, the final prediction result should be normal
or abnormal (i.e., 0 or 1). If we use both probabilities to
calculate the loss simultaneously, some labels of the data are
likely to be neutral, making it difficult to judge the boundary
between these two categories.

During the training, the best-trained parameters of this
model will be saved for anomaly prediction. If a new log
sequence comes, it is preprocessed and embedded before being
fed into the trained model. Finally, its predicted label (normal
or abnormal) will be generated as output with the above steps.

IV. EXPERIMENTAL SETTINGS

A. Datasets
To evaluate AdaLog’s performance in detecting anomalies,

we use three widely-used datasets: Hadoop Distributed File
System (HDFS) dataset [13], Blue Gene/L supercomputer
(BGL) dataset [18]), and Thunderbird dataset [18]. In partic-
ular, Thunderbird is an extremely imbalanced dataset, which
better reflects anomaly detection in practice. Similar to previ-
ous works [5], [6], [11], we group log messages of the HDFS
dataset by session windows according to the log’s identifier
(i.e., block id). For other datasets (i.e., BGL and Thunderbird),
log messages are grouped with fixed window sizes (i.e., 20,
100, and 200). In Table III, the number of log messages,
the grouping strategies, and the corresponding grouped log
sequences with abnormal proportions are presented in order.

B. Baselines
Recently, log-based anomaly detection as an interesting and

novel research problem has attracted many studies proposing
models to detect anomalies. Since supervised methods usu-
ally have the best performance and our approach is semi-
supervised, we choose the state-of-the-art semi-supervised
approaches (i.e., DeepLog [9], LogAnomaly [10], and PLELog
[11]) and supervised approaches (i.e., LogRobust [8] and
NeuralLog [5]) introduced in Section II as baselines.

C. Parameter Settings
In our experiments, we employ the default values of hyper-

parameters that have been widely used in related work [5],

[16], [28]. Specifically, we set the layer of the transformer
encoder to be 1, the number of attention heads to be 12, and
the size of the feed-forward network followed by multi-head
self-attention to be 2048. The classification model is optimized
by using an improved regularization technique in the Adam
optimizer [29], which involves decoupling the weight decay
from the gradient-based update. This model was trained with
the learning rate of 3e− 4, the dropout rate is 64, the adopted
loss function is weighted binary cross-entropy, and the number
of epochs is 20. Furthermore, we use PCA for dimensionality
reduction so that the number of components for our self-
adaptive clustering is 100, the same as PLELog [11].

To make a fair comparison, we adopt the parameter val-
ues provided by the original authors. DeepLog [9] and
LogAnomaly [10] adopt a two-layer LSTM with 128 neurons.
LogRobust [8] utilizes two BLSTM layers with 128 neurons
and one attention layer. PLELog [11] employs a single-layer
GRU network for prediction, and its clustering parameter
settings remain the same as they introduced (that is, the
minimum cluster size and the minimum number of samples
are 100) to calculate the number of clusters through HDB-
SCAN. NeuralLog [5] has the same parameter settings as the
transformer encoder we described above. In the original work
[10], LogAnomaly applied a synonym- and antonym-based
approach to representing log templates as semantic vectors.
However, the employed template2vec model was trained with
domain-specific antonyms and synonyms, some of which were
manually added by operators. Furthermore, the model was
trained with the index of log events (i.e., sequential and
quantitative vectors), thereby ignoring the semantics of the
logs. Due to the unavailability of the information, we follow
the empirical study [6], using a pre-trained FastText word2vec
model [30] to compute semantic vectors for log templates. The
semantic vectors obtained from language models are usually
more informative.

The log sequences used in our study are continuous and se-
quential because of their chronological ordering and grouping
based on window size or session window. Hence, the conven-
tional k-fold cross-validation method is not applicable in our
timing-related problems, considering the time dependencies
present in the data. To assess the effectiveness of AdaLog, we
perform each experiment 20 times and report the median value
in Table IV. These results are more reliable and applicable in
practical scenarios.

