
Information and Software Technology 129 (2021) 106432

A
0

C
i
S
M
a

b

c

A

K
S
C
O
S
M
E

1

p
A
d
h
m
t
i
d

x
(

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

OSTE: Complexity-based OverSampling TEchnique to alleviate the class
mbalance problem in software defect prediction
huo Feng a,∗, Jacky Keung a,∗, Xiao Yu a, Yan Xiao b, Kwabena Ebo Bennin c, Md Alamgir Kabir a,
iao Zhang a

Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong, China
School of Computing, National University of Singapore, 117417, Singapore
Information Technology Group, Wageningen University and Research, Wageningen, The Netherlands

R T I C L E I N F O

eywords:
oftware defect prediction
lass imbalance
versampling
MOTE
AHAKIL

ffort-aware defect prediction

A B S T R A C T

Context: Generally, there are more non-defective instances than defective instances in the datasets used for
software defect prediction (SDP), which is referred to as the class imbalance problem. Oversampling techniques
are frequently adopted to alleviate the problem by generating new synthetic defective instances. Existing
techniques generate either near-duplicated instances which result in overgeneralization (high probability of
false alarm, 𝑝𝑓 ) or overly diverse instances which hurt the prediction model’s ability to find defects (resulting
in low probability of detection, 𝑝𝑑). Furthermore, when existing oversampling techniques are applied in SDP,
the effort needed to inspect the instances with different complexity is not taken into consideration.
Objective: In this study, we introduce Complexity-based OverSampling TEchnique (COSTE), a novel oversam-
pling technique that can achieve low 𝑝𝑓 and high 𝑝𝑑 simultaneously. Meanwhile, COSTE also performs better
in terms of 𝑁𝑜𝑟𝑚(𝑝𝑜𝑝𝑡) and 𝐴𝐶𝐶, two effort-aware measures that consider the testing effort.
Method: COSTE combines pairs of defective instances with similar complexity to generate synthetic instances,
which improves the diversity within the data, maintains the ability of prediction models to find defects, and
takes the different testing effort needed for different instances into consideration. We conduct experiments
to compare COSTE with Synthetic Minority Oversampling TEchnique, Borderline-SMOTE, Majority Weighted
Minority Oversampling TEchnique and MAHAKIL.
Results: The experimental results on 23 releases of 10 projects show that COSTE greatly improves the
diversity of the synthetic instances without compromising the ability of prediction models to find defects. In
addition, COSTE outperforms the other oversampling techniques under the same testing effort. The statistical
analysis indicates that COSTE’s ability to outperform the other oversampling techniques is significant under
the statistical Wilcoxon rank sum test and Cliff’s effect size.
Conclusion: COSTE is recommended as an efficient alternative to address the class imbalance problem in SDP.
. Introduction

Models for software defect prediction (SDP) identify the defect-
rone entities (e.g., files, packages, functions) in a software system [1].
n accurate prediction model helps developers focus on the predicted
efects and utilize their time and effort effectively [2]. Many techniques
ave been proposed over the years [3–6] and applied to the develop-
ent of software, helping practitioners allocate finite testing resources

o those modules that tend to be defective [7–9]. In SDP, machine learn-
ng algorithms are the dominant approaches, which leverage historical
ata to train prediction models to predict defects [10–12]. Historical

∗ Corresponding authors.
E-mail addresses: shuofeng5-c@my.cityu.edu.hk (S. Feng), jacky.keung@cityu.edu.hk (J. Keung), xyu224-c@my.cityu.edu.hk (X. Yu),

iaoyan.hhu@gmail.com (Y. Xiao), kwabena.bennin@wur.nl (K.E. Bennin), makabir4-c@my.cityu.edu.hk (M.A. Kabir), miazhang9-c@my.cityu.edu.hk

data are obtained from previous software projects, including the values
of metrics (e.g. lines of code, depth of inheritance tree) and labels
indicating whether the current instances are defective or non-defective.

By learning historical software information, prediction models gain
knowledge about a software project and predict whether the instances
introduced in future will be defective or not. However, in most projects,
there are naturally many more non-defective instances (i.e., the ma-
jority class) than defective instances (i.e., the minority class), which
is referred to as the class imbalance problem in SDP. In contrast,
vailable online 25 September 2020
950-5849/© 2020 Elsevier B.V. All rights reserved.

