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ABSTRACT

Background: Correctly localizing buggy files for bug reports
together with their semantic and structural information is a
crucial task, which would essentially improve the accuracy of
bug localization techniques. Aims: To empirically evaluate
and demonstrate the effects of both semantic and structural
information in bug reports and source files on improving the
performance of bug localization, we propose CNN Forest in-
volving convolutional neural network and ensemble of random
forests that have excellent performance in the tasks of seman-
tic parsing and structural information extraction. Method:

We first employ convolutional neural network with multiple
filters and an ensemble of random forests with multi-grained
scanning to extract semantic and structural features from the
word vectors derived from bug reports and source files. And a
subsequent cascade forest (a cascade of ensembles of random
forests) is used to further extract deeper features and observe
the correlated relationships between bug reports and source
files. CNN Forest is then empirically evaluated over 10,754
bug reports extracted from AspectJ, Eclipse UI, JDT, SWT,
and Tomcat projects. Results: The experiments empirical-
ly demonstrate the significance of including semantic and
structural information in bug localization, and further show
that the proposed CNN Forest achieves higher Mean Average
Precision and Mean Reciprocal Rank measures than the best
results of the four current state-of-the-art approaches (NP-
CNN, LR+WE, DNNLOC, and BugLocator). Conclusion:

CNN Forest is capable of defining the correlated relationships
between bug reports and source files, and we empirically show
that semantic and structural information in bug reports and
source files are crucial in improving bug localization.

CCS CONCEPTS

• Software and its engineering → Software reliability;
Maintaining software; • Computing methodologies →

Neural networks; Supervised learning by classification;

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

EASE’18, June 28–29, 2018, Christchurch, New Zealand

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6403-4/18/06. . . $15.00
https://doi.org/10.1145/3210459.3210469

KEYWORDS

bug localization, convolutional neural network, cascade forest,
word embedding, semantic information, structural informa-
tion

ACM Reference Format:

Yan Xiao, Jacky Keung, Qing Mi, Kwabena E. Bennin. 2018.

Bug Localization with Semantic and Structural Features using
Convolutional Neural Network and Cascade Forest. In EASE’18:

22nd International Conference on Evaluation and Assessment in

Software Engineering 2018, June 28–29, 2018, Christchurch, New

Zealand. ACM, New York, NY, USA, 11 pages. https://doi.org/

10.1145/3210459.3210469

1 INTRODUCTION

Software bugs are coding mistakes that tend to induce un-
expected or abnormal behaviors in a software project [4].
Once discovered, these bugs are described in bug reports
or issue reports submitted by developers, testers, or users
of the project system. A bug report provides information
about the scenarios in which the software does not behave as
expected and how to reproduce this abnormal behavior [23].
Bug reports are the main source of information for develop-
ers to understand and analyze bugs. When a bug report is
received and assigned to a developer for fixing, the developer
needs to investigate the contents in the bug report and then
search through the source files to locate the potential buggy
files that are relevant to the bug. This process is called bug
localization [32]. However, manually localizing buggy files is
painstaking for developers if there are tens of thousands of
source files. In recent years, many automatic bug localization
techniques have been proposed to alleviate the burden of
software maintenance teams.

Most recent bug localization techniques transform the
terms in bug reports and source files into textual representa-
tions and adopt some models to measure the textual similar-
ity between them. For example, Latent Dirichlet Allocation
(LDA)-based techniques [2, 27] were used to represent bug
reports and source files, and BugLocator proposed by Zhou
et al. [52] applied revised Vector Space Model (VSM) [12]
to calculate the textual similarity. These techniques focused
more on textual similarity than the semantics of the terms
in bug reports and source files.

Current state-of-the-art techniques have acknowledged the
lexical mismatch problem between the texts in bug reports
and code tokens in source files caused by the ignorance of the
semantic information in them. Several studies [21, 22, 48, 49]
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Table 1: Subject Projects.

