
BlueJ-UML: Learning Object-Oriented
Programming Paradigm using Interactive

Programming Environment

Jacky Keung, Yan Xiao, Qing Mi, Victor C. S. Lee
Department of Computer Science

City University of Hong Kong, Kowloon, Hong Kong

Email: {Jacky.Keung, csvlee}@cityu.edu.hk, {yanxiao6-c, Qing.Mi}@my.cityu.edu.hk

Abstract—Most of the students coming from various different
backgrounds find software programming a difficult subject to
learn and master, especially in learning the concept of object-
oriented programming. Because they must be able to model
physical beings into virtualized objects and define complex object
relationships in their designs for object interactions in a very
abstract fashion that is not easily understood. This study is an
attempt to introduce a unique interactive learning platform to
students learning Java programming, which was designed with
a set of object-oriented programming pedagogical considerations
in mind. This study further extends and enhances with model-
driven software development technique, such that to supporting
unified modelling language (UML) class diagrams and code
fragments generation in order to ease the learning needs of
students, a unique way to learn fundamental programming
concepts. This paper introduces a new online interactive platform
and environment called BlueJ-UML, which is to help students
to learn and practice object-oriented programming in class. It
also evaluates the success outcome of the proposed new learning
method through a Technology Acceptance Model Framework,
and that followed by a comprehensive statistical analysis to
assess improved academic performance of the students. The
result was encouraging: student programming capability had
been significantly elevated and was positively correlated to their
overall perception and adoption of this new technique introduced
in the class.

Index Terms—Interactive Programming Environment, Object-
oriented Programming, Technology Acceptance Model, Online
Platform and Environment

I. INTRODUCTION

Object-oriented programming has been introduced in uni-

versities many years ago. Teaching object-oriented program-

ming, however, remains difficult nowadays largely due to

its complexity and abstraction of object orientation. It is

generally included as a computer science introductory course,

but there are limited teaching tools available particularly for

pure novices [1]. BlueJ [2] is especially developed for teaching

and learning object-oriented programming. Teaching design

of object-orientation is more complex, novices not only need

to learn the design principles, but also how they can realise

in modelling as well as implementation. Modern Unified

Modelling Language (UML) [3] can help model system design

and reveal the principles to students, and it is the focus

of this study. The original development of BlueJ integrated

development learning platform directly represents an instant

view of class diagram for a project of java source, however

it does not offer a clear connection between modelling to

implementation and lacks details for student to apprehend the

fundamental basis of object abstraction.

This study develops an extended teaching tool based on

BlueJ, called BlueJ-UML, that extends and enhances the origi-

nal BlueJ platform, and to strengthen this weak connection and

provide a valid pedagogical approach for novices to master the

basic ideas of system design. According to UML specification

[4], BlueJ-UML implements attribute, method, and constructor

information in a class diagram. The original use-dependency

in BlueJ was extended to stronger association, aggregation,

and composition dependency. Multiplicity, role, and direction

are also included in class diagram. BlueJ-UML, in addition,

strengthens the interactions between student and BlueJ by pro-

viding manipulation on class diagram through UML notations

to source code. It is an online platform and environment to

help novices learn object-oriented programming paradigm that

is publicly available.

An empirical assessment on the student acceptance of

BlueJ-UML using the Technology Acceptance Model [5] has

been carried out. Our results show that 1) the new pedagogical

approach proposed in teaching object-oriented programming

using BlueJ-UML in programming courses is well appreciated,

2) extending and implementing UML diagramming capabili-

ties facilitate the important learning needs of essential object-

oriented concepts within the learning platform. BlueJ-UML

is currently available to general public for teaching object-

oriented programming1.

II. MOTIVATION

Most of the students coming from various different back-

grounds find software programming a difficult subject to learn

and master, even with the reduced language syntactic com-

plexity of the modern object-oriented programming languages

such as Java [6]. In fact, many teachers found teaching object

orientation more difficult than the traditional procedural pro-

gramming, as the pedagogy of object-oriented program design

is fundamentally different from traditional ways of teaching

and learning programming and design, and it also requires

1http://bluej.cs.cityu.edu.hk

47

2018 International Symposium on Educational Technology

978-1-5386-7209-9/18/$31.00 ©2018 IEEE
DOI 10.1109/ISET.2018.00020

Authorized licensed use limited to: National University of Singapore. Downloaded on September 23,2021 at 11:28:32 UTC from IEEE Xplore. Restrictions apply.

strong Abstract Thinking capability of the students. Students

must be able to model physical beings into virtualized objects

and define complex object relationships and their interactions

in a very abstract fashion that is not easily understood, and

to describe computation using object-oriented programming

languages.