D. Evaluation Metrics

Log-based anomaly detection is an imbalanced binary clas-
sification problem. To evaluate the effectiveness of AdaLog,
we refer to previous works and adopt the precision= TP

TP+FP ,
recall= TP

TP+FN , and F1-score= 2×precision×recall
precision+recall metrics

for comparison. In addition, Le et al.’s work [6] demon-
strated that specificity= TN

TN+FP is necessary for evaluation,
especially under the imbalanced data distribution. Thus, we
introduce this metric in our study. Specifically, TP, TN, FP,
and FN refer to the number of true positives (an abnormal
log sequence is correctly predicted to be anomalous), true
negatives (a normal log sequence is correctly predicted to

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TII.2023.3280246

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on January 19,2024 at 04:14:15 UTC from IEEE Xplore.  Restrictions apply. 



AUTHOR et al.: TITLE 7

TABLE III
THE STATISTICS OF THREE DATASETS

Datasets Category Messages Grouping Log Sequences Training Data (anomaly) Test Data (anomaly)
HDFS Distributed system 11,175,629 session 575,061 460,048 (2.9%) 115,013 (2.9%)

BGL SuperComputer 4,747,963
ws=20 237,397 189,918 (9.1%) 47,479 (6.3%)

ws=100 47,478 37,983 (10.5%) 9,495 (8.6%)
ws=200 23,738 18,991 (11.6%) 4,747 (10.1%)

Thunderbird SuperComputer 10,000,000
ws=20 499,998 399,999 (0.4%) 99,999 (0.1%)

ws=100 99,998 79,999 (1.1%) 19,999 (0.1%)
ws=200 49,998 39,999 (1.6%) 9,999 (0.3%)

be normal), false positives (a normal log sequence is in-
correctly predicted to be abnormal), and false negatives (an
abnormal log sequence is incorrectly predicted to be normal),
respectively. Precision indicates the percentage of correctly
detected anomalies among all detected anomalies; recall refers
to the percentage of correctly detected anomalies over all
anomalous log sequences; specificity represents the percentage
of correctly detected normal ones over all real normal log
sequences; and the F1-score considers both precision and
recall, which is a comprehensive evaluation metric. The higher
the F1-score value, the more accurate the proposed approach
is in predicting both categories (i.e., normal and abnormal).

V. RESULTS AND DISCUSSION

In Section V-A, we present a comprehensive evaluation of
the performance of our proposed AdaLog approach as well as
SOTA approaches. Subsequently, we conduct ablation studies
to assess the effectiveness of the self-adaptive clustering
method, undersampling technique, and overall methodology
in Sections V-B, V-C, and V-D, respectively. In Section V-B,
we compare our proposed clustering method against the HDB-
SCAN clustering method used in PLELog, both without (Table
V) and with (Table VI) the classification model. Additionally,
we investigate the efficacy of the undersampling method at
different sampling ratios in Section V-C. Finally, in Section
V-D, we analyze how varying sizes of labeled data impact
the performance of AdaLog. These sections provide a detailed
analysis of our experimental results, further contributing to the
overall efficacy and understanding of the proposed approach.

In Table IV–VIII, the column M indicates the evaluation
metrics, and P, R, S, and F1 represent precision, recall,
specificity, and F1-score, respectively. For each dataset, the
grouping methods are abbreviated as session or the values of
the window sizes (i.e., 20, 100, and 200).

A. Detection Accuracy
As shown in Table IV, in terms of F1-score, compared with

all semi-supervised approaches, our approach AdaLog per-
forms best on all datasets, improving existing approaches by
2489.8% (DeepLog), 2448.8% (LogAnomaly), and 17.8%
(PLELog) on average. On HDFS dataset, all semi-supervised
approaches perform well, and AdaLog outperforms these three
approaches by 6.2% on average. On BGL dataset, regardless
of window size, DeepLog and LogAnomaly have a relatively
low F1-score because of the poor precision; that is, they are
likely to mislabel normal log sequences as anomalies. AdaLog
is superior to these two approaches by 237.0% and 221.2%

TABLE IV
PERFORMANCE OF DIFFERENT APPROACHES ON THREE DATASETS.

LOGROBUST AND NEURALLOG ARE SUPERVISED, WHILE THE OTHERS

ARE SEMI-SUPERVISED.