Project Time Range
# of Bug Reports # of Bug Reports # of Bug Reports # of Bug Reports
for Evaluation for Tuning for Training for Testing

AspectJ 03/2002-01/2014 593 100 400 93

Eclipse UI 10/2001-01/2014 3,656 1,500 500 1,656

JDT 10/2001-01/2014 2,632 1,500 500 632

SWT 02/2002-01/2014 2,817 1,500 500 817

Tomcat 07/2002-01/2014 1,056 400 500 156

In this paper, we use five open-source Java projects (As-
pectJ2, Eclipse UI3, JDT4, SWT5 and Tomcat6) to evaluate
the performance of CNN Forest. The before-fixed version of
the source code [48] in each project is obtained to perform
the experiments. We make the before-fixed version [48] of the
source code in each project publicly available7 and provide
the tool used to construct the dataset. To make the com-
parison with existing techniques easier, a splitting strategy
similar to that in [49] is adopted. The oldest bug reports
of each project are used for tuning the model (validation
set) while the older bug reports are for training the model
(training set) and the newest bug reports are for testing the
model (testing set). Table 1 provides more details about the
number of bug reports in each set.

Experimental settings

The hyper-parameters of CNN Forest include the dimen-
sion of word vectors (k), the size and the number of filters
used in CNN, the size of sliding windows in the ensemble of
random forests for scanning, and the number of trees in each
forest. According to the work [46], the dimension of word
vectors k = 100 can achieve comparable performance and
consume relatively less time. The filter size ranging from 4 to
6 and the number of filters equal to 100 performs well in bug
localization, which implies that the size of sliding windows in
CNN can be chosen from 4× k, 5× k, and 6× k. The size of
sliding windows in the ensemble of random forests to scan the
source files is set to 2 and 3 as suggested in the literature [16]
considering the characteristics of the statements in source
code. In order to evaluate the generalized effects of the forest
ensemble and cascade forest on bug localization, the default
number (500) of the trees in each forest as recommended by
[54] is used in this paper.

Evaluation metrics

The mean average precision (MAP) and mean reciprocal
rank (MRR) are used to evaluate the performance of CN-
N Forest, which are frequently used in existing studies of
bug localization [22, 48, 49]. The higher the values of MRR
and MAP, the better the performance of the bug localization
technique.

2http://eclipse.org/aspectj/
3http://projects.eclipse.org/projects/eclipse.platform.ui
4http://www.eclipse.org/jdt/
5http://www.eclipse.org/swt/
6http://tomcat.apache.org
7https://github.com/yanxiao6/BugLocalization-dataset

• MRR is the mean of the accumulations of the inverse
of the ranks of the first correctly-located buggy file for
each bug, which is computed in this paper by:

MRR =
1

Q

Q∑︁

i=1

1

firsti
(1)

where Q is the number of bug reports, firsti represents
the ranks of the first correctly-located buggy file for
the ith bug report.

• MAP is the mean of average precision values for all Q
bug reports. The following is the formulation of MAP
used in the field of bug localization:

MAP =
1

Q

Q∑︁

i=1

R∑︁

r=1

(NT (r)/r)× ind(r)

NB(i)
(2)

where R is the maximum ranks of correct buggy files for
ith bug report located by the bug localization technique,
ind(r) indicates whether the file located in rank r is
correct buggy file (ind(r) = 1) or not (ind(r) = 0),
NB(i) denotes the number of buggy files for the ith
bug report and NT (r) stands for the number of buggy
files correctly located in Top r.

Competitors

In order to exhibit the importance of applying different
strategies to extract features from bug reports and source
files, we will first compare CNN Forest with the following
two models on the validation set:

• CNN CNN uses the same strategy (CNN) to extract
features from bug reports and source files.

• Forest Forest applies the same ensemble of random
forests to extract features of bug reports and source
files.

All CNNs and random forests use same parameters, as well
as the subsequent cascade forest.

CNN Forest is then compared to the following four state-
of-the-art techniques on the testing set:

• NP-CNN proposed by Huo et al. [16] applied CNN to
learn unified features from natural and programming
languages.

• LR+WE [49] enhanced their previously-proposed learn-
ing-to-rank model (LR) by adding new features ob-
tained by word embedding (WE) techniques.

