
4456 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 9, SEPTEMBER 2023

BiAn: Smart Contract Source Code Obfuscation
Pengcheng Zhang , Member, IEEE, Qifan Yu , Yan Xiao , Hai Dong , Senior Member, IEEE,

Xiapu Luo , Xiao Wang , and Meng Zhang

Abstract—With the rising prominence of smart contracts,
security attacks targeting them have increased, posing severe
threats to their security and intellectual property rights. Existing
simplistic datasets hinder effective vulnerability detection, raising
security concerns. To address these challenges, we propose BiAn,
a source code level smart contract obfuscation method that
generates complex vulnerability test datasets. BiAn protects
contracts by obfuscating data flows, control flows, and code
layouts, increasing complexity and making it harder for attackers
to discover vulnerabilities. Our experiments with buggy contracts
showed an average complexity enhancement of approximately
174% after obfuscation. Decompilers Vandal and Gigahorse had
total failure rate increments of 38.8% and 40.5% respectively.
Obfuscated contracts also decreased vulnerability detection rates
in more than 50% of cases for ten widely-used static analysis
detection tools.

Index Terms—Blockchain, Ethereum, smart contract, source
code, obfuscation.

I. INTRODUCTION

SMART contracts are autonomous programs that run on
the blockchain. They are developed in several high-level

languages and then compiled into bytecode [1]. Contracts are
deployed by packaging bytecode in the form of transactions into
the blockchain. Both blockchain and smart contracts are in their
infancy, and smart contracts usually handle transactions related
to cryptocurrencies. Consequently, attacking smart contracts is
feasible and profitable [2]. In the past few years, there have been
several serious attacks caused by smart contract errors, which
have resulted in huge financial loss. The most notorious of these
is the DAO [3] attack, which caused users’ financial loss of 60
million US dollars.

Manuscript received 23 November 2022; revised 18 July 2023; accepted
19 July 2023. Date of publication 27 July 2023; date of current version 19
September 2023. This work was supported in part by the National Natural
Science Foundation of China under Grants 62272145 and U21B2016, in
part by the Fundamental Research Funds for the Central Universities of
China under Grants B220202072 and B210202075, in part by the Natural
Science Foundation of Jiangsu Province under Grant BK20191297, and in part
by the CloudTech RMIT Green Bitcoin Joint Research Program/Laboratory
and the Cooperative Research Centres Projects (CRC-P) funding scheme
“Fast and Secure Crypto Payments for E[1]Commerce Merchants” under
Grant CRCPXIII000145 and Hong Kong ITF Project (No. GHP/052/19SZ).
Recommended for acceptance by J. Sun. (Corresponding authors: Pengcheng
Zhang; Yan Xiao.)

Pengcheng Zhang, Qifan Yu, Xiao Wang, and Meng Zhang are with the Col-
lege of Computer and Information, Hohai University, Nanjing 210000, China
(e-mail: pchzhang@hhu.edu.cn).

Yan Xiao is with the School of Cyber Science and Technology, Sun Yat-sen
University, Shenzhen 518000, China (e-mail: xiaoy367@mail.sysu.edu.cn).

Hai Dong is with the School of Computing Technologies, RMIT University,
3000 Melbourne, Australia (e-mail: hai.dong@rmit.edu.au).

Xiapu Luo is with the Department of Computing, Hong Kong Polytechnic
University, HongKong 999077, China (e-mail: csxluo@comp.polyu.edu.hk).

Digital Object Identifier 10.1109/TSE.2023.3298609

The reason behind this kind of attacks is that smart contracts
cannot be modified after being released. If a serious vulnera-
bility is found after release, the contract needs to be replaced
with a new contract and redeployed. Meanwhile, users’ whole
records will be lost. To ensure the security of this code, smart
contracts must be tested before release.

As a result, various smart contract vulnerability testing tools
have flourished. These tools perform vulnerability detection on
either the source code level or the bytecode level. For example,
SmartCheck is a source-code-level static smart contract vul-
nerability detection tool. It has the highest running efficiency
among all the available smart contract vulnerability detection
tools [4]. The most representative bytecode-based static detec-
tion tool for smart contracts is Slither [5], which has the largest
number of users and is still under maintenance. It performs
detection by converting Solidity smart contracts into an inter-
mediate representation called SlithIR.

Although many smart contract static detection tools have
emerged, smart contract incidents are still persistent. For ex-
ample, in 2021, Chainswap1 lost $4 million dollars due to its
smart contract security issues. These incidents indicate that
smart contract security protection mainly based on vulnerability
detection still has not reached its full potential. The limitations
of the current smart contract vulnerability protection include:

• Lack of smart contract obfuscation tools for reverse
engineering prevention.
Lack of smart contract obfuscation tools for reverse en-
gineering prevention. Smart contracts on Ethereum may
require obfuscation to protect intellectual property, mask
code defects, and prevent leakage of business logic [6].
However, reverse engineering the publicly accessible byte-
code of these contracts undermines these efforts. Solidity,
the language for smart contracts, lacks dedicated obfusca-
tion tools to prevent reverse engineering.

• Lack of sufficient evaluation on complex smart contracts.
Most detection tools have only been tested on smart con-
tracts with simple structures. The complexity of those
smart contracts is far lower than that of real-world smart
contracts in terms of cyclomatic complexity, complexity
of data flow, etc.

Our goal is to design a smart contract source code ob-
fuscation technique to address the above limitations. Our
approach focuses on Solidity source code obfuscation by de-
signing language-specific data flow obfuscation, control flow
obfuscation and layout obfuscation techniques. The motivation

1https://www.163.com/dy/article/GEQC6RF30512D03F.html

0098-5589 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 30,2023 at 07:02:06 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3594-408X
https://orcid.org/0000-0003-0029-5622
https://orcid.org/0000-0002-2563-083X
https://orcid.org/0000-0002-7033-5688
https://orcid.org/0000-0002-9082-3208
https://orcid.org/0009-0000-0195-3186
https://orcid.org/0000-0003-3517-6041
mailto:pchzhang@hhu.edu.cn
mailto:xiaoy367@mail.sysu.edu.cn
mailto:hai.dong@rmit.edu.au
mailto:csxluo@comp.polyu.edu.hk
https://www.163.com/dy/article/GEQC6RF30512D03F.html

ZHANG et al.: BIAN: SMART CONTRACT SOURCE CODE OBFUSCATION 4457

behind this goal is that code obfuscation will significantly in-
crease the complexity of the smart contract source code. After
the obfuscation, the number of paths in the contract code will
be greatly increased compared to the original code, while the
main structure of the original code remains unchanged.

Motivation: First explain why code obfuscation technology
is used in smart contracts:

Even though transparency is expected in smart contracts, and
the motto “code is law” implies that the code should be clear and
unambiguous. However, code obfuscation does not necessarily
contradict this principle. Code obfuscation technology is used
in smart contracts for several reasons.

• Security: Smart contract security is becoming an increas-
ingly important issue, particularly with the development of
Ethereum. Attackers are exploiting vulnerabilities in smart
contracts, causing significant economic losses. Decompi-
lation tools are also emerging, which can pose a number
of threats to smart contract codes.
First, the core code of the smart contract may be decompiled
and leaked, resulting in being stolen by competitors. Sec-
ond, the attacker may decompile and then insert malicious
code, pretending to be the original program, and perform-
ing malicious acts. Third, the exposure of smart contract
source code makes it easier for attackers to mine software
vulnerabilities, making it more vulnerable to attacks.

• Intellectual Property Protection: Code obfuscation can
be used to protect the intellectual property of the smart
contract developer or to hide implementation details that
are not relevant to the contract’s functionality. In these
cases, the obfuscation is not intended to obscure the logic
of the contract or make it difficult to understand - it is
simply a way to protect sensitive information.
Let us assume that Jerry is the leader of an Ethereum smart
contract development team. He is aware of safeguarding
the original code of a contract ‘getWageNumber.sol’ (see
Fig. 4a) developed by his team from public access. Such
precautions are motivated by apprehensions surrounding
the preservation of intellectual property rights. The origi-
nal code of the smart contract contains informative com-
ments that explain important aspects of the code. It uses
meaningful variable names, such as ‘DailyWage’, which
could easily be exposed to potential attackers, making the
code readable, analyzable, and vulnerable to tampering.
This poses significant risks to the security and intellectual
property of the code.

• Simple Data Set Issue: The last issue is the problem
of relatively simple data sets in the field of smart con-
tract vulnerability detection. While the number and types
of vulnerabilities that can be detected are increasing, the
current data sets are generally too simple to accurately
reflect the complexity of real smart contracts on Ethereum.
This makes it difficult to train vulnerability detection tools
that can accurately identify complex vulnerabilities. Code
obfuscation can help to address this issue by increasing
the complexity of the contract without changing its logical
function [7]. We propose a convenient alternative: replace
the required complex smart contract with an obfuscated

vulnerability contract, thereby alleviating the problem of
simple data sets.

The above points highlight the potential benefits of applying
code obfuscation technology to smart contracts. The following
will explain the feasibility, challenges and significance of ap-
plying code obfuscation technology to smart contracts.

First of all, code obfuscation technology is a well-established
technique that has been widely applied in other programming
languages, such as Java, C, Python, etc. Although direct appli-
cation of this technology to the Solidity language is not possi-
ble, it is feasible to adapt code obfuscation techniques suitable
for Solidity by analyzing the characteristics of the language.

Secondly, the challenge of increased gas consumption in
smart contracts after code obfuscation is significant. Code ob-
fuscation techniques inevitably lead to higher computational
costs and increased gas consumption. To mitigate this negative
impact, we have taken two approaches. First, we provide config-
uration files that allow users to select the desired obfuscation
technology and intensity, which can reduce gas consumption
and meet practical security needs. Second, we optimize gas
consumption during the obfuscation process by using strategies
that can lower gas consumption. As a result, the original average
gas consumption after obfuscation increased from 100% to
82%, reducing the average gas consumption increment by 18%.

Finally, although developers are not required to upload source
codes on Ethereum, many smart contract source codes are
uploaded, and there will likely be more in the future. These
uploaded source codes are exposed to the risks of analysis,
exploitation, tampering, and vulnerability discovery, making
it significant to apply code obfuscation technology to smart
contract source codes.

Therefore, in this paper, we propose BiAn2, a source code
level code obfuscation tool, which is the first tool that is able
to perform code obfuscation at the smart contract source code
level. BiAn can modify the layout, data flow and control flow
of the smart contract without affecting the original function of
the smart contract. We conduct extensive experiments around
BiAn to evaluate its performance.

In summary, we make the following contributions:
• We propose an improved chaotic mapping function,

Chebyshev-PWLCM Map (CPM), by fusing two existing
one-dimensional chaotic mapping functions, Chebyshev
and PWLCM [8], in terms of trigonometric functions.
CPM inherits the compelling features of Chebyshev and
PWLCM, such as high sensitivity and randomness, and
avoids their defects including smaller value ranges and
existence of unchaotic points. CPM is demonstrated to be
able to greatly enhance the generation quality of opaque
predicates in control flow obfuscation.

• BiAn contains a set of dedicated obfuscation meth-
ods for the unique language features of Solidity. The
proposed control flow, data flow and layout obfuscation
methods are based on the special features of Solidity,
including keywords, type names, third-party package de-
pendencies, rows and columns of two-dimensional arrays,

2https://github.com/Nonreq/TSE2022

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 30,2023 at 07:02:06 UTC from IEEE Xplore. Restrictions apply.

https://github.com/Nonreq/TSE2022

4458 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 9, SEPTEMBER 2023

special structures (e.g., contracts, transfer, etc.), and spe-
cial modifiers (e.g., view, pure, payable, etc.). In this way,
we explore a new way of dataset generation to assess
the performance of smart contract vulnerability detection
tools. The obfuscated smart contract vulnerability datasets
are more complex and closer to real smart contracts, which
can address inadequacy and lack of complexity of existing
testing datasets.

• BiAn is approved to enhance the anti-decompilation ca-
pacity of smart contracts. A decompiler can analyze and
recover the assembly or source code format of the smart
contract to make unauthorized use, analysis or vulnerabil-
ity discovery. The anti-decompilation capacity of BiAn can
improve the security of smart contracts.