Model M HDFS BGL Thunderbird
session 20 100 200 20 100 200

Deep
Log

P 0.835 0.128 0.166 0.192 0.004 0.017 0.005
R 0.994 0.995 0.988 0.987 0.938 0.963 1.000
S 0.994 0.539 0.530 0.528 0.899 0.922 0.005
F1 0.908 0.227 0.285 0.322 0.008 0.033 0.010

Log
Anomaly

P 0.886 0.136 0.176 0.203 0.004 0.025 0.000
R 0.893 0.970 0.985 0.985 0.938 0.963 1.000
S 0.961 0.581 0.562 0.559 0.891 0.950 0.005
F1 0.966 0.239 0.299 0.336 0.008 0.050 0.009

PLE
Log

P 0.893 0.592 0.595 0.862 0.429 0.826 0.692
R 0.979 0.882 0.880 0.844 0.688 0.704 0.360
S 0.996 0.958 0.968 0.985 1.000 1.000 1.000
F1 0.934 0.708 0.710 0.853 0.528 0.760 0.474

Log
Robust

P 0.961 0.616 0.696 0.684 0.377 0.318 0.289
R 1.000 0.969 0.968 0.963 0.876 1.000 0.960
S 0.989 0.959 0.960 0.949 0.999 0.997 0.994
F1 0.980 0.753 0.810 0.800 0.531 0.482 0.444

Neural
Log

P 0.992 0.976 0.975 0.906 0.977 1.000 0.833
R 0.979 0.979 0.867 0.791 0.935 0.379 0.200
S 1.000 0.998 0.985 0.991 1.000 1.000 1.000
F1 0.986 0.977 0.918 0.845 0.956 0.550 0.323

Ada
Log

P 0.988 0.970 0.883 0.875 0.912 1.000 0.818
R 0.997 0.940 0.961 0.847 0.674 0.621 0.360
S 1.000 0.998 0.988 0.986 1.000 1.000 1.000
F1 0.993 0.955 0.920 0.861 0.775 0.766 0.500

on average, respectively. In contrast, PLELog performs better
but still 21.8% worse than AdaLog on average. Every dataset
has a class imbalance problem, especially Thunderbird dataset,
where abnormal log sequences in the test set only account
for 0.1%–0.3% of the entire test set under different window
sizes. Beneficial from the undersampling method, AdaLog
outperforms other approaches most apparently on this dataset
with various window sizes, where AdaLog improves DeepLog,
LogAnomaly, and PLELog by 5569.5%, 5491.7%, and 17.7%
on average, respectively.

Even though AdaLog is a semi-supervised approach, its
performance (F1-score) on all datasets is even 23.8% and
10.9% better than the supervised approaches LogRobust
and NeuralLog on average. On HDFS dataset, AdaLog
outperforms LogRobust by 1.3%. On BGL and Thunderbird
datasets, AdaLog improves LogRobust by 21.8% and 39.2%
for three window sizes, separately. Compared with NeuralLog,
even though AdaLog performs worse on BGL and Thunderbird
datasets at ws = 20, it is on average 31.7% better in other
cases and 10.9% better on all datasets. In cases where there
is a significant imbalance between the two classes in the
training set, AdaLog is found to exhibit suboptimal perfor-
mance relative to NeuralLog. Adding more anomalous data in
the supervised approaches may help alleviate overfitting and
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improve overall performance.

TABLE V
COMPARISON OF THE EFFECTIVENESS OF DIFFERENT CLUSTERING

APPROACHES ON THE TRAINING SET

Cluster M HDFS BGL Thunderbird
session 20 100 200 20 100 200

Self-
adaptive

P 0.889 0.815 0.786 0.795 0.049 0.088 0.110
R 0.973 0.967 0.922 0.893 0.881 0.765 0.717
S 0.996 0.978 0.971 0.970 0.939 0.915 0.908
F1 0.930 0.884 0.849 0.841 0.093 0.157 0.190