• DNNLOC proposed by Lam et al. [22] combined deep
learning techniques with the information retrieval tech-
niques to localize the buggy files for bug reports.
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• BugLocator [52] measured the textural similarity be-
tween the texts in bug reports and source files using
the revised Vector Space Model (rVSM).

Since the original implementations of the four models are not
released, we tried our best to implement our own versions
of these four models. We strictly followed the steps given by
[16, 22, 49, 52], but all the detailed implementations might
not be all the same. We used the same dataset to test their
performance and got similar results. Thus, we are confident
to argue that the comparisons are fair.

4.2 Results and Analyses

In this section, we report the results of CNN Forest and
competitors on the intrinsic and extrinsic evaluation, and
analyze the results.

Intrinsic Evaluation

The intrinsic evaluation is conducted on the validation set
to show the improvements achieved by CNN Forest compared
to CNN CNN and Forest Forest. The MAP and MRR values
of these models are presented in Table 2 and the best MAP
and MRR values for each project has been highlighted in bold.
It can be observed from the results that CNN Forest is able
to achieve the best MAP and MRR except that Forest Forest
obtains 0.005 higher MAP than CNN Forest on the Project
Eclipse UI, which is not a big loss. The highest improvement
on MAP achieved by CNN Forest compared to the best result
of the other two models is 0.023, that is about 5% relative
improvement.

Table 2: Performance Comparison for Intrinsic Eval-

uation.

Project Model MAP MRR

AspectJ CNN Forest 0.458 0.563

CNN CNN 0.449 0.560
Forest Forest 0.430 0.549

Eclipse UI CNN Forest 0.460 0.590

CNN CNN 0.441 0.561
Forest Forest 0.465 0.588

JDT CNN Forest 0.448 0.517

CNN CNN 0.448 0.502
Forest Forest 0.435 0.492

SWT CNN Forest 0.462 0.530

CNN CNN 0.415 0.507
Forest Forest 0.439 0.512

Tomcat CNN Forest 0.627 0.681

CNN CNN 0.623 0.669
Forest Forest 0.604 0.647

Thus, we can conclude that it is important to adopt d-
ifferent strategies to extract features from bug reports and
source files. The different results also validate that the char-
acteristics of the texts and code tokens in bug reports and
source files are different even though they are both written
by humans. Bug reports are written in natural languages and
CNN performs well in semantic parsing in the field of natural

language processing because of the convolving filters. There-
fore, CNN Forest performs better than Forest Forest. On the
other hand, source files are written in programming languages
that contain rich and explicit structural information. The
source code could be parsed into abstract syntax tree and
also reverted. Moreover, tree-structure is good at extracting
the structural information from source code [25, 29, 31, 44].
CNN Forest thus has better performance than CNN CNN.

Extrinsic Evaluation

The CNN Forest is then compared to other four curren-
t state-of-the-art techniques (NP-CNN [16], LR+WE [49],
DNNLOC [22], and BugLocator [52]) in the field of bug
localization on the testing set. Their performances on five
open-source projects are shown in Table 3. The best MAP
and MRR results are also highlighted in bold. As we can
observe from the table, CNN Forest always performs better
than the four competitors except for the MRR in Project
JDT, but the loss is negligible. The improvements on MAP of
CNN Forest compared to the best results of the four competi-
tors range from 0.003 to 0.034. Moreover, the improvements
are more obvious when evaluating on the small dataset, i.e.
Project AspectJ and Tomcat.

Table 3: Performance Comparison with the State-of-

the-art Techniques.