• We conduct an extensive experimental evaluation for BiAn.
The results of our experiments on complexity and gas con-
sumption demonstrate a significant increase in the com-
plexity of obfuscated smart contracts, with the number of
paths being amplified by approximately 174%. In contrast,
the gas consumption of the smart contracts after obfus-
cation rises by around 82%, which is considerably lower
than the extent of complexity enhancement. Furthermore,
we have assessed the performance of ten state-of-the-art
static smart contract bug detection tools using the obfus-
cated smart contracts. Our findings reveal a substantial
decrease in the detection accuracy of almost 100% of these
tools. Additionally, the results obtained from evaluating
decompilation resistance indicate that the overall failure
rate of the Vandal and Gigahorse decompilers rises by
approximately 40% after obfuscation.

The rest of this paper is organized as follows: Section II
introduces background information in relation to this research,
including Ethereum and smart contracts, program slicing, and
code obfuscation. In Section III, the technical details of BiAn
are provided. In Section IV, we use an open source buggy
smart contract dataset to validate our method. Existing works
are discussed in Section V. Finally, Section VI concludes the
whole paper and plans future works.

II. BACKGROUND

A. Ethereum and Smart Contracts

The Ethereum platform has encapsulated the blockchain
technology. It allows blockchain applications to be directly
developed on the Ethereum platform [9] and developers to
fully focus on the application development without concerning
about the underlying infrastructure, thus significantly reduc-
ing application development complexity [10]. At present, a
more complete development ecosystem has been formed around
Ethereum, including many available development frameworks
and tools as well as community support3.

Smart contracts are programs run on Ethereum, comprising
a collection of code and data (state) [11]. Essentially, these
automated contracts work like the if-then statements of other

3https://ethereum.org/en/whitepaper/ethereum

Algorithm 1 Split function
Input: solidity_source_code, solidity_json.ast
Output: program snippet
1: Inital solidity_source_code, solidity_json.ast;
2: while solidity_source_code, solidity_json.ast ! = Null

do
3: Find each function;
4: FunctionList.append(function);
5: if FunctionName ! = Null then
6: Split to multiple functions;
7: end if
8: Reset solidity_source_code, solidity_json.ast;
9: end while

computer programs. Smart contracts simply interact with real-
world assets in this way. When a pre-programmed condition is
triggered, the smart contract executes the corresponding con-
tract terms [12]. Smart contracts can be understood as contracts
(special transactions) that are automatically executable (event-
driven) and written in code on the blockchain [13]. In Bit-
coin scripts, Bitcoin transactions are programmable, but Bitcoin
scripts have many limitations and are limited in the number
of programs that can be written [14]. In contrast, Ethereum
is more complete (called “Turing-complete” in computer sci-
ence), allowing users to write programs that can solve any
reasonable computational problem [15]. Smart contracts are
ideal for applications that require high levels of trust, security,
and persistence, such as digital currencies, digital assets, voting,
insurance, financial applications, prediction markets, property
ownership management, the Internet of Things, peer-to-peer
transactions, etc. [16].

B. Program Slicing

Program slicing usually consists of three parts: 1) program
dependency extraction that mainly extracts various kinds of
information from the program [17], including control flow and
data flow information, to form a program dependency graph,
2) slicing rule formulation where slicing criteria are designed
according to specific program analysis requirements [18], and
3) slicing generation in which the corresponding program is
selected according to the aforementioned slicing criteria. A
program slicing method should be determined by the preceding
slicing guidelines based on the aforementioned slicing guide-
lines, and then analyzes and processes the dependency relations
extracted from the first step to generate program slices [19].
We employ a split function for Solidity-based smart contract
program slicing, which is shown in Algorithm 1. Its workflow
is as follows. First, the source code of the smart contract and
its corresponding json_ast file are fed into the algorithm. If the
input is not null, each function in the source code is located and
added to the function list. Finally, the split function generates
the function snippets of the program.

C. Code Obfuscation

Code obfuscation has been proposed as a method to resist
software reverse analysis [20]. Code obfuscation refers to the

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 30,2023 at 07:02:06 UTC from IEEE Xplore. Restrictions apply.

https://ethereum.org/en/whitepaper/ethereum

ZHANG et al.: BIAN: SMART CONTRACT SOURCE CODE OBFUSCATION 4459

semantic transformation of a proposed application so that the
transformed program is functionally identical or similar to the
original program, but more difficult to be understood and de-
compiled. Collberg [21] classifies code obfuscation into three
categories: layout obfuscation, data flow obfuscation, and con-
trol flow obfuscation.

• The principle of layout obfuscation is to remove irrelevant
information from a program or to replace the class names
and method names in the program so that it violates the
software engineering principle of “knowing the meaning
by name” [22].

• Data flow obfuscation is the obfuscation of the data do-
main and data structure of a program, including variable
storage and coding obfuscation, variable aggregation and
splitting obfuscation, and order adjustment obfuscation
[23]. Data flow obfuscation does not intentionally modify
the code of a program, but only transforms it to different
data structures in the program.

• Control flow obfuscation is a widely used method of code
obfuscation. Information about the control transformation
process of a program is an important clue to track and
locate the state of the program [24]. How to protect such
information is an important part of software protection.
The purpose of control obfuscation is to alter or complicate
the control flow of a program to make it more difficult to
decipher.

Control obfuscation has enhanced security protection than
the other two obfuscation types, which has been the main re-
search hotspot in the field of code obfuscation nowadays [25].

D. Definitions of Terminologies

The key terminologies used in this paper are defined as
follows.

Obfuscating Transformation. Let P
τ−→ P ′ be a trans-

formation of a source program P into a target program P ′.
P

τ−→ P ′ is an obfuscating transformation, if P and P ′ have
the same observable behavior. More precisely, for P

τ−→ P ′ to
be a legal obfuscating transformation, the following conditions
must meet: if P fails to terminate or terminates with an error
condition, then P ′ may or may not terminate; otherwise, P ′

must terminate and produce the same output as P [26].
Transformation Potency. Let T be a behavior-conserving

transformation, such that P
τ−→ P ′ transforms a source pro-

gram P into a target program P ′. Let E(P) be the complexity
of P , Tpot(p), the potency of T with respect to a program P ,
is a measure of the extent to which T changes the complexity
of P . It is defined as

Tpot(p)
def
= E(P ′)/E(P)− 1 (1)

T is a potent obfuscating transformation if (p)> 0 [26].
Chaos. Let J be a metric space with a continuous map

f : J → J and let X be a set. The map f is viewed to be chaotic
over J , given that the following three conditions are satis-
fied [27]:

• f : J → J is viewed to be topologically transitive if for any
pair of open sets U, V ⊆ J there exits k > 0, such that,

fk(U) ∩ V �= 0 (2)

• The periodic points of f are dense in X
• f : J → J has sensitive dependence on initial conditions

if there exists δ > 0, such that, for any x ∈ J and any
neighborhood N of x, there exists y ∈N and n≥ 0, such
that

|fn(x)− fn(y)|> δ (3)

Opaque Predicate. A predicate P is opaque at P if its outcome
is known before it is applied to a location in the program. We
write PF

p (PT
p) if P is always assessed to be False (or True) at

a program point P , and P ?
p if P may sometimes be assessed to

be True (or False) [28].

III. OUR METHOD

Our method targets Ethereum smart contracts encoded in
Solidity, i.e., the most widely used smart contract programming
language. The general architecture of our method is shown in
Fig. 1. As can be seen from the figure, the operation of the
obfuscation tool focuses on the source code of a smart contract.

The obfuscation operation is performed on the smart contract
source program by constructing a control flow graph (CFG) to
extract code blocks and program slices. The detailed design is
divided into three parts, namely control flow obfuscation, data
flow obfuscation, and layout obfuscation.

A. Control Flow Obfuscation

Control flow refers to the order in which instructions are
executed during code execution. With various control logics,
programs are executed along a specific logical sequence [29].
The general control logic includes branches, loops, function
calls, etc. In normal circumstances, the logic of the program
should be clear, and there might involve various human inter-
ventions in the development process to make the code logic
clear and easy to maintain and extend [26]. However, in the
case of decompilation prevention, clear code logic makes the
code easy to be captured and accelerate the cracking process.
Control flow obfuscation complicates the control flow of a smart
contract by relying on the control flow graph during compila-
tion, thus hiding the control flow of the original program. The
module is composed of two parts: inserting opaque predicates
and flattening control flow graph.

• Inserting opaque predicates refers to using opaque pred-
icates to construct branching conditions to increase the
number of directions for a control flow. In code obfusca-
tion, if the value of a certain expression P = F (I) (where
P represents a certain expression value, F means a certain
function where we can get an expression value and I repre-
sents the input space has been determined before embed-
ding the program, the expression is considered opaque. It
can prevent attackers from inferring values from expres-
sions and/or understanding the programmer’s intentions.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 30,2023 at 07:02:06 UTC from IEEE Xplore. Restrictions apply.

4460 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 9, SEPTEMBER 2023

Fig. 1. The overview of BiAn.

Fig. 2. Insertion of opaque predicates.

A sample insertion of opaque predicate is shown in Fig. 2,
where predicates B, D, E, and F whose values are already
pre-determined are inserted into the program.

• Flattening the control flow graph means re-breaking each
basic block in the source program, jumping according
to the identifier, and completely reconstructing the corre-
sponding control flow graph to weaken the relationship be-
tween code blocks. Flattening control flow is the opposite
of changing the structure of the source code. It destroys
the internal logic of the program code block, which makes
it difficult to perform static analysis, thereby increasing
the difficulty of reverse engineering. The flattening of the
control flow graph is shown in Fig. 3. As can be seen
from the figure, A is a branch structure connecting code
blocks B and C. After the control flow is flattened, the
branch structure disappears and is replaced by a sequential

Fig. 3. Control flow graph flattening.

structure, whereby the internal logical structure of the code
block is destroyed.

Our control flow obfuscation method is optimized according
to the following unique features of Solidity.

• Special keywords, e.g., modifier. The use of modifier can
easily change the behavior of the function. For example,
they can automatically check a certain condition before
executing the function. The modifier is an inheritable prop-
erty of the contract and may be covered by a derived con-
tract. Therefore, in the case of obfuscation, it is necessary
to find the execution position of the condition according
to one or more conditions checked by the modifier. If we
want to eliminate the influence of the modifier keyword,
we need to first extract the prerequisites and adjust the
position of the prerequisites.

• Internal function calls. These function calls are translated
into simple jump statements in Ethereum Virtual Machine
(EMV). The current memory cannot be cleared because
the functions referenced by the memory are very efficient.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 30,2023 at 07:02:06 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: BIAN: SMART CONTRACT SOURCE CODE OBFUSCATION 4461

Algorithm 2 CPM chaotic mapping algorithm
Input: Xn, μ, p, M
Output: Opaque Predicates
1: if (Xn ≤ 1&Xn ≥ 0) and (μ > 2) then
2: for i in Xn do
3: Substitute four parameters into the chaos equation;
4: Res = ChaosEquation(Xi, u, p, M);
5: List.append(Res);
6: end for
7: Get List = a1, a2, , an;
8: Remove the duplicate elements in List;
9: V auleList = BooleanValueFunction(List);

10: return V alueList;
11: else
12: Print wrong parameters;
13: Re-execute parameter input;
14: end if

Only functions in the same contract can be called inter-
nally. We choose to copy the function content in the inter-
nal calling function and paste it directly into the location of
the called function. This makes the contract more compli-
cated and interferes with and obfuscates the decompilation
operation.

Opaque predicates are a very important part of the control
flow obfuscation described above. In order to construct opaque
predicates with higher quality and maximize the cost of crack-
ing opaque predicates for attackers, we will use a new chaotic
mapping-based method to construct opaque predicates below.

B. CPM Chaotic Mapping for Opaque Predicate Construction

This section presents a new algorithm for constructing
opaque predicates and squashing control flow obfuscation,
which bases on a CPM chaotic map. The main procedure of the
CPM chaotic mapping is shown in Algorithm 2. The inputs of
CPM chaotic mapping algorithm are Xn, μ, p, M , the descrip-
tion of which can be found from formula (7). First, it is required
to judge the ranges of Xn and μ. If they are not within the
specified ranges, the parameter range error will be prompted and
the parameter input will be re-executed by requiring re-entry of
parameters that fit the ranges. If they are within the specified
range, each value of Xn will be traversed. For each iteration,
the four parameters are fed into the CPM formula to obtain
the corresponding result, where the result is appended to a list.
Next, the corresponding Boolean value is obtained through the
function of ‘BooleanValueFunction’. The rules of this function
can be varied according to actual application situations, so as to
prevent attackers from analyzing the function rules and making
corresponding cracks. The currently adopted rule is that the
result is true when the value is closer to 1, and false when
the value is closer to 0. Finally the algorithm returns a list of
Boolean values.