Teaching Object-Oriented Programming in Computer Sci-

ence should not be intrinsically more complex, but current

challenges are lack of appropriate learning tools and peda-

gogical teaching experience of this programming paradigm

with abstract thinking for Computer Science students. Existing

programming development environments such as Eclipse2 are

professional software development tools commonly adopted

by many computer science courses. Its complexity and ad-

vanced functionalities were actually designed for professional

users with years of software development experience, which

deters our students from learning fundamental concepts of

object-oriented programming.

The other conceptual learning challenge with teaching Java

or object-oriented programming perhaps is the large number

of circular dependencies of programming language concepts

and constructs, such as in object-oriented programming [7] in-

volving UML class diagrams to the complex coding constructs

using Java programming language. All of these characteristics

will challenge the first few weeks of an introductory object-

oriented programming course.

III. OBJECTIVES OF BLUEJ-UML

Unified Modelling Language (UML) is commonly taught

in system design courses. It is a modelling language to model

a system, and present a design of the system. Experienced

developers corporately design and build computer systems

with UML. It is well designed for this specific purpose.

However, beginners such as our students who lack experience

in programming will find it difficult to learn. Teaching UML

not only considers the design, but also how it determines the

actual implementation of a system.

The first difficulty that beginners find in learning UML

is the notations that they are unfamiliar with. This should

not be intrinsically difficult. Repeated practices could help

students to learn, but a tool is missed for them to interact with.

This fundamental knowledge should be acquired after practice.

The new tool will provide a highly interacted platform so

that students could repeatedly practice the newly learnt UML

notations on it and receive responses from it.

The second difficulty could be the connection of UML

to source code. UML class diagrams do relate and reflect

source code. However, many tools omit the connection due

to complexity. Despite that BlueJ provides a weak connection

(e.g., inherence relationship), it is not enough for the purpose

of teaching system design courses. The introduction of them

could take up most of the lecture time while the students

get only a brief understanding. This obstructs students who

are not well trained with Abstract Thinking from mastering

2https://www.eclipse.org/

the fundamental concepts. Our new tool provides not only

a reflection from source code to class diagram, but also

a reversed way. This tightens the connection that visually

shows in class diagram and physically shows in source code.

Students are encouraged to observe update in class diagram

that reflects source code and in the opposite, observe the

update of source code that is triggered by modifying class

diagram. This tightened connection was extended from BlueJ

to include types of associations (from the weakest association

to strongest composition).

To this end, we exploited the advantages of BlueJ and Visual

Paradigms [8] and introduced BlueJ-UML. It is a modification

of BlueJ with an extension of detailed class diagram support.

A pedagogical approach is designed for novices to master

the foundations of system design. By combining the use of

BlueJ-UML and the novice specific pedagogical approach,

the students who did not have a basic understanding of

object-oriented programming should be able to quickly acquire

skills needed for the system design related courses. BlueJ-

UML strengthens the weak connection in BlueJ, which helps

students to quickly acquire programming skills but omits the

deeper design aspects.

IV. FEATURES OF BLUEJ-UML

In a class, attributes and features are the key components.

UML defined specific notations for them while program lan-

guages defined different syntaxes. BlueJ-UML showed them in

a class diagram that BlueJ lacks and could obstruct students to

digest this abstract information. In fact, source code represents

the actual structure of a class and a class diagram represents

it at a higher level. Students could feel difficult to realise the

relationship between a class diagram and source code because

of the weak details. Table I shows a brief comparison between

BlueJ and BlueJ-UML.