Project Model MAP MRR

AspectJ CNN Forest 0.436 0.519

NP-CNN 0.402 0.487
LR+WE 0.302 0.454
DNNLOC 0.323 0.475
BugLocator 0.278 0.364

Eclipse UI CNN Forest 0.432 0.534

NP-CNN 0.429 0.529
LR+WE 0.398 0.461
DNNLOC 0.413 0.514
BugLocator 0.332 0.383

JDT CNN Forest 0.423 0.514
NP-CNN 0.405 0.463
LR+WE 0.417 0.516

DNNLOC 0.342 0.452
BugLocator 0.290 0.367

SWT CNN Forest 0.394 0.482

NP-CNN 0.371 0.466
LR+WE 0.381 0.446
DNNLOC 0.369 0.445
BugLocator 0.269 0.312

Tomcat CNN Forest 0.550 0.614

NP-CNN 0.529 0.585
LR+WE 0.503 0.556
DNNLOC 0.523 0.604
BugLocator 0.425 0.481

NP-CNN applied CNN to extract features from both bug
reports and source files. The performance is limited because
the characteristics of the texts in bug reports and the code
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tokens in source files are different just as we observed in
the intrinsic evaluation. The structural information of the
source files extracted by NP-CNN is subject to each code
line, however, the programming syntactic information inside
the program blocks is not extracted. Our proposed model C-
NN Forest considers both the structural information and pro-
gramming syntactic information benefiting from the ensemble
of random forests with multi-grained scanning. Moreover, the
texts and code tokens are processed by word embedding
techniques before fed into the feature extraction part. The
semantic information is therefore preserved, which is lost in
NP-CNN without word embedding techniques. That’s why
CNN Forest has better performance than NP-CNN. On the
other hand, compared to CNN Forest and NP-CNN, LR+WE
and DNNLOC tried to add the semantic information into
their models but did not take the program structure related
information into consideration. Thus, their performances are
worse than CNN Forest. BugLocator was based on textural
similarity and did not involve the semantic and structural fea-
tures of bug reports and source files. Therefore, BugLocator’s
performance is much worse than the other techniques.

5 DISCUSSION

5.1 Why does CNN Forest Work?

CNN Forest tries to extract both semantic information and
programming structural information from source files, which
is different from the ones in bug reports written in natural
languages. This kind of information is seldom considered by
existing techniques.

The word embedding technique is first applied to convert
the texts in bug reports and source files into word vectors.
Similar words are close to each other in the vector space,
which preserves the semantic information. Different strategies
are then used to extract the features from bug reports and
source files. Bug reports are written in natural languages
where CNN has performed excellently because of convolving
filters. On the other hand, source files are composed of code
tokens that involve more stringent structural information.
They can be parsed into abstract syntax tree and also be
reverted from the abstract syntax tree. Thus, we leverage
the ensemble of random forests involving many trees with
multiple sliding windows to extract the programming struc-
tural information. Therefore, CNN Forest not only preserves
the semantics but also leverages the structural information
of lexical terms in bug reports and the programming code
tokens in source files. Finally, unlike the linear combination of
the extracted features used in the literature [16, 48, 49], the
cascade forest is used to further extract features from both
bug reports and source files, and the correlated relationships
between them are learned by the alternate cascade structure
that is similar to the layer-structure in deep learning.

5.2 Threats to Validity

The experimental results demonstrate the feasibility and
effectiveness of CNN Forest, however, we do acknowledge
that there are still some potential threats to validity of our

study. Following the recommendations of Wohlin et al. [45],
we discuss the threats to internal validity, construct validity
and external validity of this study.

Internal Validity

The performance of our proposed model may be somewhat
dependent on the performance of the word embedding tech-
niques. We have checked the property of the adopted word
embedding techniques before adopting them in our model. It
is important to do so before implementing our model. Second-
ly, the hyper-parameters configuration set could introduce
some bias in the experimental results. However, we set the
parameters according to the suggestions of the existing stud-
ies, which enabled our choices to be reasonable. For instance,
the size and number of the filters used in CNN and the size of
the sliding windows used in the ensemble of random forests
were set as the suggestions given in the literature [16, 46].
And in order to examine the intrinsic property of the forest
structures, we used the default number of trees in each forest
as recommended by Zhou et al. [54]. More fine-tunes might
be needed for our model. We leave this for future studies.

Construct Validity

When conducting experiments, we split the dataset in
each project into validation set (oldest bug reports), training
set(older bug reports) and testing set (newest bug reports)
similar to the strategy used in the literature [49]. However,
the splitting percentage is different from that used in most
machine learning techniques [5, 29, 35]. It would be interesting
to examine the effects of different splitting percentages on
our proposed model, which is worth to be explored in further
studies. In this paper, we used two measures (MAP and
MRR) that are widely used in most bug localization studies
[21, 49, 52]. In future work, we will consider other evaluation
metrics, such as Accuracy@k [48] and Area Under the receiver
operator characteristic Curve (AUC) [24]. Besides, other
validations (e.g., statistical significance and effect size of the
results) will be considered in future when there are more
project dataset used to evaluate the proposed model.