1) Constructing Opaque Predicates: For the construction of
opaque predicates, it is common to use mathematical tools to

construct True and False values. For example, for any x in Z,
the expression

(x2 ≥ 0)|x(x+ 1)(x+ 2) (4)

is always real. However, this method can easily be cracked by
decompilation tools. If an attacker can easily crack the opaque
predicate generation method, it indicates that this method has
very low protection ability for the code. Compared to its running
and implementation cost, the benefit of the opaque predicate
generation is low.

The chaotic mapping (depicted in Section II-D) can solve the
problem above. Since the chaotic map has a high sensitivity to
the initial value and can generate highly random results through
iterations, the opaque predicate constructed on the chaotic map
can effectively prevent the encrypted information from being
cracked or increase the cracking difficulty. The more complex
the opaque predicate, the harder it is to attack. The reference
can be found in [25].

Based on the Chebyshev [30] and PWLCM [8] chaotic maps,
we propose an improved chaotic map, named CPM. CPM not
only retains the advantageous characteristics of the sensitivity
and randomness of the two existing chaotic maps, but also
weakens the insufficiency of the existence of breakpoints, lead-
ing to an improved performance. The technical details of CPM
are discussed below.

The selection of a suitable chaotic map relies on the sen-
sitivity, randomness and timeliness of a chaotic system. The
sensitivity refers to small changes in initial values or related de-
termined control parameters of a system leading to significantly
different results [31]. In this way, it is difficult for an attacker
to reversely deduce the initial parameter key of a chaotic map
based on the opaque predicate generation result. The random-
ness refers to the random distribution of chaotic mapping in the
metric space [32]. The timeliness refers to the speed of obfusca-
tion. While multi-dimensional chaotic system-based encryption
can generate high security, it is time-consuming [33]. Therefore,
this paper mainly focuses on adopting low-dimensional chaotic
maps for code obfuscation.

We select two existing one-dimensional chaotic mapping
methods, i.e., Chebyshev and PWLCM, according to the afore-
mentioned criteria.

The Chebyshev chaotic map has a high sensitivity to its initial
values and long-term unpredictability for its chaotic sequences
[30]. In particular, with the continuous increase in the num-
ber of chaotic map iterations, the Chebyshev chaotic map can
have uniformly distributed chaotic trajectories. The Chebyshev
chaotic map is defined as:

xn+1 = cos (δ arccos (xn)) , xn ∈ [−1, 1] (5)

where δ is the control parameter of the chaotic map. When
δ >= 2, xn ∈ [−1, 1], the Chebyshev chaotic map is in a
chaotic state. Its sensitivity to initial values and unpredictability
are high, but its chaotic range is slightly small [30].

PWLCM (Piece Wise Linear Chaotic Map) is an intuitive and
clear piecewise chaotic map [8]. The chaotic map also has high

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 30,2023 at 07:02:06 UTC from IEEE Xplore. Restrictions apply.

4462 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 9, SEPTEMBER 2023

initial value sensitivity and randomness. The chaotic trajectories
of PLWCM map are uniformly distributed. It is expressed as:

xn+1 =

⎧
⎪⎪⎨

⎪⎪⎩

xn/γ 0≤ xn < γ
(xn − γ) /(0.5− γ) γ ≤ xn < 0.5

0 xn = 0.5
F (1− xn−1, γ) 0.5< xn < 1.0

(6)

where γ is the control parameter of the chaotic map. When γ ∈
(0, 0.5), xn ∈ [0, 1), PWLCM is in a chaotic state. Although
the chaotic range of PWLCM is wider in comparison to the
Chebyshev chaotic map, there is a point (x= 0.5) where the
function value is zero. When it is at this point, PWLCM will
lose its chaotic effect, and the security and continuity of the
chaotic system are discontinued.

In view of the aforementioned advantages and disadvantages
of the Chebyshev and PWLCM chaotic maps, we fuse the
two chaotic maps by trigonometric functions and propose an
improved one-dimensional chaotic map, Chebyshev-PWLCM
Map (CPM). The definition of the CPM chaotic map is:

xn+1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

mod (cos (M cos (μ arccos (xn)) + xn/p) , 1) ,

0≤ xn < p

mod (sin (cos (μ arccos (xn))+

(xn − p) /(0.5− p) +M) , 1) ,

p≤ xn < 0.5

F (1− xn, μ, p) , 0.5≤ xn < 1

(7)

When μ≥ 2, p ∈ (0, 0.5), the CPM chaotic map is in a chaotic
state, M belongs to the part of the key in the chaotic map
and it is the disturbance parameter of the chaotic map. The
CPM chaotic map retains the advantages of high initial value
sensitivity and randomness of Chebyshev and PWLCM chaotic
maps, expands the chaotic range, and increases the security
and continuity of chaotic maps by eliminating the limitation of
zero function value of PWLCM. In addition, CPM goes a step
further to distribute the chaotic trajectories more evenly, which
improves the performance of chaotic mapping. In this way, the
opaque predicates can be constructed by chaotic mapping.

2) Insertion of Opaque Predicates: Three forms of opaque
predicates are introduced in Section II-D: never-true opaque
predicates, never-false opaque predicates, and true or false
opaque predicates. After constructing the opaque predicates,
we can design these three opaque predicates as needed, and
insert them into the Solidity programs where the truth needs
to be judged, such as if-else or while statements. Opaque pred-
icates can also be used in ordinary statements that are executed
sequentially.

When inserting a never-true opaque predicate into an if-else
statement, it is necessary to perform a logical AND operation
on the original conditional judgment expression in the if-else
statement and the never-true opaque predicate, according to
the grammar rules. In this way, if the result of the original
conditional judgment expression is true, the output result is still
true after the logical AND operation; if the result generated by
the original conditional judgment expression is false, after the
logical AND operation, the output result is still false. Since

the logic AND operation itself has short-circuit characteris-
tics, when the original condition is true, the true or false of
the always true opaque predicate will be detected; when the
original condition is false, the true or false of the never true
opaque predicate will not be checked. The time overhead of
computing never-true opaque predicates is reduced to a certain
extent.

3) Algorithm Execution Description: The explanation of
the squashing control flow algorithm can be referenced in Sec-
tion III-A. The source code, chaotic map, obfuscation method
and save path are the input of the algorithm. The integrity of the
input parameters is checked. If the parameter format is correct,
the opaque predicates will be generated and inserted into smart
contract source code and the control flow of the code will be
flattened; otherwise these functions cannot be executed. Finally,
the obfuscated code will be generated.

C. Data Flow Obfuscation

Data flow obfuscation refers to modifying the data fields in
a program without processing the internal logic structure of the
program [34]. It modifies data fields by analyzing the abstract
syntax tree (AST), which is a tree-like representation of the
abstract syntax structure of the source code. Each node on the
tree represents a structural component in the source code. It
is abstract because the abstract syntax tree does not represent
the real syntax. The modification of data fields together with
detailed information in a smart contract would make an at-
tacker more difficult to obtain valid information from the smart
contract The process of realizing this feature is divided into
five tasks: 1) converting local variables into global variables,
2) converting static data to dynamic data, 3) transforming inte-
ger constants into arithmetic expressions, 4) splitting Boolean
variables and 5) converting scalar variables into vectors. The
technical details of these tasks are depicted below:

• First, we obtain all the declared local variables by parsing
the json ast file. According to all the local variables de-
clared, we search for local variables with the same names.
Then, we overwrite all the variables with the same variable
names to make them as global variables, which constructs
the foundation for the following redeclaration and removal
of the state of the local variables. Second, the state vari-
ables corresponding to the local variables are redeclared
and the declaration statements of the local variables are
removed. Finally, where each local variable used is lo-
cated according to the variable id, and the original local
instruction is replaced with the newly declared variable.
Some unique operations are made based on the unique
features of Solidity. There are two types of functions in
Solidity, namely pure function and view function. It is
not allowed to read or modify the state variable in a pure
function, while it is not allowed to modify the state vari-
able in a view function. Therefore, BiAn does not handle
local variables in pure functions. The detailed steps for
converting local variables to global variables can be found
in Algorithm 3. To illustrate this algorithm, let’s consider a
smart contract where a global variable is declared outside
any function, such as ‘uint256 public globalVariable;’. For

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 30,2023 at 07:02:06 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: BIAN: SMART CONTRACT SOURCE CODE OBFUSCATION 4463

Algorithm 3 Converting local variables to global variables
Input: solidity_source_code, local_variables
Output: solidity_source_code, global_variables
1: Initial Smart Contract Source Code;
2: Find localV ar_Post;
3: while Find_ASTNode ! = Null do
4: for i= 1 to find localV ar.length do
5: if Process same name ! = Null then
6: Find same name state;
7: Over write declare_ state;
8: end if
9: Get corpus;

10: Str replacedLocalV ariable;
11: Reset Sol And Json;
12: end for
13: end while

other local variables within code blocks, assign the local
variable to the global variable using ‘globalVariable =
localVariable;’. This assignment changes the state of the
local variable to match the value of the global variable.

• Static data is converted into dynamic data based on four
types of constants in Solidity, namely integer, Boolean,
string and hexadecimal string. Our tool first obtains the
positions and corresponding values of the four types of
constants by parsing the json ast file. Next, we declare
a new array based on the collected values for each type
of constant, i.e., the arrays for the constants of integer,
Boolean, string and hexadecimal string respectively. We
then devise a function to return the corresponding elements
from each array. Finally, the constant is replaced with the
corresponding function call. We will not try to convert con-
stants involving capital transactions (such as require and
assert statements) into dynamic variables. This is because
users need these constants to observe their transactions
in real-time.

• All integer constants in smart contract source files are
converted into complex arithmetic expressions (i.e., ex-
pressions that can generate original values). Since Solidity
does not support floating-point numbers, the generated
arithmetic expressions do not contain floating-point num-
bers or use division.

• Splitting Boolean variable is to approximate all the
Boolean constants in the source code and add a suffix after
the Boolean constant. The splitting rule is: if the origi-
nal Boolean constant is true, the “‖” operator is adopted
to connect with subsequent expressions. The subsequent
expression may be a Boolean expression or an arithmetic
expression. If the original Boolean constant is false, the
“& &” operator is used to connect with subsequent ex-
pressions. The subsequent expression may be a Boolean
expression or an arithmetic expression. The procedure for
splitting Boolean variable is introduced in Algorithm 4.
This algorithm involves splitting boolean variables. For
instance, if we have a variable with a value of ‘true’, it
can be modified to ‘true ‖ false’ or ‘true & & true’. Both

Algorithm 4 Split boolean variables
Input: solidity_source_code, boolean_variables
Output: solidity_source_code,

splited_boolean_variables
1: while boolList ! = findBoolList do
2: if len(boolList) == 0 then
3: return content;
4: else
5: Find V ariable_Declaration_Statement,

Assignment, V ariableDeclaration;
6: for statement in statementList do
7: splitBoolV ariable and append;
8: end for
9: end if

10: Replacing hash values with variable names;
11: Reset Sol And Json;
12: end while

Algorithm 5 Variable name replacement
Input: solidity_source_code, solidity_json.ast
Output: solidity_source_code
1: while Identifier ! = Null do
2: Store the location of the matching identifier;
3: if Identifiers do not involve money transactions

then
4: SHA−1 hash algorithm generates hash values;
5: end if
6: Replacing hash values with variable names;
7: Reset Sol And Json;
8: end while

alternatives yield the same result as the original value but
provide an additional level of complexity.