TABLE I
A COMPARISON BETWEEN BLUEJ-UML AND BLUEJ IN RESPECT OF

CLASS DETAILED INFORMATION

BlueJ

BlueJ-UML

UML notations [9] could be strange to students. An attribute

consists of publicity, name, and type. A feature consists of

publicity, name, parameters name, parameters type, and return

type. These notations could express a detailed design, however,

could be a bit complex to novices. A try-and-error approach is

suggested for students to learning these notations. BlueJ-UML

provides an instant update to the source code when editing

48

Authorized licensed use limited to: National University of Singapore. Downloaded on September 23,2021 at 11:28:32 UTC from IEEE Xplore. Restrictions apply.

those content via UML notation. With the teaching materials,

students can follow the notations to update and reflect source

code as shown in Figure 1. While they are observing those

changes, they can digest the usage of UML notations. After

several round-trip updating, from the observation, students

should easily understand how each notation reflects the source

code.

Fig. 1. BlueJ-UML capability of updating UML details

Important information in a class diagram can be the corre-

lation of classes. Students could find obstacles to understand

how a class interacts with another. BlueJ represents this infor-

mation by a weak use-dependency. It might be too abstract for

novices to master and in fact, it does not realise the general

needs in system design. On the other hand, use-dependency

could be realised in several implementations that novices may

have never seen. This leads to a need to introduce association,

aggregation, and composition dependency in BlueJ. BlueJ-

UML, therefore, reflects these dependencies from source code

and allows students to interact with the class diagram for

an update on source code. This could consolidate their un-

derstanding on how these different strength dependencies are

visually represented and actually reflected.

Novices could feel confused when they are learning the

dependency strength. Association, aggregation, and composi-

tion dependency are reflected by BlueJ-UML in source code

directly. Students could observe the changes in the source code

and relate them to the class diagram. It provides a practical

level experience to the beginners.

BlueJ-UML also highlights the source code that relates to

a dependency that makes the relationship between source and

diagram clearer. In Figure 2, a composition aggregation owned

by Car_Composition and directed to Engine is selected with

source code that related to the composition highlighted in the

Car_Composition class. It is suggested that the students read

the codes and realise them in its class diagram, vice versa.

BlueJ-UML not only remains the features from BlueJ, but

added many new features to facilitate teaching and learning

object-oriented programming and designing courses. Besides

the features talked above, Table II compares and contrasts the

feature differences of BlueJ and BlueJ-UML.

V. EVALUATION OF USABILITY AND OBJECT-ORIENTED

PARADIGM SUPPORT

This study concerns the usability of the developed BlueJ-

UML towards learning object-oriented programming, which

Fig. 2. Source code highlight for selected association

TABLE II
BLUEJ AND BLUEJ-UML MATRIX

BlueJ BlueJ-UML
Object-first support

√ √
Basic Integrated Development Environment

√ √
Basic Class Diagram

√ √
Showing attributes

√
Showing operations

√
Showing associations

√
Showing aggregations

√
Showing compositions

√
Showing directions for dependencies

√
Showing multiplicities for dependencies

√
Showing roles for dependencies

√
Updating source by editing attributes

√
Updating source by editing operations

√
Creating associations

√
Removing associations

√
Updating source by changes of strength √
of dependency
Updating source by changes of multiplicity

√
Updating source by changes of role

√
Showing comment node

√
Basic Use-case Diagram

√

deals with human-computer interface and performance related

issues. This paper accesses this area by Enhanced Technology

Acceptance Model (well known as TAM2) [10], which is an

existing empirical evaluation technique. TAM2 is an enhance-

ment of TAM [5] that is a commonly used framework for

evaluating user perceptions towards a technology. Its theory

suggests that when users are presented with a new technology,

a number of factors will influence their decision about how

and when they will use it. TAM has a strong focus on

Perceived Usefulness of the user and Perceived Ease of Use
of the user. TAM2 as an enhancement provides more detailed

explanations on why the participants found the system useful.

TAM2 performs well in both mandatory and voluntary settings.

As shown in Figure 3, it suggests that Image of the system,

Job Relevance of the system, and Output Quality of the system

correlate system usefulness; while Subject Norm has no effect

in Mandatory setting, it does has effect in Voluntary setting.

The survey had been conducted in week 11. There were

49

Authorized licensed use limited to: National University of Singapore. Downloaded on September 23,2021 at 11:28:32 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. TAM2 Model

total 95 responses out of 152 students who were enrolled in

CS3342 (Software Design). A questionnaire was distributed

to and returned from them. The questionnaire was designed

upon TAM2 model and there were nine facets including

Intention to Use, Perceived Usefulness, Perceived Ease-of-

Use, Subjective Norm, Voluntariness, Image, Job Relevance,

Output Quality, Result Demonstration. In addition, a direct

measure was included which determines whether BlueJ-UML

is valuable or not.