HDBS-
CAN

P 0.796 0.784 0.672 0.666 0.015 0.044 0.046
R 0.898 0.993 0.976 0.892 0.883 0.886 0.583
S 0.993 0.973 0.944 0.941 0.798 0.795 0.807
F1 0.844 0.876 0.796 0.762 0.030 0.084 0.085

TABLE VI
COMPARISON OF THE EFFECTIVENESS OF DIFFERENT CLUSTERING

METHODS ON THE TEST SET

Cluster M HDFS BGL Thunderbird
session 20 100 200 20 100 200

Self-
Adaptive

P 0.982 0.942 0.896 0.929 0.900 0.913 0.500
R 0.994 0.962 0.866 0.800 0.587 0.724 0.240
S 1.000 0.996 0.991 0.993 1.000 1.000 1.000
F1 0.988 0.952 0.880 0.859 0.711 0.808 0.324

HDBS-
CAN

P 0.985 0.848 0.824 0.212 - 0.010 -
R 0.848 0.960 0.920 0.858 0.000 0.138 0.000
S 1.000 0.988 0.982 0.642 1.000 0.980 1.000
F1 0.912 0.901 0.869 0.340 - 0.019 -

B. Clustering Effectiveness
To compare the clustering algorithms employed in AdaLog

and PLELog, we adopt the same methods of preprocessing and
generating word embeddings (i.e., BERT). In this experiment,
we do not perform undersampling to ensure that differences
in comparisons are entirely due to clustering. The results on
the training set are demonstrated in Table V, and Table VI
indicates the comparison on the test set with the transformer-
based classification model for anomaly prediction.

In Table V, we compare our self-adaptive clustering method
with HDBSCAN employed in PLELog on the training set.
On the whole, our clustering method can more accurately
label unlabeled data on all datasets. We can find that both
clustering methods perform much better on both HDFS and
BGL datasets than Thunderbird dataset. On both datasets,
the recall of two clustering methods achieves high values,
while the precision calculated by AdaLog is higher than the
HDBSCAN adopted by PLELog. On HDFS dataset, our self-
adaptive clustering method outperforms HDBSCAN in terms
of F1 by 10.2%. The improvements of our clustering method
over HDBSCAN by 6.0% on average on BGL dataset. Because
of the severe imbalance problem on Thunderbird dataset, two
clustering methods have difficulty in correctly classifying log
sequences. Overall, on all datasets, our self-adaptive clustering
method outperforms HDBSCAN in the term of F1-score
with 64.1% on average.

In Table V, we directly classify unlabeled data on the
training set into normal and abnormal based on label prob-
abilities. Nonetheless, to predict the labels of samples in the
test set, we use the Transformer-based classification model
for training and validation. Similarly, the results displayed in

Table VI also illustrate that our clustering method is far better
than HDBSCAN in terms of all evaluation metrics. When
combining the HDBSCAN clustering method and the same
classification model, the results are not satisfactory. Even on
the Thunderbird dataset, the value of TP is 0 (i.e., no anomaly
can be correctly predicted), which results in a recall of 0 and
makes precision and F1-score invalid values. The reason is
that the label probability calculated by HDBSCAN has a large
error. Incorporating the classification model, the self-adaptive
clustering outperforms HDBSCAN by 864.1% (on average)
in terms of F1-score on three datasets.

C. Undersampling Effectiveness with Different Ratios
In Table VII, we summarize the raw ratios of normal and

abnormal data, the undersampling ratio ranges, and the specific
undersampling ratios used in AdaLog (i.e., 75% of the range
as it is practice-recommended on all three datasets). Table VIII
shows the comparison of AdaLog with (75% of the range) or
without undersampling. For the sake of rigor, we choose five
values within the undersampling ratio ranges to observe the
effect of the undersampling ratio on AdaLog’s performance.
The trend is illustrated in Fig. 2.