• The scalar-to-vector function is to collectively declare
the state variables of integer, Boolean, address, string,
and bytes in a structure, and to enable the member
variables to be called through the structure. All
initialization, assignment, and use of the original
state variables will be replaced with those of the
corresponding structure member variables. The steps of
variable name replacement are shown in Algorithm 5.
Consider a variable named ‘gasConsumption’, its
corresponding SHA-1 value can be contained by:
‘f0eb29ec79e2b6f94bc5a4266012b74b21eb6181’. This
cryptographic hash function provides a unique and
irreversibly transformed value for the original variable.
This kind of operations will force the call and generation
of state variables to be connected with the structure,
making the directions of data flows more complicated.

D. Layout Obfuscation

Layout obfuscation refers to removal or obfuscation of aux-
iliary text information in software source code or intermediate
code that is not related to execution, making it more difficult for
an attacker to read and understand the code [35]. The procedure
of layout obfuscation is shown in Algorithm 6.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 30,2023 at 07:02:06 UTC from IEEE Xplore. Restrictions apply.

4464 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 9, SEPTEMBER 2023

Algorithm 6 Layout obfuscation
Input: file_Path, json_File
Output: solidity_source_code
1: if len ! = 3 then
2: print: wrong parameters;
3: else
4: Get configuration, file content;
5: if comment.length ! = 0 then
6: Delete comment;
7: end if
8: Disrupt format;
9: for variable name in source code do

10: while identifiers ! = Null do
11: Store the location of the matched identifiers;
12: if identifiers do not involve money

transactions then
13: SHA−1 hash algorithm generates hash values;
14: end if
15: Replace hash values with variable names;
16: Reset Sol And Json;
17: end while
18: end for
19: end if

It mainly implements scrambling identifiers and debugging
information in the code to increase the workload of a reverse at-
tacker to read or analyze. It mainly implements three functions:
deleting comments, scrambling layout, and replacing variable
names. Deleting comments and scrambling layout specifically
focus on identifying the content in the source code through
regular expressions and replacing the content with correspond-
ing meaningless characters, with the purpose of enhancing the
difficulty to code content parsing. Replacing variable names is
performed by parsing the json ast file, obtaining the name and
corresponding location of each identifier in the source code,
and then using the SHA1 hash algorithm to generate the hash
value of each identifier. The reason for choosing the SHA1 hash
algorithm is that the output of the algorithm is a hash value
of 160 bits in length, which is the same as the address type
provided by Solidity. The identifiers in the source file are then
replaced by using “OX” plus the hash value corresponding to
each identifier. Although the SHA1 algorithm can be cracked,
cracking the “variable name” is actually valueless.

IV. EXPERIMENT

Our experiment is conducted using a dataset of 1,000 buggy
smart contracts randomly obtained from the Ethereum chain
and other public sources, including the open-source Ethereum
smart contract security vulnerability test case set SWC Reg-
istry4 provided by Smart Contract Security, the Jiuzhou [3]
smart contract security vulnerability data dataset published by
Xiao et al., the vulnerability-marked smart contract security
vulnerability dataset SB Curated5, Ethereum ETL project6 and

4https://swcregistry.io/
5https://smartbugs.github.io/
6https://github.com/blockchain-etl/public-datasets

test data samples from smart contract tools such as Slither,
Smartcheck, Solhint, and Mainticore. SWC Registry is an es-
sential knowledge base for Ethereum security personnel and
developers. It contains descriptions and consequences of com-
mon security issues in the development of Ethereum Solidity
smart contracts, such as reentrancy, overflow, etc., It also pro-
vides CWE (Common Weakness Enumeration) Vulnerability
classification, solutions and contract program code as exam-
ples. Jiuzhou is a collection of statistics and classification of
Ethereum smart contracts. It also provides a brief introduction,
solutions and test cases for each bug, which helps smart con-
tract developers or researchers understand the current security
state of Ethereum and get a benchmark dataset for testing
smart contract analysis tools. SB Curated is a curated dataset
containing 143 vulnerability-labeled smart contracts with 208
labeled vulnerabilities. It is used to evaluate the accuracy of
analytical tools. In comparison to the above two datasets, SB
Curated’s vulnerability markers are more accurate in terms of
the range of each vulnerability in each contract. In addition,
in order to broadly collect the required smart contract data
with vulnerabilities, we used related keywords such as “Smart
Contract Bugs”, “Smart Contract Vulnerabilities” and “Smart
Contract Security” to search for valid data in IEEE and ACM
libraries and Github. A total of 183 relevant papers or projects
were retrieved. Next, we manually checked the rationality and
logical correctness of the relevant data. We manually recorded
the location of the corresponding vulnerability in the smart con-
tracts with reference to the vulnerability marker of SB Curated,
and removed some duplication of functions and derived data.
Finally, we collected 1,000 smart contracts with vulnerabilities,
including nine vulnerability data sets (privilege control vul-
nerability (160), reentrant vulnerability (167), integer overflow
(106), randomness vulnerability (79), timestamp dependency
vulnerability (150), unchecked return value vulnerability (46),
denial of service vulnerability (141), front-running transaction
vulnerability (55), unknown function vulnerability (96)). We
also collect a set of real smart contracts run on Ethereum.
These real contracts are randomly selected using etherscan7,
which is a blockchain browser based on Ethereum. The 109
actual smart contract datasets are utilized in the complexity
experiment, where we employ the box plot and Cohn’s d value
to demonstrate that the complexity of the obfuscated smart
contract is closer to the real smart contract.

All the obfuscated smart contracts in the dataset can be
compiled successfully. Each vulnerable smart contract in the
vulnerability dataset contains only one type of vulnerability.
The compiler version numbers of the smart contracts range from
0.4.× to 0.8.×. For the current dataset of 1,000 smart contracts,
the average number of if statements is 6.2, the average number
of loops is 4.1, and the average number of lines of code is 493.7.

The primary purpose of the experiments is to explore the
following research questions:

• RQ1: Is the chaotic performance of the CMP chaotic map
better than the existing ones?

7https://cn.etherscan.com/

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 30,2023 at 07:02:06 UTC from IEEE Xplore. Restrictions apply.

https://swcregistry.io/
https://smartbugs.github.io/
https://github.com/blockchain-etl/public-datasets
https://cn.etherscan.com/

ZHANG et al.: BIAN: SMART CONTRACT SOURCE CODE OBFUSCATION 4465

• RQ2: Are the code functions in smart contracts unchanged
after using the BiAn tool to obfuscate the code?

• RQ3: Are the obfuscated smart contract more resistant to
decompilation?

• RQ4: How the complexity of smart contracts is impacted
after being obfuscated by BiAn?

• RQ5: How gas consumption of smart contracts is affected
after being obfuscated by BiAn?

• RQ6: How the performance of the existing smart contract
bug detection tools is varied after using BiAn?

We use BiAn to generate obfuscated contracts for the set of
buggy contracts. A sample smart contract before and after the
obfuscation is shown in Fig. 4. All the obfuscated contracts
can be compiled with solc to generate bytecode. We recruit
a group of developers to verify the functional variation of the
contracts after the obfuscation (Section IV-B). We also conduct
experiments to find out how the obfuscated contract can resist
the mainstream decompilation tools (Section IV-C), the com-
plexity variation (Section IV-D) and the gas consumption (Sec-
tion IV-E) of the obfuscated contract. In addition, we manually
label the error locations in the obfuscated contracts and build a
public buggy contract dataset. This dataset is used to assess how
the obfuscated contracts challenge state-of-the-art static smart
contract vulnerability detection tools (Section IV-F).

A. Chaos Mapping Performance

To answer RQ1, this experiment selects two performance
indicators (chaotic bifurcation diagram and Lyapunov exponent
[36]) to verify the superiority of the CPM chaotic map over the
traditional Chebyshev and PWLCM chaotic maps.

The chaotic bifurcation diagram reflects the state change of a
chaotic system, indicating whether a system has chaotic behav-
ior under each parameter. The more states a system can enter
under the same parameter, the better its chaotic performance.
In order to control the variables, the PWLCM, Chebyshev and
CPM chaotic maps all use the same initial value.

The chaotic bifurcation diagram of three chaotic maps is
shown in Fig. 5. Compared with the other two chaotic maps, the
bifurcation diagram of the Chebyshev chaotic map has a slightly
smaller chaotic range. In the diagram of the PWLCM chaotic
map, there are certain intervals where the chaotic behavior is
lost. In contrast, the points of the CPM chaotic map can cover
the entire space and are more evenly distributed within the
parameter range.

The Lyapunov exponent is an important index to measure
the initial value sensitivity of a chaotic system. It quantifies
the separation rate between infinite and near orbits in a dy-
namical system. The maximum Lyapunov exponent of a system
determines the main evolution trend of the system. The larger
the Lyapunov exponent, the worse the local stability of the
system. Therefore, whether the maximum Lyapunov exponent
of a system is greater than zero can be used to judge whether
the system is in chaos.

The Lyapunov exponents of the three chaotic maps are shown
in Fig. 6. The Lyapunov exponents of the CPM chaotic map
are all greater than 0, which indicates that they have high

Fig. 4. Smart contract before and after obfuscation.

sensitivity for the initial values. The average and maximum
Lyapunov exponents of the CPM chaotic map are higher than
those of the Chebyshev chaotic map, which reveals that its
chaotic performance is better. Compared with PWLCM, the
Lyapunov exponent of CPM chaotic map is increased more
steadily, which shows that the chaotic capability of the CPM
chaotic map gradually increases over time.

B. Functional Changes

To answer RQ2, this experiment aims to verify if the original
functionality of a smart contract is changed after the obfusca-
tion. This functional consistency verification comprises 1) com-
piling the smart contracts before and after the obfuscation with
Remix, the official Solidity compiler, and 2) observing whether
the input, output, state variables and implemented functions of
the smart contracts are changed after the obfuscation.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 30,2023 at 07:02:06 UTC from IEEE Xplore. Restrictions apply.

4466 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 9, SEPTEMBER 2023

Fig. 5. The chaotic bifurcation diagrams of the chaotic maps.

Fig. 6. The Lyapunov exponents of the chaotic maps.

We recruited 4 developers with Ethereum smart contract
development experience to conduct the verification process. We
randomly assigned 1,000 pairs of original and obfuscated smart
contracts to these developers for evaluation. These developers
conducted the functional consistency verification and wrote
reports summarizing their findings. According to the reports,
the obfuscated smart contracts have the same input and output
as the original smart contracts do, and the functions of the smart
contracts have not changed after the obfuscation. The develop-
ers should verify whether the input, output and implementation
of smart contract change after obfuscation. And the reports we
write are some test cases and review results. To more compre-
hensively verify the consistency of the codes before and after
obfuscation, we respectively adopted automatic verification by
using Remix (official Solidity compiler) and manual reinspec-
tion, where manual reinspection refers to manual observation
and auditing whether the input, output and implementation of
smart contract change after obfuscation. The proposed data
flow obfuscation, control flow obfuscation, layout obfuscation,
the chaotic mapping based opaque predicate generation meth-
ods and flattening control flow algorithm theoretically make
equivalent conversion of the code logic, data, and structure. We
performed functional consistency verification in both the white
box and black box modules. For white box testing, we use static
analysis and dynamic analysis. Static analysis refers to that a
program is only analyzed by code review, including program
syntax, program structure and logic review. Dynamic analysis

is to execute a program and analyze it through the basic path
method. It was found that the functions keep unchanged after
using this series of code obfuscation methods. We also tested
the functions from the black box perspective. For the test cases
of smart contracts, generally 30–80 test cases are used, and
the number of test cases needed depends on the complexity of
the smart contract. In practice, more complex smart contracts
with more lines of code, loops, and defined functions may
require more test cases than simpler ones, and vice versa. We
conducted manual detection, replayed transactions (including
state variables), and checked the input and output for changes
of the smart contract code before and after the obfuscation, so
as to verify the consistency of functions. Our verification found
that the functions of the code before and after the obfuscation
are the same.

C. Resist Decompilation

To answer RQ3, this experiment aims to assess the capability
of the smart contracts obfuscated by BiAn to resist decompiling
techniques. The publicly available decompilation tools are Er-
ays8, Vandal [37] and Gigahorse [38], the descriptions of which
are as follows:

• Erays generates a readable disassembly output that
parses symbols based on the application binary interface
(ABI). ABI describes the low-level interface between an

8https://github.com/comaeio/Erays

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 30,2023 at 07:02:06 UTC from IEEE Xplore. Restrictions apply.

https://github.com/comaeio/Erays

ZHANG et al.: BIAN: SMART CONTRACT SOURCE CODE OBFUSCATION 4467

application program and the operating system or another
application. Erays generates the disassembly from run-
time bytecode obtained from the Ethernet Virtual Machine
(EVM). Since the latest version of Erays was published
three years ago, it can only support smart contracts with
Solidity Version 4.0 or below. However, the smart con-
tracts in our dataset are coded in Solidity Version 6.0 or
above. Therefore, we have to exclude it in the following
experiment.