The quantitative scale was ranged from 1 to 7 points,

respectively, strongly disagree, moderately disagree, some-

what disagree, neutral, somewhat agree, moderately agree,

and strongly agree. Participants were required to select a

scale for each question. In data clearing, for each single

empty response, all responses were averaged from the same

participant and round the calculated point by 0.5. In Table III,

the summary of measurement scales, all skewness are negative

that the majority of participants tend to the positive side. The

majorities of standard deviation are around 1. The summary

of the results is positive. Many participants considered BlueJ-

UML is valuable. An evaluation on the usage of BlueJ-UML

is conducted by a survey in class using TAM2 questionnaire.

It accesses how useful BlueJ-UML is. The result as shown

in Figure 4 was positive. Excepting the facet of Image, every

facet gained about or more than 80% positive responses. About

95% of participants agree that BlueJ-UML is valuable in

the course; about 88% participants intent to use BlueJ-UML;

almost 90% participants consider BlueJ-UML is useful; almost

90% participants thought that BlueJ-UML is relevant to the

course; and around 82% of participants treated that the output

quality of BlueJ-UML is high.

Finally, we compute Cronbach’s alpha, a measure of internal

consistency (i.e., how closely related a set of items are as a

group). Note that the value of Cronbach’s alpha cannot be

calculated for groups with the number of items less than 3. The

Cronbach’s alpha of Perceived Usefulness, Perceived Ease-of-

Use, Voluntariness, Image and Result Demonstration are 0.97,

0.94, 0.84, 0.95 and 0.97 respectively, which shows very good

(>0.80) and even excellent (>0.90) internal consistency.

TABLE III
SUMMARY OF MEASUREMENT SCALES (SD STANDS FOR STANDARD

DEVIATION)

Constructs items Mean SD Skew

Intention to Use

A1. Assuming I have access to BlueJ-UML,
5.71 1.17 -1.38

I intend to use it.
A2. Given that I have access to BlueJ-UML,

5.79 1.15 -1.54
I predict that I would use it.

Preceived Usefulness

B1. Using BlueJ-UML improves my perfor-
5.70 0.99 -0.72

mance in my learning.
B2. Using BlueJ-UML in class increases my

5.69 0.96 -0.86
productivity.

B3. Using BlueJ-UML enhances my effect-
5.78 0.97 -0.91

iveness in my learning.
B4. I find BlueJ-UML to be useful in my

5.87 1.00 -1.11
learning.

Preceived Ease-of-Use

C1. My interaction with BlueJ-UML is
5.97 1.06 -1.11

clear and understandable.
C2. Interacting with BlueJ-UML does not

5.76 1.16 -0.93
require a lot of my mental effort.

C3. I find BlueJ-UML to be easy to use. 5.81 1.16 -1.07
C4. I find it easy to get BlueJ-UML to

5.70 1.13 -0.93
do what I want it to do.

Subjective Norm

D1. People who influence my behavior
5.27 1.25 -0.23

think that I should use BlueJ-UML.
D2. People who are important to me

5.21 1.32 -0.43
think that I should use BlueJ-UML.

Voluntariness

E1. My use of BlueJ-UML is voluntary. 5.59 1.30 -1.18
E2. My teacher does not require me to

5.62 1.43 -1.25
use BlueJ-UML.

E3. Although it might be helpful, using
5.79 1.27 -1.23BlueJ-UML is certainly not

compulsory in class.

Image

F1. Classmates who use BlueJ-UML have
4.79 1.62 -0.44

more prestige than those who do not.
F2. Classmates who use BlueJ-UML have

4.88 1.53 -0.31
outstanding performance.

F3. Having BlueJ-UML is a status symbol
4.65 1.69 -0.54

in class.

Job Relevance

G1. In class, usage of BlueJ-UML is important. 5.60 1.20 -1.57
G2. In class, usage of BlueJ-UML is relevant. 5.93 0.93 -0.58

Output Quality

H1. The quality of the output I get from
5.50 1.05 -0.16

BlueJ-UML is high.
H2. I have no problem with the quality

5.62 1.00 -0.10
of BlueJ-UML’s output.

