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A B S T R A C T

Context: The challenge of locating bugs in mostly large-scale software systems has led to the development of bug
localization techniques. However, the lexical mismatch between bug reports and source codes degrades the
performances of existing information retrieval or machine learning-based approaches.
Objective: To bridge the lexical gap and improve the effectiveness of localizing buggy files by leveraging the
extracted semantic information from bug reports and source code.
Method: We present BugTranslator, a novel deep learning-based machine translation technique composed of an
attention-based recurrent neural network (RNN) Encoder-Decoder with long short-term memory cells. One RNN
encodes bug reports into several context vectors that are decoded by another RNN into code tokens of buggy
files. The technique studies and adopts the relevance between the extracted semantic information from bug
reports and source files.
Results: The experimental results show that BugTranslator outperforms a current state-of-the-art word embed-
ding technique on three open-source projects with higher MAP and MRR. The results show that BugTranslator
can rank actual buggy files at the second or third places on average.
Conclusion: BugTranslator distinguishes bug reports and source code into different symbolic classes and then
extracts deep semantic similarity and relevance between bug reports and the corresponding buggy files to bridge
the lexical gap at its source, thereby further improving the performance of bug localization.

1. Introduction and motivation

The high cost of manual bug localization, especially for large soft-
ware systems, has instigated the design of automated techniques to help
developers prioritize and focus on potentially buggy files based on bug
reports. However, bug reports are written in natural language, whereas
source files are represented by code tokens. The differences between
them in expression and representation lead to a lexical mismatch pro-
blem, which stifles the effectiveness and accuracy of proposed bug lo-
calization techniques in detecting buggy files [5,8,9].

To improve the accuracy of bug localization, recent techniques [5,8]
include the similarity between bug reports and application program-
ming interface (API) entities (class and interface names) to bridge the
lexical gap. Ye et al. [9] applied word embedding (WE) to obtain word
vectors of bug reports and source code in a shared representation space.
These approaches regard the code tokens in source files as the same
natural languages used in bug reports, which fails to effectively sup-
press the effects of lexical mismatch on bug localization.

To address the above issue of lexical mismatch and thereby further

improve the performance of bug localization, we distinguish bug re-
ports and source files into different symbolic classes and formulate the
bug localization problem as a machine translation problem. For ex-
ample, during the machine translation process of an English sentence
into a French sentence, the two sentences are represented in different
languages (symbols), but they represent similar meaning. Likewise, the
pairs of API description and API sequence denote similar operations by
different representations. Significantly, a machine translation technique
achieves outstanding performance in the generation of API sequences
given a natural language query [3]. Motivated by this, we propose a
novel bug localization model, BugTranslator, based on a recurrent
neural network (RNN) Encoder-Decoder with long short-term memory
(LSTM) cells by absorbing useful modules from famous machine
translation models [1,2,7].

The main contributions of this paper are:

• To the best of our knowledge, we are the first to introduce the
machine translation technique to the area of bug localization and to
propose a novel method of bridging the lexical gap radically.
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• Empirically validate the effectiveness of BugTranslator in over-
coming the lexical mismatch challenge.

2. Lexical mismatch in bug localization

Lexical mismatch means that a similar meaning can be expressed by
different vocabulary or languages. In the field of bug localization, bug
reports and source code represent similar operations with different
expressions. This lexical mismatch challenge also limits the perfor-
mance of existing bug localization techniques [5,8].

Lam et al. [5] attempted to bridge the lexical gap by combining
deep neural networks (DNNs) with information retrieval techniques.
However, their experimental results showed that DNNs without in-
formation retrieval techniques achieve very poor performance. The WE
method was used by Ye et al. [9] to obtain document similarities as two
new features added into their previously proposed linear learning-to-
rank model (LR) [8]. The natural language in bug reports and code
snippets in source files were projected by the WE method into vectors.
Their model contained the semantic similarity between the two bags-of-
words of bug reports and source codes.

Significantly, the approaches that attempted to bridge the lexical
gap were experimentally validated to outperform those that ignored the
lexical mismatch, which also revealed the existing challenge caused by
lexical mismatch.

3. BugTranslator

In this section, we describe the proposed BugTranslator model in
detail.

3.1. Generating training instances

We first prepare the training set for BugTranslator: API documents,
project-specific documents, and older bug reports with corresponding
buggy files. We attempt to translate bug reports into corresponding
buggy files based on the deep semantic similarity and relevance be-
tween them. Thus, the first training instances are the pairs of older bug
reports and abstract syntax tree (AST) nodes parsed from corresponding
buggy files. During testing, some out-of-vocabulary words never appear
in older bug reports and their corresponding buggy files, and this is
known to decrease the accuracy of most translation models [2]. In
addition to older bug reports and corresponding buggy files, API
documents and project-specific documents are included in the training
set to enrich the vocabulary and detect some comprehensive informa-
tion.