• Vandal is a security analysis framework for Ethereum
smart contracts. It consists of an analysis pipeline that
converts low-level EVM word code into semantic logic
relations. The users of this framework can express se-
curity analysis declaratively, namely, security analysis is
expressed in a logical specification written in Solidity.
The new intermediate representation of a smart contract
makes the implicit data and control flow dependencies of
the EVM bytecode explicit. Decompiling eliminates the
need for a contract source and allows analysis of new and
deployed contracts.

• Gigahorse’s core is a reverse compiler (i.e., a decompiler)
that decompiles smart contracts from EVM bytecode into
a high-level 3-address code representation.

We use the following criteria to evaluate the reverse analysis
results, i.e., PF (Partial Failure), FF (Full Failure), SUC (suc-
cess) and F-total.

PF refers to that the decompilation tool produces a CFG and
a code result but misses the jump flow information compared to
the original code. A jump flow means that a statement in the pro-
gram can perform conditional judgment and has the ability to
jump over a workflow, including if, switch, for, while, do-while,
etc. FF means that the decompiler does not produce any results.
More specifically, both Vandal and Gigahorse decompilation
tools take bytecode as input, that is, the obfuscated source code
will be converted into input bytecode. The tools then restore
CFG and generate semantic logic relations and CFG in the form
of HTML at runtime. If the jump flow information is lost, which
leads to incorrect information, it will be viewed as a PF. If
no result is generated, it will be viewed as a FF. SUC means
that the decompiler correctly decompiled the smart contract.
F-Total is the sum of PF and FF. The reason for introducing PF
and FF is that, in reality, the gap between decompilation failure
and decompilation success is not obvious sometimes, which is
required to introduce PF to describe them more accurately.

We define the separate semantics of PF and FF cases for
the decompilation tools as follows: Vandal converts runtime
bytecode to semantic logic relations and CFG. If Vandal cannot
find the jump address, it will miss a block and report an error
message, which is viewed as a PF case. If there is no result
generated, it will be viewed as an FF case. Gigahorse has the
same working mechanism as Vandal does.

The specific results are shown in Table I. The comparison
between the test results of the original smart contracts and the
obfuscated smart contracts complied by these decompilation
tools shows that the total failure rate of the decompiler Van-
dal and Gigahorse is increased by 38.8% and 40.5% respec-
tively after obfuscation. The higher the total failure rate, the

stronger the anti-decompilation ability. Therefore, it can be con-
cluded that BiAn does generate a moderate effect on resisting
decompilation.

D. Complexity Variation

To answer RQ4, we evaluate the effectiveness of BiAn with
regards to increasing contract complexity. We choose the smart
contract decompiler Vandal to calculate the number of paths
within an obfuscated contract and then compare it with the
original contract. Vandal is selected here, since it has a relatively
lower failure rate [39]. The path diagram of a sample smart con-
tract before and after the obfuscation is shown in Fig. 7. From
the intuitive comparison, it can be observed that the number
of paths of the smart contract is increased by approximately 2
times after the obfuscation.

The number of paths for each of the 1,000 buggy smart
contracts in our dataset before and after the obfuscation process
is shown in Fig. 8, It shows that BiAn can exponentially in-
crease the number of paths for almost all the buggy contracts in
the dataset.

Next, we create box plots (Fig. 9) to visualize the statistics of
the original contracts, the obfuscated contracts and the 109 real
contracts on the number of paths. Based on the experimental
results, it has been observed that the average number of paths in
the dataset’s smart contracts significantly increases by approxi-
mately 174% after the obfuscation. It also shows that, while the
number of paths of the original buggy contracts is far less than
that of the real contracts deployed on Ethereum, the number of
paths of the obfuscated buggy contracts is on par with or even
partially exceeds that of the real contracts. Therefore, it can be
concluded that BiAn can effectively increase the complexity of
a smart contract.

To further verify the difference between the obfuscated con-
tracts and the real contracts, we adopt the number of paths as
the Effect Size parameter, which is a group of parameters to
quantify the difference or correlation or indicate the authenticity
[40]. There are three major classes of Effect Sizes: difference,
correlation, and group overlap. We adopt the Cohen’s d value,
which is a commonly used Effect Size parameter to calculate
the difference between groups [41]. Here the Cohen’s d value
is utilized to analyze the difference between the obfuscated
contracts and the real contracts in terms of the number of paths.
The parameters required to calculate Cohen’s d value include
two groups of mean and standard deviation, as shown in the
following formula (8) and (9). In Formula (8), the numerator is
the mean difference and the denominator is the summary stan-
dard deviation s. In Formula (9), n1 and n2 are the respective
sample sizes of the two groups.)

d=
x̄1 − x̄2

s
(8)

s=

√
(n1 − 1) s21 + (n2 − 1) s22

n1 + n2 − 2
(9)

The experimental results are as follows: the Cohen’s d value
between the obfuscated contracts and the original contracts
is 1.26797, while the Cohen’s d value between the obfus-
cated contracts and the real contracts is 0.50064. It can be

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 30,2023 at 07:02:06 UTC from IEEE Xplore. Restrictions apply.

4468 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 9, SEPTEMBER 2023

TABLE I
EXPERIMENTAL RESULTS OF ANTI-DECOMPILATION ABILITY

Original Contracts Obfuscated Contracts

PF FF SUC F-Total PF FF SUC F-Total

Vandal
6.4% 1.1% 92.5% 7.5% 42.3% 4% 53.7% 46.3%

(64/1000) (11/1000) (925/1000) (75/1000) (423/1000) (40/1000) (537/1000) (463/1000)

Gigahorse
4.5% 0.4% 95.1% 4.9% 44.7% 0.7% 54.6% 45.4%

(45/1000) (4/1000) (951/1000) (49/1000) (447/1000) (7/1000) (546/1000) (454/1000)

Fig. 7. The path diagram of the sample smart contract before and after obfuscation.

seen that the difference between the obfuscated contracts and
the real contracts is much smaller, from which we can also
learn that the obfuscated contracts are more complex than the
original contract.

E. Gas Consumption

To answer RQ5, in addition to evaluating the effectiveness
of BiAn on increasing the complexity of smart contracts, we
employ the Remix compiler to calculate the Gas consumption
of smart contracts before and after the obfuscation, considering
the Gas consumption value can partially reflect the complexity
of smart contracts [42]. This is because higher Gas consumption

means more resources are required to execute a smart contract.
Therefore, the significant difference in the Gas consumption
before and after the obfuscation can reflect the dramatic change
in the complexity of a smart contract.

The feasibility of using Remix for gas consumption assess-
ment is explained below: Although the official remix compiler
finally gives the expected gas consumption, which is indeed not
the actual gas consumption, it is sufficient as an experimental
evaluation. The gas consumption calculated by Remix is an
estimated value based on several factors, such as the current net-
work situation and the complexity of smart contracts. However,
the actual gas consumption of smart contracts may vary due
to different transaction data and execution paths. Nonetheless,

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 30,2023 at 07:02:06 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: BIAN: SMART CONTRACT SOURCE CODE OBFUSCATION 4469

Fig. 8. Number of paths between the original smart contracts and the obfuscated smart contracts.

Fig. 9. Path statistics among the original smart contracts, the obfuscated
smart contracts and the real smart contracts.

the gap between Remix’s estimated gas consumption and the
actual value is expected to be small. This is because Remix
uses the current state data of the Ethereum network to estimate
gas consumption and calculates it based on the code logic and
data volume of the smart contract, which are relatively close
to the actual situation. Therefore, using Remix to evaluate gas
consumption experiments is a feasible option.

Fig. 10 shows the comparison of Gas consumption between
the original and obfuscated smart contracts, where the blue line
represents the amount of Gas consumed before obfuscation,
and the red line represents the amount of Gas consumed after
obfuscation. It is evident that the gas consumption of the major-
ity of original contracts increases by approximately 82% after
the obfuscation.

The optimization of gas consumption plays a vital role in
smart contracts, and extensive research has been conducted
to optimize gas usage. In [43], the authors propose a com-
prehensive set of 14 design patterns categorized into five
areas: external transactions, storage, space saving, method func-
tionality, and other aspects. These patterns serve as valuable
guidelines for developers aiming to optimize gas consump-
tion in their smart contracts. Another notable work by Chen

et al. [44] focuses on refactoring smart contracts to achieve
gas optimization through data type conversion. This approach
involves significant modifications to the underlying data struc-
tures, requiring developers to experiment with different data
structures to achieve desired gas efficiency. We have referred to
these methods of reducing gas consumption and applied them
to BiAn. The detailed methods we use can be found in the
next paragraph.

To further enhance the obfuscated smart contract source
code, we implemented several optimization measures,
including:

1. Reducing storage and read operations. Maximizing the
use of local variables: In a smart contract, variables are stored
on the blockchain. Reading and writing these variables need
to consume gas. Therefore, local variables should be used as
much as possible to avoid frequent storage and read operations.
To avoid frequent storage and read operations, we used local
variables wherever possible. In data flow obfuscation, we also
reduced the frequency of converting local variables into global
variables. Employing view functions: Functions that only read
contract state variables without modifying them can be declared
as view functions. Gas is not consumed when executing them.
We identified such functions and converted them into view
functions to reduce gas consumption.

2. Optimizing loops. Minimizing loop calculations: Loops
directly affect gas consumption, so we minimized all types of
loop calculations to reduce gas consumption. Minimizing mod-
ification of state variables in loops: State variables are contract
variables stored on the Ethereum blockchain. Their values can
be accessed and modified throughout a contract’s lifecycle, and
can be considered as global variables of the contract. However,
modifying state variables in loops consumes more gas. To re-
duce gas consumption, we avoided modifying state variables in
loops as much as possible, or stored them in local variables and
modified them uniformly after the loop ended.

3. Avoiding expensive (high gas consumption) operations.
Minimizing string concatenation: In Solidity, string concatena-
tion is an expensive operation. We thus used the bytes32 type
instead of strings to avoid the expensive operation of string
concatenation. Minimizing large integer calculations: Large in-
teger calculations in Solidity consume a lot of gas. To avoid

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 30,2023 at 07:02:06 UTC from IEEE Xplore. Restrictions apply.

4470 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 9, SEPTEMBER 2023

Fig. 10. Gas consumption between the original smart contracts and the obfuscated smart contracts.

Fig. 11. Gas consumption statistics among the original smart contracts, the
obfuscated smart contracts and the real smart contracts.

high gas consumption, we avoided large integer calculations as
much as possible. If the range of calculation is small, the integer
types without large storage capacity were used. Minimizing the
use of complex data types: Since using complex data types leads
to more gas consumption, large integer calculations were used
as less as possible to avoid high gas consumption.

4. Using appropriate data structures. Choosing appropriate
data structures is important for reducing gas consumption. For
example, using mapping instead of arrays can reduce gas con-
sumption because it does not need to occupy continuous space
in storage and has faster speed in lookup operations. In addition,
using fixed-length arrays instead of dynamic-length arrays can
also reduce gas consumption because space is only allocated
once during storage, without the need for reallocation when
adding or removing elements.

5. Using appropriate modifiers, etc. Modifiers are a com-
monly used feature in Solidity that can check or operate on
functions before or after execution. Some modifiers can better
control and reduce gas consumption. For example, using the
“view” or “pure” modifier can ensure that a function does not
modify state variables and does not consume gas.

The experimental results show that the average gas consump-
tion after obfuscation has increased by about 82%, which is
about 18% less than the previous increase of about 100% in
BiAn. This demonstrates that these gas optimization measures
are effective in reducing gas consumption.

Fig. 11 illustrates the statistical differences among the origi-
nal contracts, the obfuscated contracts and the real contracts.
Our experiments demonstrate that our proposed code obfus-
cation technique effectively increases the complexity of smart
contracts by 174%, surpassing the corresponding rise in gas
consumption, which is 82%. The significantly enhanced smart
contract complexity can greatly improve the security of smart
contracts and prevent users’ financial loss. In addition, the ob-
fuscated contracts will inspire the development of more ad-
vanced smart contract vulnerability detection solutions.