External Validity

We evaluated our model on five dataset from Java projects
as many bug localization studies [21, 48, 49] did and tried
to report the general results. However, the selection of only
five projects may have potentially limited representativeness.
On the other hand, the performance of our model on other
projects written in other programming languages is still un-
known. We intend to examine our model on more projects,
especially the ones written in, for example, C++, in a future
study.

6 RELATED WORK

6.1 Bug Localization Techniques

In the literature, several approaches have been proposed to
localize buggy files automatically. Poshyvanyk et al. [36] ap-
plied Latent Semantic Indexing (LSI) to represent code and
queries as vectors, and estimated the similarity between their
vector representations using the cosine similarity. Lukins et
al. [27] proposed a Latent Dirichlet Allocation (LDA)-based
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approach that measured the similarity between the descrip-
tions of bug reports and the topics of source files estimated
by LDA. Gay et al. [12] transformed bug reports and source
files into feature vectors based on Vector Space Model (VSM)
and then measured the similarity between them. Zhou et al.
[52] proposed BugLocator based on a revised VSM (rVSM)
to measure the textural similarity between bug reports and
source files. The document length and similar bugs that have
been resolved before were added as new features into the
VSM. These VSM-based techniques have been experimentally
validated better than LSI and LDA-based techniques [2, 27].
Scanniello et al. [37, 38] and Zhang et al. [50, 51] used both
textual information from source code and bug reports and
syntactic information from source code for concept location.
However, the aforementioned approaches were based on the
textual representation of the bug reports and source files but
inadvertently ignored the semantic information in them.

Topic-based models were used to extract the semantic in-
formation for many tasks in the field of software engineering
[33, 47]. BugSout proposed by Nguyen et al. [32] was a topic-
based model for bug localization. However, these approaches
were not automatic because of the tuning process of the right
number of topics. Ye et al. [49] applied word embedding
techniques to convert the texts in bug reports and source
files to word vectors, and then added the similarities between
the vectors as new features into their previously-proposed
learning-to-rank (LR) model [48] that was an adaptive rank-
ing model. Lam et al. [21, 22] combined deep neural networks
(DNNs) based on auto encoder with the information retrieval
technique (rVSM) to improve the performance of localizing
buggy files. They applied DNNs to combine the following
three features: relevancy between bug reports and source files
learned from another two DNNs, textual similarity collected
by rVSM, and projects’ metadata such as bug fixing history,
code changes and so on. However, these approaches did not
consider the structural information of the bug reports and
source files.

Huo et al. [16] proposed NP-CNN, a convolutional neural
network (CNN)-based model, to learn the unified features
from bug reports and source files written in natural and
programming languages. In their work, CNN was employed
to extract features from both bug reports and source files.
Different from their model, we adopted CNN with multiple
filters and the ensemble of random forests with multi-grained
scanning to respectively extract structural information from
bug reports and source files. The experimental results vali-
dated that this different feature extraction strategies for bug
reports and source files indeed make sense. Furthermore, we
employed word embedding techniques to preserve the seman-
tics of feature vectors before feeding them into the CNN and
random forests, which was not included in NP-CNN.

6.2 Convolutional Neural Network

Convolutional neural network (CNN) has excellent perfor-
mance in the field of image processing [20, 40] and natu-
ral language processing [8, 9]. Kim [19] conducted a series

of experiments for sentence classification tasks using CNN
with the pre-trained word vectors obtained by the word em-
bedding technique and achieved excellent results on several
benchmarks. Johnson et al. [18] studied CNN on text cate-
gorization (sentiment classification and topic classification)
to make use of the internal structure of text data. Besides
NP-CNN discussed previously for bug localization, Mou et al.
[29] proposed a CNN over tree structures for programming
language processing in the field of software engineering. This
model contained vector representation layer, coding layer,
tree-based convolutional layer whose convolution kernel was
designed over programs’ abstract syntax tree and dynamic
pooling layer, as well as a fully-connected hidden layer to
detect structural information from programs. It was superior
in terms of program classification and code pattern detection.