M. Zhang).

ttps://doi.org/10.1016/j.infsof.2020.106432
eceived 8 April 2020; Received in revised form 20 September 2020; Accepted 20
 September 2020

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:shuofeng5-c@my.cityu.edu.hk
mailto:jacky.keung@cityu.edu.hk
mailto:xyu224-c@my.cityu.edu.hk
mailto:xiaoyan.hhu@gmail.com
mailto:kwabena.bennin@wur.nl
mailto:makabir4-c@my.cityu.edu.hk
mailto:miazhang9-c@my.cityu.edu.hk
https://doi.org/10.1016/j.infsof.2020.106432
https://doi.org/10.1016/j.infsof.2020.106432
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2020.106432&domain=pdf


Information and Software Technology 129 (2021) 106432S. Feng et al.
Abbreviations and acronyms

Abbreviation Description
SDP Software Defect Prediction
SQA Software Quality Assurance
COSTE Complexity-based Oversampling TEchnique
SMOTE Synthetic Minority Oversampling

TEchnique
MWMOTE Majority Weighted Minority Oversampling

TEchnique
ROS Random OverSampling
RUS Random UnderSampling
KNN K-Nearest Neighbor
SVM Support Vector Machine
RF Random Forest
MLP Multilayer Perceptron
DE Differential Evolution algorithm
N The population size of DE
G The number of generations of DE
𝐹 The mutation constant of DE
CR The crossover rate of DE
𝑝𝑑 probability of detection
𝑝𝑓 probability of false alarms
ROC Receiver Operating Characteristic
AUC Area under the ROC curve

conventional machine learning algorithms assume that the numbers of
minority class and majority class instances are roughly equal [13–15].
Prediction models trained by these highly imbalanced software datasets
tend to ignore defective instances and to predict all outcomes as non-
defective. As a result, the models produce highly biased results and
cannot be applied in practice. Accordingly, developing techniques to
effectively alleviate the class imbalance problem of software projects is
a prevalent research topic in SDP, and several studies [12,16–18] have
proposed different techniques or evaluated these techniques.

To tackle the class imbalance problem in SDP, data sampling tech-
niques are widely adopted. The two general types of sampling tech-
niques are oversampling and undersampling [19], the former of which
generates new instances and adds them to the minority class, while the
latter removes the existing instances from the majority class. Both tech-
niques aim at balancing the distribution of the datasets to improve the
performance of prediction models. In SDP, oversampling is preferable
to undersampling, as instances discarded during the undersampling
process may contain useful or important information for prediction
models [20,21].

Random oversampling (ROS) is the most simple oversampling tech-
nique. It randomly replicates the minority class instances to balance the
datasets. In contrast to ROS, most of the other existing oversampling
techniques balance the imbalanced datasets by generating synthetic
minority class instances. Synthetic Minority Oversampling TEchnique
(SMOTE) [22] is the most common synthetic oversampling technique.
It uses the K-nearest neighbor (KNN) algorithm to help select proper in-
stances to generate synthetic minority class instances. Based on SMOTE,
several other oversampling techniques, such as Borderline-SMOTE [23]
and Adaptive Synthetic Sampling Approach (ADASYN) [24], have been
developed. The reason that SMOTE adopts the KNN algorithm is based
on the common assumption in the machine learning community that
instances closer in distance are more similar than instances further in
distance [25]. The synthetic minority class instances generated from
the original minority class instances closer in distance are more likely
2

to fall into the region of the minority class.
MAHAKIL [12], proposed by Bennin et al. is another synthetic
oversampling technique. MAHAKIL computes the Mahalanobis dis-
tance [26] of the minority class instances and ranks the instances in the
descending order based on that value. After being ranked, the ordered
instances are partitioned into two bins based on the central instance.
The two corresponding instances from each group are then averaged to
generate synthetic instances.

However, the above techniques generate either near-duplicated in-
stances (SMOTE-based oversampling techniques), which result in over-
generalization (high probability of false alarm, 𝑝𝑓 ) [27–29], or overly
diverse instances (MAHAKIL), which hurt the prediction model’s ability
to find defects (resulting in low probability of detection, 𝑝𝑑) [30].

In addition, most recent research [31–33] in SDP has taken into
consideration the effort needed for data inspection, which is referred
to as effort-aware defect prediction. For example, suppose there are
two instances and each contains a defect. One instance is more complex
than the other. The effort needed to inspect the complex instance could
be much larger than the effort needed to inspect the less complex
instance. Moreover, Zhang et al. [34], Nam et al. [35] and Menzies
et al. [36] all pointed out that there is a strong relationship between
the complexity and the defect-proneness of instances. Compared with
the more complex defective instances, which are more likely to be
correctly classified as defective, the less complex instances are easily
misclassified as non-defective. Therefore, the less complex instances
are likely to contain more useful information for prediction models
and should be inspected first by the software quality assurance (SQA)
team. However, the existing oversampling techniques in SDP neglect
the variation in the complexity of instances.

In this study, we propose a novel oversampling technique,
Complexity-based Oversampling TEchnique (COSTE), which can
achieve low 𝑝𝑓 and high 𝑝𝑑 values simultaneously. Analogously to
SMOTE, which assumes that the instances close in distance are similar,
COSTE assumes that the instances close in complexity are similar and
more likely to fall into the same region. Therefore, COSTE selects
the instances that are similar in complexity instead of those that
are close in distance to generate synthetic instances. By leveraging
the complexity of instances to aid in instance selection, COSTE can
generate diverse synthetic instances while still enhancing the ability of
prediction models to find defects. COSTE first calculates the complexity
of each instance and then ranks these instances based on complexity
in the ascending order. Therefore, instances ranked adjacently have
similar complexity while higher-ranked instances are less complex
than those ranked below. COSTE uses higher-ranked instances more
frequently than lower-ranked instances to generate synthetic instances,
which makes the prediction models pay more attention to the less
complex instances. It then averages pairs of instances ranked adjacently
to generate synthetic instances, thus achieving a balanced dataset.