F. Performance Analysis

To answer RQ6, we use the obfuscated contracts to evaluate
how the obfuscation influences the vulnerability detection per-
formance of the state-of-the-art static smart contract vulnerabil-
ity detection tools. We select ten state-of-the-art tools (shown
in Table II) based on the following two criteria: 1) the tool is
open-sourced; and 2) the tool can work on Solidity contracts or
compiled bytecode.

The selected ten static smart contract vulnerability detection
tools include Mythril [45], Slither [5], Maian [13], Securify
[46], Remix, Smartcheck [4], Manticore [47], Oyente [48],
Osiris [49], Solhint9, and HoneyBadger [50]. we use these 11
tools to detect the bugs from the original contracts and the
obfuscated contracts respectively. It is worth noting that these
11 tools claim to detect different types of bugs. Since there
is no authoritative bug classification standard for the types of
bugs in smart contracts. To facilitate the evaluation, we chose
the widely circulated Distributed Application Security Project
(DASP) standard [51]. This is an open collaborative project
dedicated to discovering smart contract vulnerabilities within

9Solhint is an open source project created byprotofire (https://protofire.io).
Its goal is to provide a linting utility for Solidity code.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 30,2023 at 07:02:06 UTC from IEEE Xplore. Restrictions apply.

https://protofire.io

ZHANG et al.: BIAN: SMART CONTRACT SOURCE CODE OBFUSCATION 4471

TABLE II
TYPES OF BUGS THAT THE SMART CONTRACT DETECTION TOOLS CLAIM TO DETECT

Mythril Slither Maian Securify Remix SmartCheck Manticore Oyente Solhint HoneyBadger

Access Control Y Y Y Y Y Y N N Y N

Reentrancy Y Y Y Y Y Y Y Y Y Y

Arithmetic Y N N N N Y Y Y N Y

Bad Randomless Y N N N N N N N Y N

Time Manipulation Y Y N Y Y Y N N Y Y

Unchecked Calls Y Y N N Y Y Y N N N

Denial of Service N Y Y Y N N N N Y N

Front Running Y N N Y N N N N N N

Unknowns N Y Y N N Y Y N Y N

Fig. 12. Evaluation of the 11 static analysis tools based on the original and obfuscated smart contracts.

the security community and counting the top ten bug types that
occur most frequently each year.

Table II shows the bugs claimed to be detected by these ten
tools, where nine types of bugs are included. ‘Y’ represents that
the tool can detect this type of bug and ‘N’ represents that the
tool cannot detect the type of bug. The only excluded bug type is
Short Address, which occurs when a function named transfer in
a contract is called, EVM cannot verify the incoming bytecode.
Our experiments only focus on the bugs within smart contracts
and inter-contract interactions, and do not verify the depen-
dency on the blockchain transaction order. Thus, it is impossible
to verify the error type of Short Address (actually there are no
tools to detect these types of errors in obfuscated contracts).

Fig. 12(a) and 12(b) respectively shows the recall and ac-
curacy of these 11 tools when analyzing the original and
obfuscated contracts. The evaluation results show that the
performance of the analysis tools is significantly weakened
after the obfuscation. For example, the recall rate drops

by more than 50% for eight tools for the vulnerability
of Reentrancy.

Among these tools, the variation on Mythril’s bug detection
performance is the most remarkable, with a more than 50%
drop and even complete failure on the recall rates for five of its
claimed nine error types after the obfuscation. In addition, most
of the tools experience remarkable degradation on Reentrancy.
The reentrancy vulnerability stems from the fact that a contract
allows functions without function names, parameters and return
values. When the contract is obfuscated, the number of the
above functions is reduced, which leads to a sharp decrease
in the effectiveness of the vulnerability detection. In terms of
precision, due to the cautious strategy adopted by these tools to
find errors (e.g., some static analysis tools mark the occurrence
of specific keywords as error alerts), the variations are not as
significant as them on recall.

It is noteworthy that out of the ten tools evaluated, Oyente,
HoneyBadger, and Solhint encounter significant challenges in

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 30,2023 at 07:02:06 UTC from IEEE Xplore. Restrictions apply.

4472 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 9, SEPTEMBER 2023

running the obfuscated contracts. These tools exhibit various
unknown errors, despite the fact that the obfuscated contracts
have undergone solc compilation and are deployable on the
blockchain. This is because the increase in the complexity of the
contract structure after obfuscation leads to the failure of these
tools to execute certain functions. The data flow obfuscation
has obvious effects on the data processing and variable range
of a program. The control flow obfuscation usually poses a clear
impact on the branch structure of smart contracts, while the
layout obfuscation plays a role in the appearance and layout
of the program (variable names, identifiers, etc.). For example,
the reentrant vulnerability is caused by the recursive call of the
fallback function to the external contract function. Therefore,
the data flow and layout obfuscation has a greater impact on
the detection of this vulnerability. For integer overflow vulner-
abilities, the impact of data flow obfuscation is more distinct.
In addition to the impact of control flow obfuscation, layout
obfuscation, and data flow obfuscation on vulnerability detec-
tion tools mentioned above, we also considered the impact of
CPM on vulnerability detection tools. CPM plays a crucial role
in enhancing the quality of opaque predicate generation and
improving resistance to decompilation. It has a great impact
on RQ3 (experiment of anti-decompilation ability), but has a
minor effect on RQ6 (experiment of vulnerability detection
tool after obfuscation). The reason is that CPM generates a
value that is less prone to be cracked by attackers. Such a
value is used in On opaque predicates, thereby rendering them
more challenging to crack. Moreover, the values generated by
Chebyshev or PWLCM are weaker than those produced by
CPM. In summary, the CPM technique has a direct impact
on enhancing opaque predicates. These opaque predicates, in
turn, significantly influence the quality of control flow obfus-
cation. The quality of control flow obfuscation, which affects
the program flow, subsequently impacts the detection perfor-
mance of vulnerability tools in RQ6. However, it is impor-
tant to note that the influence of CPM on RQ6 is relatively
limited.

G. Threats to Validity

This section describes the threats to the validity of the BiAn.
As the first source code obfuscation tool of Ethereum smart
contracts, BiAn successfully obfuscates smart contracts through
methods such as data flow obfuscation, layout obfuscation, and
control flow obfuscation fused with chaotic mapping. However,
some factors would affect the performance of BiAn.

Internal Validity. First, BiAn cannot handle contract files
containing multiple smart contracts. Our approach can only
target source code of a single contract source code and its
corresponding jsonAst file.

Second, BiAn cannot handle contracts that generate warnings
during compiling. We use a local compiler (solc) to compile
smart contracts. solc will not generate compilation results if a
warning is generated during compiling.

Next, our solution may cause the bug of Solidity keyword re-
placement during the variable name replacement process, when
a user-defined variable and a Solidity global variable have the

same name. To alleviate this problem, we narrowed the scope
of variable names to be replaced.

Finally, an inherent problem of code obfuscation is that the
gas consumption of an obfuscated smart contract will increase.
However, this is worthwhile, since the extent of increase in
cyclomatic complexity after BiAn obfuscation is more than it
in gas consumption. To alleviate this problem, we provide a
configuration file (Configuration.json). By modifying the con-
figuration file, users or developers can choose to skip certain
obfuscation steps, and specify the activation probability of each
function to balance the confusion and gas consumption.

External Validity. The subjective verification on functional
consistency before and after confusion may affect the correct-
ness of the results.

V. IMPLEMENTATION

This section describes the specific implementation of the tool
BiAn.

All the code and scripts used for implementing this tool are
written in Python. The input of this tool has two parts: smart
contract source code and abstract syntax tree generated from
smart contract source code. The output is obfuscated smart
contract code. We describe the mechanisms for implementing
the control flow obfuscation, data flow obfuscation and layout
obfuscation as follows:

Control flow obfuscation. First, the program needs to verify
whether the smart contract source code and the abstract syntax
tree file are correctly located; otherwise an error message will
be returned. By using the logistic chaotic mapping algorithm
to generate opaque predicates, we enhance the uncertainty and
complexity of the partial generation of opaque predicates, and
increase the ability of a contract to resist decompilation to a
certain extent. Second, for the code file containing the Solidity
code, the program traverses all the code in the file and extracts
all the functions in the code. For each extracted function, it
divides the function into corresponding basic blocks, and inserts
opaque predicates in the basic blocks according to the method
of inserting opaque predicates described previously. Finally, we
use the squeeze control flow algorithm to flatten the control flow
of the function.

Data flow obfuscation. The program needs to traverse the file
code and syntax tree file and save the local variables traversed.
Second, it converts local variables to global variables. Next, it
judges whether there is a Boolean variable. If it exists, the pro-
gram divides the Boolean variable. In this regard, it is necessary
to ensure the correctness of traversal and judgment.

Layout obfuscation. First, the program traverses all the code
in the file, and extracts and saves all the class names, function
names, and variable names into the memory. In this regard, only
one name can be saved in the case of duplicated names. Second,
for each extracted name, we use the method of random string
generation to generate a unique, random and meaningless iden-
tifier. Next, we delete all the comment information and blank
line information in the code. Finally, the program traverses all
the file again and replaces the function names, class names, and
variable names with the generated identifiers.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 30,2023 at 07:02:06 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: BIAN: SMART CONTRACT SOURCE CODE OBFUSCATION 4473

VI. RELATED WORK

We review related work from the following three aspects:
source code obfuscation, smart contract static analysis and re-
verse engineering.

A. Source Code Obfuscation

Many source code obfuscation approaches have been pro-
posed for traditional languages such as C and Java. C language
is a widely used programming language, but it faces some
security issues such as unethical hacking, code spoofing, reverse
engineering, etc. To protect C programs from anonymous at-
tackers, Qing [52] presents a series of C source code obfuscation
solutions, primarily comprising layout obfuscation, data flow
obfuscation and control structure flow obfuscation. Ahire et al.
[53] introduce four novel data obfuscation techniques being
applied to ‘+’ arithmetic operator that may lead to the new
obfuscation area. To meet the platform-independent charac-
teristics, Java introduces a symbolic link technique that can
facilitate decompilation. Therefore, malicious users can directly
extract the entire decrypted code, by which the security of
Java programs is threatened. Zhang et al. [54] devise an inter-
classes software obfuscation technique. It can extract the code
of some methods from user-defined classes and embed them
into other objects’methods in the object pool. Thus, this method
can drastically obscure the Java program flow. Zambon [55]
describes a functional dynamic Java byte code obfuscator based
on the general ideas introduced by Aucsmith’s algorithm [56].
This tool provides a high level of security for the obfuscated
code due to the fact that the executed code is invisible in the
initial jar file, at the cost of extreme performance overhead.

However, in summary all these approaches focus on tradi-
tional languages such as C and Java. To the best of our knowl-
edge, our work is the first effort towards source-code-level smart
contract obfuscation. At present, there are four main directions
of code obfuscation techniques: control flow obfuscation, data
flow obfuscation, layout obfuscation and preventive obfuscation
[57]. Among them, preventive obfuscation needs to be formu-
lated for a specific decompiler. Traditional obfuscation methods
are mostly used for specific languages, which cannot directly
be applied to Solidity code. Therefore, our approach focuses
on Solidity source code obfuscation by designing language-
specific data flow obfuscation, control flow obfuscation and
layout obfuscation techniques.