Result Demonstrability

I1. I have no difficulty telling others about
5.76 0.96 -0.40

the results of using BlueJ-UML.
I2. I believe I could communicate to others

5.75 0.95 -0.27
the consequences of using BlueJ-UML.

I3. The results of using BlueJ-UML are
5.78 0.91 -0.22

apparent to me.
I4. I would not have difficulty explaining why

5.80 0.99 -0.38
using BlueJ-UML is beneficial or not.

Valuability
O. Overall, I consider BlueJ-UML valuable. 6.36 0.85 -1.25

50

Authorized licensed use limited to: National University of Singapore. Downloaded on September 23,2021 at 11:28:32 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Results of usability survey of BlueJ-UML

VI. CONCLUSION

This project successfully develops a new interactive learning

method for object-oriented programming at introductory level,

that extends and enhances BlueJ platform incorporating impor-

tant UML elements. This was to strengthen existing teaching

method in object-oriented programming, and to provide a

proven pedagogical approach for students to master the basic

principles of software design. According to UML specifica-

tion, BlueJ-UML implements attribute, method, and construc-

tor information in class diagram and presenting important use

case in the design. The original use-dependency in BlueJ was

extended to stronger object association, aggregation, and com-

position dependency. Object multiplicity, role, and direction

could also be included in class diagram as presets useful for

learning. BlueJ-UML, in addition, strengthens the interactions

between student and BlueJ by providing manipulation on class

diagram through UML notations to source code. Our results

show that 1) the new pedagogical approach introduced in

teaching object-oriented programming using BlueJ-UML in

Software Engineering courses is well appreciated, and largely

accepted by all students, 2) extending and implementing UM-

L diagramming capabilities facilitate the important learning

needs of essential object-oriented concepts within the learning

platform. Actual evaluation and impact on student learning

have been conducted using our comprehensive TAM survey

in the course, where BlueJ-UML have been utilized. Students

class performance has been significantly improved in which

positively correlated with the adoption of BlueJ-UML.

ACKNOWLEDGMENT

This work is supported in part by the research funds of City

University of Hong Kong (No. 9042499, 6000485, 9678149).

REFERENCES

[1] J. Sorva, V. Karavirta, and L. Malmi, “A review of generic program
visualization systems for introductory programming education,” ACM
Transactions on Computing Education (TOCE), vol. 13, no. 4, p. 15,
2013.

[2] M. Kölling, B. Quig, A. Patterson, and J. Rosenberg, “The bluej system
and its pedagogy,” Computer Science Education, vol. 13, no. 4, pp. 249–
268, 2003.

[3] G. Booch, The unified modeling language user guide. Pearson
Education India, 2005.

[4] W.-J. Park and D.-H. Bae, “A two-stage framework for uml specification
matching,” Information and Software Technology, vol. 53, no. 3, pp.
230–244, 2011.

[5] R. H. Shroff, C. C. Deneen, and E. M. Ng, “Analysis of the technology
acceptance model in examining students’ behavioural intention to use
an e-portfolio system,” Australasian Journal of Educational Technology,
vol. 27, no. 4, 2011.

[6] C. Larman, Applying UML and Patterns: An Introduction to Object
Oriented Analysis and Design and Interative Development. Pearson
Education India, 2012.

[7] J. Whittle, J. Hutchinson, and M. Rouncefield, “The state of practice
in model-driven engineering,” IEEE software, vol. 31, no. 3, pp. 79–85,
2014.

[8] V. Paradigm, “Visual paradigm for uml,” Visual Paradigm for UML-
UML tool for software application development, p. 72, 2013.

[9] S. Maoz, J. O. Ringert, and B. Rumpe, “Modal object diagrams,” in
European Conference on Object-Oriented Programming. Springer,
2011, pp. 281–305.

[10] R. Cheung and D. Vogel, “Predicting user acceptance of collaborative
technologies: An extension of the technology acceptance model for e-
learning,” Computers & Education, vol. 63, pp. 160–175, 2013.

51

Authorized licensed use limited to: National University of Singapore. Downloaded on September 23,2021 at 11:28:32 UTC from IEEE Xplore. Restrictions apply.