The API annotations and corresponding API sequences from API
documents in Java SE 7 are extracted as noted in the literature [3]. The
source code is parsed into AST nodes that include field declarations and
type bindings of all classes and methods. In addition, the method-level
code summaries are extracted as corresponding annotations. The pro-
ject-specific documents are also included in addition to the API docu-
ments that are generally invoked by all projects. Paired with annota-
tions of classes, methods, and fields, the source code is parsed into AST
nodes of declarations, method invocations, and class instance creations.

3.2. Attention-based RNN encoder-decoder with LSTM cells

To learn how to translate natural languages into code tokens, we
build an attention-based RNN Encoder-Decoder model with LSTM cells.
The workflow is shown in Fig. 1, which illustrates an example of
translating the natural language term audio file player into a sequence of
code tokens. The source sentences are first encoded into several context
vectors from which the decoder generates target sentences. The context
vectors are the bridge between the source sentences and the target
sentences.

3.2.1. Encoder RNN
The source sentences and target sentences are first embedded into 1-

of-K (K is the vocabulary size)-coded word vectors [1],
= … …X x x x( , , , , )i S1 and = … …Y y y y( , , , , )j T1 respectively, where S and

T represent the lengths of the source and target sentences. The Encoder
first reads the coded word vector x1 embedded by the first word audio
and then computes the current hidden state he1 by he0 and x1 according
to Eq. (1). The initial hidden state he0 is set to 0. The second hidden
state he2 is then updated by he1 and word vector x2 of the second word.
This process continues until the last hidden state he3 is updated by (1).
At each time t, the hidden state is updated by:

= −h LSTM h x( , )et e t t( 1) (1)

It has been shown empirically that LSTM works well on machine
translation of long sentences [7]. Because bug reports tend to include
long sentences, we use RNN with LSTM cells.

In practice, each word in the source sentences has different im-
portance to the word in the target sentences. It is inappropriate to en-
code the entire source sentence into only one context vector, which has
also been verified experimentally in the literature [1]. Therefore, in this
paper, the context vector vj at each step is expressed by the weighted
sum of the hidden states of the encoder as discussed in [1].

3.2.2. Decoder RNN
The Decoder is another RNN that is trained to generate the target

sentence sequentially based on the context vectors obtained from the
encoder RNN. The first word y0 is set as < START> , and the initial
hidden state hd0 is calculated by =h W htanh( ),d d e0 1 where Wd is the
weight that can be learned during training and he1 is computed by
Eq. (1). The Decoder then computes the hidden state hd1 using hd0, y0,
and the context vector v1 by Eq. (2), followed by prediction of the first
word InputStream.new.

The hidden state hdt at time t is computed by:

= − −h LSTM h y v( , , )dt d t t t( 1) 1 (2)

The conditional probability of yt given the previous predicted words
and context vector is defined as:

… =− − −p y y y y v g h y v( , , , , ) ( , , )t t t t dt t t1 2 1 1 (3)

where g is a softmax activation function.
This process continues until the end-of-sentence word < EOS> is

predicted.
The Decoder defines a probability over the target sentence Y as:

∏= …
=

− −p Y p y y y y v( ) ( , , , , )
t

T

t t t t
1

1 2 1
(4)

The two RNNs are then trained jointly to maximize the following

Fig. 1. Overall workflow of attention-based RNN Encoder-Decoder with LSTM cells.
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conditional likelihood:

∑=
=

L θ
N

log p Y X( ) 1 ( ( ))
n

N

θ n n
1 (5)

where (Xn, Yn) is each pair (a source sentence and a target sentence) in
each batch of the training set, and θ is the set of parameters learned
during training.

3.3. Translation and generation of scores

After creating BugTranslator, the minibatch stochastic gradient
descent algorithm [6] is adopted to train the model to maximize the
likelihood in Eq. (5). Given a new bug report, the trained BugTranslator
can be used to score the pairs of the bug report and each source file
using the probability pθ(Yn|Xn) from Eqs. (4) and (5).

4. Experiments

4.1. Preparation of experiments

Experimental settings: When creating the BugTranslator model,
the number of hidden cells in both RNNs is set as 1000. To accelerate
the training phase, we limit the vocabulary size of the source and target
to 20,000.

Datasets: We use the before-fixed version of three open-source Java
projects (Eclipse UI, JDT, and SWT) to evaluate the performance of
BugTranslator. To make the comparison with existing techniques easier,
a strategy similar to that in [9] is adopted. The oldest 1500 bug reports
of each project are used for tuning the model while the older 500 bug
reports are for training the model and the remaining newest bug reports
(1,656, 632, 817 bug reports respectively for Project Eclipse UI, JDT,
SWT) are for testing the model. In addition to the aforementioned bug
reports, we also collect corpus from Java SE 7 API Reference and pro-
ject-specific documents.

Evaluation metrics: The Accuracy@k, mean average precision
(MAP) and mean reciprocal rank (MRR) are used to evaluate the per-
formance of BugTranslator [5,8,9].