B. Smart Contract Static Analysis

ContractFuzzer [58] generates fuzzy test inputs based on the
ABI specification of smart contracts. It defines test oracles to
detect security vulnerabilities, configures the EVM to log smart
contract runtime behavior, and analyzes these logs to report the
vulnerabilities. Oyente [48] uses a largely unsound symbolic ex-
ecution/tracking semantic approach to explore certain program
paths of smart contracts to detect corresponding program vul-
nerabilities. Mythril [45] automatically scans security vulner-
abilities in Ethereum and other EVM-based blockchain smart
contracts. Slither [5] is a static analysis framework designed

to provide rich information about Ethereum smart contracts. It
works by converting Solidity smart contracts into an interme-
diate representation called SlithIR, which uses a static single
assignment (SSA) to form and a streamlined instruction set to
simplify the implementation of the analysis while preserving
semantic information that would be lost when converting Solid-
ity to bytecode. Smartcheck [4] converts Solidity source code
into an XML-based intermediate representation and checks it
against the XPath schema. Securify [46], a security analyzer for
Ethereum smart contracts, is scalable, fully automated, and can
validate if contract behavior is secure or unsecured relative to a
given asset. It combines symbolic execution and taint analysis
to accurately find integer errors in Ethereum smart contracts.
Compared to the existing tools, Osiris [49] detects a larger
range of errors while providing better detection specificity.
Manticore [47] is an open-source dynamic symbolic execution
framework for analyzing binaries and Ethereum smart con-
tracts. Its flexible architecture allows it to support both tradi-
tional and exotic execution environments. Its API allows users
to customize its analysis. sCompile [59] automatically identifies
critical program paths in smart contracts (including multiple
functional calls such as inter-contract functional calls), ranks
paths based on their critically, and discards them if they are
infeasible or otherwise send user-friendly warnings to the path
for user inspection. It identifies paths that involve monetary
transactions as critical and prioritizes those that may violate
important attributes. ZEUS [60] is a framework for verifying
the correctness and fairness of smart contracts. Correctness is
first proposed as an adherence to secure programming practices,
while fairness is an adherence to agreed high-level business
logic. ZEUS leverages the power of abstract interpretation and
symbolic model checking as well as constrained clauses to
quickly verify the security of contracts. ZEUS claims zero false
negatives, a low false positive rate, and an order of magnitude
reduction in analysis time compared to existing techniques.

The experimental results show that BiAn can greatly chal-
lenge the performance of the aforementioned tools on smart
contract vulnerability detection with the obfuscated smart
contracts.

C. Reverse Engineering

Reverse engineering and anti-reverse research has been con-
ducted for decades, and many approaches have been proposed
for different platforms. As mentioned previously, there are also
some papers focusing on decompiling and analyzing EVM
bytecode. However, to the best of our knowledge, there is
no work on protecting smart contracts from reverse engineer-
ing from the source code level. Erays7 is the first reverse
engineering tool for Ethereum smart contracts that generates
readable Solidity-like source code from EVM bytecode due to
the high failure rate. Madmax [61] is a static program analy-
sis tool for detecting gas-centric vulnerabilities in smart con-
tracts that uses Vandal to decompile bytecode. Gigahorse [62]
performs better in decompiling unmodified bytecode. Eshield
[63], an automated security enhancement tool, is used to pro-
tect smart contracts from reverse engineering. It replaces the

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 30,2023 at 07:02:06 UTC from IEEE Xplore. Restrictions apply.

4474 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 9, SEPTEMBER 2023

original instructions that manipulate jump addresses with anti-
patterns to interfere with the recovery of control flows from
the bytecode.

Reverse engineering and decompilation tools impose a sig-
nificant impact on the security of smart contracts. By employing
BiAn to obfuscate smart contracts, it can improve the anti-
decompilation ability of the contracts and thus enhance their
security and stability.

VII. CONCLUSIONS

This paper presents the first smart contract obfuscation tool,
BiAn, which can enhance the security of smart contracts from
two aspects. First, it enhances the capacity of smart contract
to resist reverse engineering. Second, the obfuscated smart
contracts can significantly degrade the performance of existing
static smart contract vulnerability detection tools, as demon-
strated via our experiments. The proposed obfuscation tool can
thus help identify defects or flaws in the existing detection
tools, including logical aspects of vulnerability identification.
Since BiAn does not change the input and functional charac-
teristics of smart contract, it can be used as a complement to
create additional labelled smart contract vulnerability detection
datasets, the complexity of which is close to the real contracts
run on Ethereum. Furthermore, due to the increased complexity,
BiAn also reduces the risk of plagiarism in the source code
of smart contracts, thereby better protecting the intellectual
property rights of smart contracts.

To mitigate code obfuscation in smart contracts, dynamic
analysis and program synthesis can be employed. Dynamic
analysis entails executing the smart contract code in a con-
trolled environment to observe its runtime behavior, including
execution flow, variable values, and interactions with external
dependencies. This process aids in identifying obfuscated code
patterns and detecting suspicious or malicious activities. On
the other hand, program synthesis automates code generation
based on high-level specifications or desired properties. In the
context of code obfuscation, program synthesis techniques can
be used to reconstruct the original, non-obfuscated code from its
obfuscated version. By combining these approaches with code
reviews, documentation, simplicity, modularity, naming con-
ventions, code audits, testing, and open-source collaboration,
a comprehensive strategy can be formed to effectively mitigate
code obfuscation.

Currently, our obfuscation method only focuses on the con-
trol flows, data flows and layout within the smart contract
source code. We do not consider the functionality achieved by
inter-contract calls. Therefore, in the future, we will consider
how to implement obfuscation on cross-contract operations to
achieve interference with the data flows transferred between
smart contracts. In addition, code obfuscation methods can be
categorized into source code obfuscation and bytecode obfusca-
tion, which have both similarities and differences. While source
code obfuscation is more adept at increasing the attacker’s
understanding costs, bytecode obfuscation has better resistance
to decompilers and similar tools. In the future, if we combine
the strengths of both methods, we may achieve better results.

We also target to lower the gas consumption of obfuscated con-
tracts by incorporating gas consumption optimization into code
obfuscation [64].

REFERENCES

[1] B. K. Mohanta, S. S. Panda, and D. Jena, “An overview of smart
contract and use cases in blockchain technology,” in Proc. 9th Int.
Conf. Comput., Commun. Netw. Technol. (ICCCNT). Piscataway, NJ,
USA: IEEE, 2018, pp. 1–4.

[2] W. Zou et al., “Smart contract development: Challenges and oppor-
tunities,” IEEE Trans. Softw. Eng., vol. 47, no. 10, pp. 2084–2106,
Oct. 2021.

[3] P. Zhang, F. Xiao, and X. Luo, “A framework and dataset for bugs
in Ethereum smart contracts,” in Proc. 36th IEEE Int. Conf. Softw.
Maintenance Evolution (ICSME), 2020, pp. 139–150.

[4] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “SmartCheck: Static analysis of
Ethereum smart contracts,” in Proc. IEEE/ACM 1st Int. Workshop
Emerg. Trends Softw. Eng. Blockchain (WETSEB), 2018, pp. 9–16.

[5] J. Feist, G. Grieco, and A. Groce, “Slither: A static analysis framework
for smart contracts,” in Proc. IEEE/ACM 2nd Int. Workshop Emerg.
Trends Softw. Eng. Blockchain (WETSEB). Piscataway, NJ, USA: IEEE,
2019, pp. 8–15.

[6] Y. Zhang, S. Ma, J. Li, K. Li, S. Nepal, and D. Gu, “SMARTSHIELD:
Automatic smart contract protection made easy,” in Proc. IEEE 27th
Int. Conf. Softw. Anal. Evolution Reengineering (SANER). Piscataway,
NJ, USA: IEEE, 2020, pp. 23–34.

[7] M. Zhang, P. Zhang, X. Luo, X. Feng, “Source code obfuscation for
smart contracts,” in Proc. IEEE 27th Asia-Pacific Softw. Eng. Conf.
(APSEC), Piscataway, NJ, USA: IEEE, 2020, pp. 513–514.

[8] J. Liu, S. Peng, C. Long, L. Wei, Y. Liu, and Z. Tian, “Blockchain
for data science,” in Proc. 2nd Int. Conf. Blockchain Technol. (ICBCT),
2020, pp. 24–28.

[9] S. Azzopardi, J. Ellul, and G. J. Pace, “Monitoring smart contracts:
ContractLarva and open challenges beyond,” in Proc. Int. Conf. Runtime
Verification. Cham: Springer, 2018, pp. 113–137.

[10] M. Di Angelo and G. Salzer, “A survey of tools for analyzing Ethereum
smart contracts,” in Proc. IEEE Int. Conf. Decentralized Appl. Infras-
tructures (DAPPCON). Piscataway, NJ, USA: IEEE, 2019, pp. 69–78.

[11] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Bitcoin,
Las Vegas, NV, USA, Tech. Rep., 2019. [Online]. Available: https://
bitcoin.org/bitcoin.pdf

[12] A. Mavridou and A. Laszka, “Designing secure Ethereum smart con-
tracts: A finite state machine based approach,” in Proc. Int. Conf.
Financial Cryptography Data Secur. Berlin, Germany: Springer, 2018,
pp. 523–540.

[13] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding the
greedy, prodigal, and suicidal contracts at scale,” in Proc. 34th Annu.
Comput. Secur. Appl. Conf., 2018, pp. 653–663.

[14] H. Chen, M. Pendleton, L. Njilla, and S. Xu, “A survey on Ethereum
systems security: Vulnerabilities, attacks, and defenses,” ACM Comput.
Surv. (CSUR), vol. 53, no. 3, pp. 1–43, 2020.

[15] Y. Wang et al., “Formal specification and verification of smart contracts
for azure blockchain,” 2018, arXiv:1812.08829.

[16] S. Wang, Y. Yuan, X. Wang, J. Li, R. Qin, and F.-Y. Wang, “An overview
of smart contract: Architecture, applications, and future trends,” in Proc.
IEEE Intell. Veh. Symp. (IV), 2018, pp. 108–113.

[17] F. Feyzi and S. Parsa, “A program slicing-based method for effective
detection of coincidentally correct test cases,” Computing, vol. 100, no.
9, pp. 927–969, 2018.

[18] A. Shatnawi et al., “A static program slicing approach for output stream
objects in JEE applications,” 2018, arXiv:1803.05260.

[19] X. Wang, Y. Zhang, L. Zhao, and X. Chen, “Dead code detection method
based on program slicing,” in Proc. Int. Conf. Cyber-Enabled Distrib.
Comput. Knowl. Discovery (CyberC). Piscataway, NJ, USA: IEEE,
2017, pp. 155–158.

[20] D. Xu, J. Ming, and D. Wu, “Generalized dynamic opaque predicates:
A new control flow obfuscation method,” in Proc. Int. Conf. Inf. Secur.,
M. Bishop and A. C. A. Nascimento, Eds. Cham: Springer, 2016, pp.
323–342.

[21] C. Collberg, C. Thomborson, and D. Low, “Manufacturing cheap,
resilient, and stealthy opaque constructs,” in Proc. 25th ACM SIGPLAN-
SIGACT Sym. (POPL). New York, NY, USA: ACM, 1998, pp. 184–196.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 30,2023 at 07:02:06 UTC from IEEE Xplore. Restrictions apply.

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

ZHANG et al.: BIAN: SMART CONTRACT SOURCE CODE OBFUSCATION 4475

[22] G. Arboit, “A method for watermarking Java programs via opaque
predicates,” in Proc. 5th Int. Conf. Electron. Commerce Res. (ICECR-5),
Xi’an, China: Citeseer, 2002, pp. 102–110.

[23] S. Chow, Y. Gu, H. Johnson, and V. A. Zakharov, “An approach to the
obfuscation of control-flow of sequential computer programs,” in Proc.
Int. Conf. Inf. Secur. Berlin, Germany: Springer, 2001, pp. 144–155.

[24] R. Ferenc, Á. Beszédes, M. Tarkiainen, and T. Gyimóthy, “Columbus-
reverse engineering tool and schema for C++,” in Proc. Int. Conf. Softw.
Maintenance. Piscataway, NJ, USA: IEEE, 2002, pp. 172–181.

[25] L. Zobernig, S. D. Galbraith, and G. Russello, “When are opaque
predicates useful?” in Proc. 18th IEEE Int. Conf. Trust Secur. Privacy
Comput. Commun./13th IEEE Int. Conf. Big Data Sci. Eng. (Trust-
Com/BigDataSE), 2019, pp. 168–175.

[26] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of
obfuscating transformations,” Dept. Comput. Sci., Univ. Auck-
land, Auckland, New Zealand, Tech. Rep., 1997. [Online]. Avail-
able: https://researchspace.auckland.ac.nz/bitstream/handle/2292/3491/
TR148.pdf?sequence=2&isAllowed=y

[27] R. L. Devaney and J. Eckmann, “An introduction to chaotic dynamical
systems,” Acta Applicandae Mathematica, vol. 40, no. 7, pp. 72–72,
1987.