TABLE VII
STATISTICS ON THE UNDERSAMPLING RATIO OF DATASETS

Dataset Group Original
Ratio

Undersampling
Ratio Range Ratio (75%)

HDFS session 33.5:1 15:1-30:1 26:1

BGL
20 10.0:1 5:1-9:1 8:1

100 8.5:1 4:1-8:1 7:1
200 7.6:1 3:1-7:1 6:1

Thunderbird
20 282:1 140:1-280:1 245:1

100 93:1 45:1-90:1 79:1
200 63:1 30:1-60:1 53:1

TABLE VIII
RESULTS OF ADALOG WITHOUT OR WITH UNDERSAMPLING

Ada
Log M HDFS BGL Thunderbird

session 20 100 200 20 100 200

W/o
P 0.982 0.942 0.896 0.929 0.900 0.913 0.500
R 0.994 0.962 0.866 0.800 0.587 0.724 0.240
S 1.000 0.996 0.991 0.993 1.000 1.000 1.000
F1 0.988 0.952 0.880 0.859 0.711 0.808 0.324

W/h
P 0.988 0.970 0.883 0.875 0.912 1.000 0.818
R 0.997 0.940 0.961 0.847 0.674 0.621 0.360
S 1.000 0.998 0.988 0.986 1.000 1.000 1.000
F1 0.993 0.955 0.920 0.861 0.775 0.766 0.500

The results shown in Table VIII demonstrate that the per-
formance with undersampling outperforms without undersam-
pling except for only one case (i.e., on Thunderbird dataset
with ws = 100). The possible reason is that the percentage of
anomalies in the training set is much larger than that in the test
set, and the use of undersampling may enlarge the difference
between the two and lead to a little deviation in prediction.
Overall, compared with the model without undersampling, the
one with undersampling improves the performance on average
by 0.5% (HDFS), 1.7% (BGL), and 19.4% (Thunderbird),
respectively.

To explore whether this chosen undersampling ratio is
reasonable for each dataset, we conduct experiments on the
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(a) HDFS (b) BGL (c) Thunderbird

Fig. 2. The effect of the undersampling ratio on AdaLog’s performance in F1-score. The percentages 0% and 100% indicate the minimum and
maximum values of the undersampling range.

undersampling ratio within a set range shown in Table VIII.
We take different undersampling values, i.e., 0% (minimum),
25%, 50%, 75%, and 100% (maximum), as the undersampling
ratio. The performance trend is illustrated in Fig. 2. The hor-
izontal and vertical axis refers to the percentages of the ratio
range and the performance in terms of F1-score, respectively.
On the HDFS dataset, performance drops slowly from 0.991
(min) to 0.992 (25%), and rises to 0.993 (75%), then drops
sharply to 0.975 at a 30:1 ratio of the two classes (max). Unlike
HDFS, the performance of the BGL dataset shows a steady
upward trend until reaching 75% of the ratio range. The up
and down trends are flatter when the window size is 20 or 100,
and the corresponding ranges of the variation are 0.033 and
0.054, respectively. In comparison, the change (i.e., 0.211) is
more significant in the case of ws = 200. The performance
climbed from 0.650 (min) to 0.765 (50%), followed by a sharp
rise to 0.861 (75%), and then a slow decline to 0.840 (max).

On Thunderbird, the most imbalanced dataset, the variation
range widens to 0.352 (ws = 200). When the window size is
20 or 200, the trend of change is similar. There is a modest
decrease and then a considerable increase, followed by a minor
decay. At the peak points, the percentage of the ratio range
is 75%. When ws = 100, the performance continues to rise
to 0.766 as the percentage increases from min to 75%, after
which the performance decreases to 0.549 (max). To sum up,
for any dataset, within the range of undersampling ratios, 75%
is a very reasonable undersampling ratio.

D. Overall Effectiveness with Different Labeled Ratios

As a semi-supervised approach, AdaLog utilizes a part
of labeled training data to predict the unknown ones. The
operation benefits the model will be less sensitive to the
data, thereby keeping stability. Fig. 3 represents how the
performance of the proposed AdaLog in F1-score changes
when the labeled proportion (represented as lp) ranges (i.e.,
10% to 90% in 10 percentages).