6.3 Cascade Forest

The cascade forest is a cascade of ensembles of random forests
that are the ensemble of decision trees. The ensemble methods
combine multiple learners and are powerful on many tasks [53].
The cascade procedure is able to automatically determine
the number of cascade levels and thus have a control on its
model complexity, which is related to boosting procedure
[10, 41, 43]. Zhou et al. [54] proposed deep forest based
on the cascade structure for many tasks including image
categorization, face recognition, sentence classification, and
achieved comparable or even better results. They analyzed
that this cascade structure behaved like the layer structure
in deep learning. Inspired by their work, we adopted the
cascade forest to further extract the structural information
from bug reports and source files, and learn the correlated
relationships between them.

7 CONCLUSIONS AND FUTURE

WORKS

The existing techniques for bug localization did not highlight
the differences between the bug reports written in natural
languages and source files written in programming languages.
And few of them considered both the semantic and structural
information in bug reports and source files.

This paper proposed CNN Forest, a new CNN and random
forest-based model for bug localization. After pre-processing
the texts in bug reports and source files, CNN Forest first
employs the word embedding technique to convert the words
into vectors with the preservation of the semantic information
in them. The CNN with multiple filters and the ensemble of
random forests with multi-grained scanning are then used
to extract both semantic and structural features from the
word vectors of bug reports and source files. Finally, the
cascade forest is used to further conclude features from the
feature vectors extracted by CNN and the ensemble of ran-
dom forests, and learn the correlated relationships between
bug reports and source files benefiting from the alternate cas-
cade structure. Our evaluation on five open-source projects
showed that the separately learned features do improve the
performance of the model. Moreover, CNN Forest achieved
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higher MAP (at most 0.034) and MRR (at most 0.032) than
the best results of the four current state-of-the-art techniques
(NP-CNN, LR+WE, DNNLOC, and BugLocator).

In the future, we would like to fine-tune our model to
further improve its performance, such as more different kinds
of random forests (e.g., extra-trees) to enhance diversity.
Moreover, few existing studies focused on the projects written
in other programming languages, e.g., C/C++. We intend
to extend our model to these projects for bug localization
and use more measures (Accuracy@k, AUC, and statistical
significance) to evaluate their performances. In addition, it
would be interesting to examine the performance of our model
in other applications of software engineering, such as defect
prediction.

ACKNOWLEDGMENTS

This work is supported in part by the GRF of the Research
Grants Council of Hong Kong [No. 11208017], and the re-
search funds of City University of Hong Kong [No. 9678149,
9440180, 7004683, 7004474].

REFERENCES
[1] Dave Binkley, Marcia Davis, Dawn Lawrie, and Christopher Mor-

rell. 2009. To camelcase or under score. In Program Comprehen-
sion, 2009. ICPC’09. IEEE 17th International Conference on.
IEEE, 158–167.

[2] David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent
dirichlet allocation. Journal of Machine Learning Research 3,
Jan (2003), 993–1022.

[3] Leo Breiman. 2001. Random forests. Machine learning 45, 1
(2001), 5–32.

[4] Bernd Bruegge and Allen H Dutoit. 2004. Object-oriented soft-
ware engineering using UML, patterns and Java-(Required).
Prentice Hall.

[5] Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, Trang
Pham, Aditya Ghose, and Tim Menzies. 2016. A deep learn-
ing model for estimating story points. arXiv preprint arX-
iv:1609.00489 (2016).

[6] Dan Ciregan, Ueli Meier, and Jürgen Schmidhuber. 2012. Multi-
column deep neural networks for image classification. In Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE Confer-
ence on. IEEE, 3642–3649.

[7] Christopher Clark and Amos Storkey. 2015. Training deep convo-
lutional neural networks to play go. In International Conference
on Machine Learning. 1766–1774.

[8] Ronan Collobert and Jason Weston. 2008. A unified architecture
for natural language processing: Deep neural networks with multi-
task learning. In Proceedings of the 25th international conference
on Machine learning. ACM, 160–167.

[9] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen,
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