Competitors: Ye et al. [9] enhanced their previously proposed LR
[8] with WE, and their results were comparable with the DNNLOC
model [5], which outperformed other models [4,8,10]. Therefore, this
paper compares the performance of BugTranslator with WE and LR
+WE.

4.2. Experimental results and discussions

Table 1 shows the MAP and MRR results of four models, as well as
the values of Accuracy@5. It can be observed that the average Accu-
racy@5 of BugTranslator is about 56.6%. That is to say, BugTranslator
can correctly locate buggy files for about 56.6% of the bug reports when
recommending five source files to developers. We observe that Bug-
Translator achieves higher MAP and MRR values than the WE method.
The WE method learns the semantic information from bug reports and

the source code based on word embedding and calculates the similarity
between them. However, if some word pairs never appear in the same
context but are relevant to each other, word embedding has a lower
probability of assigning them as close vectors, which limits the per-
formance of WE. Moreover, because word embedding focuses on words
more than sentences, it is difficult for WE to learn the relative positions
between words, which can be learned by BugTranslator by benefiting
from the two RNNs with memory capacity. In other words, Bug-
Translator learns the semantic information from not only words but also
the full sentence. It can thus alleviate the effect of lexical mismatch
based on the deeper understanding of semantics between bug reports
and source code by benefiting from the context vectors between the two
RNNs.

According to Table 1, both WE and BugTranslator perform worse
than LR+WE. In addition to the semantic similarity calculated by the
WE method, LR+WE also considers factors such as bug-fixing recency,
frequency, and the observation that a previously fixed file may be re-
sponsible for similar bugs. These factors are concluded based on the
experience of many developers, which is not learned by BugTranslator
directly. We also combine BugTranslator with LR in emulation of the
approach LR+WE [9]. The observed results of LR+BugTranslator are
comparable to those of LR+WE, indicating the effectiveness of Bug-
Translator. Then we talk about two examples about the ranking results.
There are two bug reports in Project SWT: “Bug 369228 Kill pre GTK
2.4 leftovers from Tree (buggy files: Tree.java, Table.java, List.java,
Display.java, and Widget java. )” and “Bug 369227 Kill pre GTK 2.4
leftovers from List (buggy files: List.java)”. For Bug 369228, the buggy
file Tree.java was ranked the first by BugTranslator because of related
AST nodes (e.g., the method name). However, it did not give the other
buggy files (Table.java, List.java, Display.java, andWidget.java) very high
ranks (4th, 6th, 11th and 25th), whereas LR+BugTranslator gave these
buggy files higher ranks (5th, 3rd, 7th and 20th). It seems that LR
+BugTranslator outperformed BugTranslator. However, for Bug
369227, LR+BugTranslator located and ranked List.java 3rd. Dis-
play.java and Table.java were ranked 1st and 2nd because of their
greater frequency and earlier recency considered in LR, which instead
had a negative effect on the results. But BugTranslator located the
buggy file List.java and ranked it first, which outperformed LR+Bug-
Translator.

4.3. Why can BugTranslator bridge the lexical gap?

Lexical mismatch is caused by the difference in the expressions of
bug reports and source code files. Existing techniques [5,8,9] regard
both in the same language expression. These techniques measure their
similarities, which does not solve the root cause of the lexical mismatch
problem. Unlike existing approaches, our proposed BugTranslator
makes a distinction between bug reports and source code based on the
RNN Encoder-Decoder model. The bug reports are encoded into the
context vectors from which the source code files are decoded. They are
placed in different language platforms, and context vectors are used to
bridge them based on the semantic relevance between them. As ob-
served from our experimental results, we argue that BugTranslator can
handle and alleviate the issue of lexical mismatch in a radical way.

5. Conclusions and future work

The lexical mismatch between source code files and bug reports
degrades the performance of the existing bug localization techniques
[9]. This paper proposed a new translation model, BugTranslator, for
bug localization, which differs from existing techniques to alleviate the
effect of lexical mismatch in a fundamental manner based on the at-
tention-based RNN Encoder-Decoder with LSTM cells. The experimental
results show that BugTranslator performs better than the existing single
model. When combined with existing models, as with other combined
models, BugTranslator achieves comparable results. In a future study,

Table 1
Results of four models.

Project Metrics WE LR+WE BugTranslator LR+BugTranslator

Eclipse UI MAP 0.26 0.40 0.36 0.41
MRR 0.31 0.46 0.42 0.48
Accuracy@5 47.6 60.2 58.1 61.4

JDT MAP 0.22 0.42 0.34 0.45
MRR 0.27 0.51 0.41 0.52
Accuracy@5 45.6 62.3 55.4 63.1

SWT MAP 0.25 0.38 0.34 0.38
MRR 0.30 0.45 0.40 0.46
Accuracy@5 46.2 59.1 56.2 59.9
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we will enhance and automate BugTranslator by including the missing
factors. Furthermore, RNN with LSTM cells has been noted to be sen-
sitive to word order. Localizing buggy classes or methods instead of
buggy files may produce more benefit to our model. We will also in-
vestigate this in a future study.
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