On HDFS dataset, the performance of AdaLog continues to
rise steadily, from 0.869 to 0.997. Especially when lp increases
from 50% to 90%, the performance gap of AdaLog is tiny,
and the improvement is only 0.4%. This result represents that
AdaLog on HDFS dataset maintains outstanding performance
even with the proportion of labeled data changes. On BGL

(a) HDFS

(b) BGL

(c) Thunderbird

Fig. 3. The effect of the labeled training data size on AdaLog’s
performance in F1-score.

dataset, the changing trend of AdaLog’s performance is rela-
tively consistent in different window sizes. The performance
change of AdaLog under different window sizes is basically
a sharp improvement first (especially the lp changes from
10% to 20%) and then a slow increase (i.e., 50%–90%).
When ws = 20, the F1-score dramatically increases from
0.519 to 0.899 (an improvement of 73.2%) as lp changes
from 10% to 20%, then gradually grows to 0.955 when lp
is 50%. Similarly, under ws = 100, the F1-score has an
improvement of 42.5% with the changes of lp from 10% to
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20%. Afterward, this value rises by 27.6% until lp increases
to 50%. When ws = 200, the F1-score greatly improves from
0.449 to 0.861 (an improvement of 91.8%) with the change
in lp from 10% to 50%. When the labeled ratio changes from
50% to 90%, the performance of AdaLog is slightly improved
by 2.2% (ws = 20), 3.7% (ws = 100), and 3.8% (ws = 200),
respectively. The experimental results demonstrate that as the
amount of labeled data increases, the performance of AdaLog
on BGL dataset also steadily improves. However, when the
proportion of labeled data changes from 50% to 90%, the
performance does not change much.

AdaLog has an unusual behavior on the Thunderbird dataset
compared to the other two datasets. In Table IV, super-
vised methods generally perform better than semi-supervised
methods since the former use more semantic information for
training. Then on the Thunderbird dataset, due to the severe
imbalanced problem, supervised methods will likely overfit
anomalies. Once some anomalies that the model has not seen
appear, the model is likely to predict them as normal logs.
Fig. 3(c) clarifies this point intuitively. When the window
size is 20, the performance of AdaLog spikes from 0.001
(lp = 10%) to 0.775 (lp = 50%), then slowly rises to 0.857
(lp = 70%) before dropping slightly to 0.833 (lp = 90%).
When the window sizes are 100 and 200, the performances
of AdaLog change significantly. They rise sharply to 0.735
(lp = 50%) and 0.541 (lp = 60%), respectively, then drop
magnificently. The experimental findings suggest that aug-
menting the amount of training data is not invariably conducive
to enhanced performance, and the data category should be
considered. In instances of pronounced class imbalance, such
a practice may engender training drift, yielding diminished
recall and F1-score. In summary, AdaLog performs well as a
semi-supervised method with 50% labeled training data, even
better with extreme imbalance.

VI. CONCLUSION AND FUTURE WORKS

We propose an efficient semi-supervised method AdaLog
to enhance the performance of anomaly detection. To improve
the accuracy of data labeling, AdaLog utilizes a self-adaptive
clustering method to calculate the label probability of unla-
beled data more accurately, which considers twelve specially-
designed situations based on the distance of labeled data.
To alleviate the class imbalance problem, AdaLog employs
an undersampling method to improve the performance of
AdaLog. Furthermore, we adopt a pre-trained model for word
embedding and a Transformer-based model for prediction.
Experimental results show that AdaLog achieves superior
performance than five SOTA semi-supervised and supervised
approaches for industrial log-based anomaly detection.

Studies [31]–[33] have pointed out that data-driven deep
learning models are vulnerable to perturbations in input data,
making them susceptible to adversarial attacks. Although
leveraging the transformer, a deep learning model, for anomaly
prediction, it is noteworthy that AdaLog is semi-supervised
and employs a self-adaptive clustering technique to estimate
label probabilities on unlabeled data. This enables subse-
quent training steps to be less sensitive and less prone to

deviation. However, to further enhance the robustness of the
proposed approach, it is imperative to integrate advanced
techniques, such as adversarial ones, to resist external attacks.
Incorporating adversarial training or defense mechanisms, as
well as techniques like input perturbation, may be promising
directions to explore in future work. Strengthening the overall
effectiveness and resilience of AdaLog would allow for its
expansion to other applications within the IIoT domain.
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