[28] G. Arboit, “A method for watermarking Java programs via opaque
predicates,” in Proc. Int. Conf. Electron. Commerce Res., 2002,
pp. 102–110.

[29] G. Wroblewski, “General method of program code obfuscation,” Inst.
of Eng. Cybern., Wroclaw Univ. of Technol., Wrocław, Poland, 2022.

[30] P. Mcminn, “Search-based software test data generation: A survey,”
Softw. Testing Verification Rel., vol. 14, no. 2, pp. 105–156, 2004.

[31] B. R. Hunt and E. Ott, “Defining chaos,” Chaos: Interdiscip. J. Nonlinear
Sci., vol. 25, no. 9, pp. 985–992, 2015.

[32] E. Biham, “Cryptanalysis of the chaotic-map cryptosystem suggested at
EUROCRYPT’91,” in Proc. EUROCRYPT. Berlin, Germany: Springer-
Verlag, 1991.

[33] X. Di, X. Liao, and P. Wei, “Analysis and improvement of a chaos-based
image encryption algorithm,” Chaos Solitons Fractals, vol. 40, no. 5, pp.
2191–2199, 2009.

[34] C. Collberg, C. Thomborson, and D. Low, “Manufacturing cheap,
resilient, and stealthy opaque constructs,” in Proc. 25th ACM SIGPLAN-
SIGACT Sym. Princ. Program. Lang., 1998, pp. 184–196.

[35] S. M. Awan, “Security through obscurity: Layout obfuscation of digital
integrated circuits using don’t care conditions,” Ph.D. dissertation, Univ.
Maryland, College Park, MD, USA, 2015.

[36] A. Wolf, “Quantifying chaos with Lyapunov exponents,” in Nonlinear
Science: Theory and Applications, Manchester, U.K.: Manchester Uni-
versity Press, 1986.

[37] L. Brent, A. Jurisevic, M. Kong, E. Liu, and B. Scholz, “Vandal:
A scalable security analysis framework for smart contracts,” 2018,
arXiv:1809.03981.

[38] N. Grech, L. Brent, B. Scholz, and Y. Smaragdakis, “Gigahorse: Thor-
ough, declarative decompilation of smart contracts,” in Proc. IEEE/ACM
41st Int. Conf. Softw. Eng. (ICSE), 2019, pp. 1176–1186.

[39] L. Brent et al., “Vandal: A scalable security analysis framework for
smart contracts,” 2018, arXiv:1809.03981.

[40] K. Kelley and K. J. Preacher, “On effect size,” Psychol. Methods, vol.
17, no. 2, pp. 137–152, 2012.

[41] R. P. Kadel and K. E. Kip, “A SAS macro to compute effect size
(Cohen’s) and its confidence interval from raw survey data,” in Proc.
South East SAS Users Group (SESUG), 2012, p. 337.

[42] T. Chen, X. Li, X. Luo, and X. Zhang, “Under-optimized smart contracts
devour your money,” 2017, arXiv:1703.03994.

[43] L. Marchesi, M. Marchesi, G. Destefanis, G. Barabino, and D. Tigano,
“Design patterns for gas optimization in Ethereum,” in Proc. IEEE Int.
Workshop Blockchain Oriented Softw. Eng. (IWBOSE), 2020, pp. 9–15.

[44] Y. Chen, Y. Wang, M. Goyal, J. Dong, Y. Feng, and I. Dillig, “Synthesis-
powered optimization of smart contracts via data type refactoring,” in
Proc. ACM Program. Lang., vol. 6, Oct. 2022, pp. 560–588.

[45] D. Prechtel, T. GroÃƒÂŸ, and T. Müller, “Evaluating spread of ‘gasless
send’ in Ethereum smart contracts,” in Proc. 10th IFIP Int. Conf. New
Technol., Mobility Secur. (NTMS). Piscataway, NJ, USA: IEEE, 2019,
pp. 1–6.

[46] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. Vechev, “Securify: Practical security analysis of smart contracts,” in
Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2018, pp. 67–82.

[47] M. Mossberg et al., “Manticore: A user-friendly symbolic execution
framework for binaries and smart contracts,” in Proc. 34th IEEE/ACM

Int. Conf. Autom. Softw. Eng. (ASE). Piscataway, NJ, USA: IEEE, 2019,
pp. 1186–1189.

[48] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2016, pp. 254–269.

[49] C. F. Torres, J. Schütte, and R. State, “Osiris: Hunting for integer bugs
in Ethereum smart contracts,” in Proc. 34th Annu. Comput. Secur. Appl.
Conf., 2018, pp. 664–676.

[50] C. F. Torres, M. Steichen, and R. State, “The art of the scam: Demys-
tifying honeypots in Ethereum smart contracts,” in Proc. 28th USENIX
Secur. Symp., Santa Clara, CA, USA. Berkeley, CA, USA: USENIX
Association, Aug. 2019, pp. 1591–1607.

[51] A. Abdelkrim and J. Y. Duclos, “DASP: Stata modules for distributive
analysis,” Statistical Software Components, 2007.

[52] S. Qing, W. Zhi-yue, W. Wei-min, L. Jing-liang, and H. Zhi-wei, “Tech-
nique of source code obfuscation based on data flow and control flow
transformations,” in Proc. 7th Int. Conf. Comput. Sci. Educ. (ICCSE),
2012, pp. 1093–1097.

[53] P. Ahire and J. Abraham, “Mechanisms for source code obfuscation in
C: Novel techniques and implementation,” in Proc. Int. Conf. Emerg.
Smart Comput. Inform. (ESCI), 2020, pp. 52–59.

[54] X. Zhang, F. He, and W. Zuo, “An inter-classes obfuscation method for
Java program,” in Proc. Int. Conf. Inf. Secur. Assur. (ISA 2008), 2008,
pp. 360–365.

[55] A. Zambon, “Aucsmith-like obfuscation of Java bytecode,” in Proc.
IEEE 12th Int. Work. Conf. Source Code Anal. Manipulation, 2012,
pp. 114–119.

[56] H. J. Johnson, S. T. Chow, and G. U. Yuan, “Tamper resistant soft-
ware: An implementation,” in Proc. Int. Workshop Inf. Hiding, 1996,
pp. 317–333.

[57] S. Schrittwieser and S. Katzenbeisser, “Code obfuscation against
static and dynamic reverse engineering,” in Proc. Inf. Hiding, 2011,
pp. 270–284.

[58] B. Jiang, Y. Liu, and W. Chan, “ContractFuzzer: Fuzzing smart contracts
for vulnerability detection,” in Proc. 33rd IEEE/ACM Int. Conf. Autom.
Softw. Eng. (ASE). Piscataway, NJ, USA: IEEE, 2018, pp. 259–269.

[59] J. Chang, B. Gao, H. Xiao, J. Sun, Y. Cai, and Z. Yang, “sCompile:
Critical path identification and analysis for smart contracts,” in Proc.
Int. Conf. Formal Eng. Methods. Berlin, Germany: Springer, 2019,
pp. 286–304.

[60] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety
of smart contracts,” in Proc. NDSS, 2018, pp. 1–12.

[61] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and
Y. Smaragdakis, “MadMax: Surviving out-of-gas conditions in Ethereum
smart contracts,” in Proc. ACM Program. Lang., vol. 2, Oct. 2018,
pp. 1176–1186.

[62] N. Grech, L. Brent, B. Scholz, and Y. Smaragdakis, “Gigahorse: Thor-
ough, declarative decompilation of smart contracts,” in Proc. IEEE/ACM
41st Int. Conf. Softw. Eng. (ICSE). Piscataway, NJ, USA: IEEE, 2019,
pp. 1176–1186.

[63] W. Yan et al., “EShield: Protect smart contracts against reverse engi-
neering,” in Proc. 29th ACM SIGSOFT ISSTA, 2020, pp. 553–556.

[64] E. Albert, J. Correas, P. Gordillo, G. Román-Díez, and A. Rubio,
“GASOL: Gas analysis and optimization for Ethereum smart con-
tracts,” in Proc. 26th Int. Conf. Tools Algorithms Constr. Anal. Syst.
(TACAS)/Eur. Joint Conf. Theory Pract. Softw. (ETAPS), Dublin, Ire-
land, Apr. 25–30, Part II (Lect. Notes Comput. Sci.), vol. 12079,
A. Biere and D. Parker, Eds., Berlin, Germany: Springer, 2020,
pp. 118–125.

Pengcheng Zhang (Member, IEEE) received the
Ph.D. degree in computer science from Southeast
University in 2010. He is currently a Full Professor
with the College of Computer and Information,
Hohai University, Nanjing, China. He was a Vis-
iting Scholar at San Jose State University, USA.
His research interests include software engineering,
service computing, and data science. He has pub-
lished research papers in premiere or famous com-
puter science journals, such as IEEE TRANSACTIONS

ON BIG DATA, IEEE TRANSACTIONS ON CLOUD

COMPUTING, IEEE TRANSACTION ON EMERGING TOPICS IN COMPUTING,
IEEE TRANSACTIONS ON RELIABILITY, IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, IEEE TRANSACTIONS ON SERVICES COMPUTING, IEEE
TRANSACTIONS ON MOBILE COMPUTING, and IEEE TRANSACTIONS ON

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 30,2023 at 07:02:06 UTC from IEEE Xplore. Restrictions apply.

https://researchspace.auckland.ac.nz/bitstream/handle/2292/3491/TR148.pdf?sequence=2&isAllowed=y
https://researchspace.auckland.ac.nz/bitstream/handle/2292/3491/TR148.pdf?sequence=2&isAllowed=y

4476 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 9, SEPTEMBER 2023

KNOWLEDGE AND DATA ENGINEERING. He was the Co-Chair of IEEE AI
Testing 2019 conference. He served as a Technical Program Committee
Member on Various international conferences.

Qifan Yu received the bachelor’s degree in com-
puter science and technology from Nanjing Uni-
versity of Finance and Economics in 2021. He
is currently working toward the M.S. degree with
the College of Computer and Information, Ho-
hai University, Nanjing, China. His current re-
search interests include data mining and software
engineering.

Yan Xiao received the Ph.D. degree from the City
University of Hong Kong. She is an Associate
Professor with the School of Cyber Science and
Technology, Sun Yat-sen University. She held a Re-
search Fellow position at the National University of
Singapore. Her research focuses on the trustworthi-
ness of deep learning systems and AI applications in
software engineering. More information is available
on her homepage: https://yanxiao6.github.io/.

Hai Dong (Senior Member, IEEE) received the
Ph.D. degree from Curtin University, Perth, Aus-
tralia. He is currently a Senior Lecturer with
the School of Computing Technologies, RMIT
University, Melbourne, Australia. His primary
research interests include services computing,
edge computing, blockchain, cyber security, ma-
chine learning, and data science. His publications
appeared in ACM COMPUTING SURVEYS, IEEE
TRANSACTIONS ON INDUSTRIAL ELECTRONICS,
IEEE TRANSACTIONS ON INDUSTRIAL INFORM-

ATICS, IEEE TRANSACTIONS ON MOBILE COMPUTING, IEEE TRANSACTIONS

ON SERVICES COMPUTING, and IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, etc.

Xiapu Luo received the Ph.D. degree in com-
puter science from The Hong Kong Polytechnic
University. He is an Assistant Professor with the
Department of Computing and an Associate Re-
searcher with Shenzhen Research Institute, The
Hong Kong Polytechnic University. He was a Post-
Doctoral Research Fellow with the Georgia Institute
of Technology. His research focuses on smartphone
security and privacy, network security and privacy,
and internet measurement.

Xiao Wang received the bachelor’s degree in data
science and big data technology from Nanjing Audit
University in 2022. He is currently working toward
the M.S. degree with the College of Computer and
Information, Hohai University, Nanjing, China. His
current research interest includes smart contract of
blockchain.

Meng Zhang received the bachelor’s degree in
computer science and technology from the Anhui
University of Science and Technology in 2019.
He is currently working toward the M.S. degree
with the College of Computer and Information,
Hohai University, Nanjing, China. His current re-
search interests include data mining and software
engineering.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 30,2023 at 07:02:06 UTC from IEEE Xplore. Restrictions apply.

https://yanxiao6.github.io/

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