We conduct empirical experiments to compare the performance of
COSTE to those of four common oversampling techniques (i.e., SMOTE,
Borderline-SMOTE, MWMOTE and MAHAKIL). We use these oversam-
pling techniques to oversample 23 datasets collected from the PROMISE
repository [37]. Then the balanced datasets are used to train four com-
mon classifiers [i.e., support vector machine (SVM), K-nearest neighbor
(KNN), random forest (RF) and multilayer perceptron (MLP)]. The
experimental results show that COSTE improves the diversity of the
synthetic instances (i.e., COSTE obtains lower 𝑝𝑓 ) without compromis-
ing the ability of the prediction models to find defects (i.e., COSTE
obtains higher 𝑝𝑑) compared with the aforementioned four oversam-
pling techniques. We also calculate 𝑁𝑜𝑟𝑚(𝑃𝑜𝑝𝑡) and 𝐴𝐶𝐶 to evaluate
the effort-aware performance of COSTE. Compared with the existing
oversampling techniques, COSTE obtains better values of 𝑁𝑜𝑟𝑚(𝑃𝑜𝑝𝑡)
and 𝐴𝐶𝐶, which indicates that it can find more defects than the other
oversampling techniques with the same testing effort. Based on the
Wilcoxon rank sum test (𝑝-value <.05), the performance of COSTE is
significantly better than the other four techniques.



Information and Software Technology 129 (2021) 106432S. Feng et al.
Table 1
A simple example of defect prediction.

LOC NOC WMC Complexity

A 2 4 4 10
B 10 0 4 14
C 4 4 10 18
D 6 3 11 20

LOC, NOC and WMC are the abbreviations of Lines of Code, Number of Children and
Weighted Method per Class respectively.

The rest of this paper is structured as follows: Section 2 introduces
the motivation of our work. Section 3 presents the related work and
background. Section 4 describes the details of COSTE. Section 5 ex-
plains the experimental design and Section 6 shows the experimental
results. Section 7 analyzes the reasons for COSTE’s superior perfor-
mance. Section 8 discusses the threats to validity. Finally, Section 9
draws the conclusions and suggests future work.

2. Motivation

ROS replicates the minority class instances to balance the dataset.
However, because ROS provides no new information for prediction
models, overgeneralization is inevitable for prediction models trained
by datasets that have been oversampled by ROS. SMOTE-based over-
sampling techniques balance the datasets by generating synthetic mi-
nority class instances. The generated minority class instances provide
new information to train classifiers, unlike ROS. However, the diversity
within the datasets is not significantly increased [12]. Due to the use
of the KNN algorithm in SMOTE-based oversampling techniques, the
instances that are used to generate synthetic instances are too close in
distance, which may still result in the overgeneralization of prediction
models. In addition, if the datasets contain several sub-clusters of
the minority class, the use of the KNN algorithm will only generate
synthetic instances that fall into a specific sub-cluster. These synthetic
instances worsen the overgeneralization of prediction models.

To increase the diversity of oversampled datasets and address
the overgeneralization of prediction models, Bennin et al. [12] pro-
posed MAHAKIL, which selects pairs of unique and dissimilar in-
stances to generate synthetic instances. Therefore, it is able to generate
more diverse instances than SMOTE. However, according to Agrawal’s
work [30], although MAHAKIL increases the diversity of datasets, it
hurts the prediction model’s ability to find defects. In addition, com-
bining two unique and dissimilar instances also raises the possibility
that more erroneous synthetic instances will be introduced, which may
negatively impact the performance of prediction models. Additionally,
MAHAKIL adopts the Mahalanobis distance as its distance metric,
which cannot be calculated for some datasets when the number of
minority class instances is smaller than their dimensionality. In this
case, to work properly, MAHAKIL needs to include multicollinearity
techniques to eliminate some metrics.

To summarize, due to selecting instances that are too close in dis-
tance, SMOTE-based oversampling techniques generate near-duplicated
and less diverse synthetic instances. MAHAKIL generates many syn-
thetic minority class instances that wrongly fall outside the region of
the minority class due to selecting dissimilar and unrelated instances,
which hurts the ability of prediction models to find defects.

Based on our assumption that instances close in complexity are
similar and more likely to fall into the same region, COSTE leverages
the complexity of instances to aid in selecting those that are used to
generate synthetic instances. There are three benefits to doing this.
First, selecting instances close in complexity instead of distance can
avoid generating near-duplicated instances as SMOTE-based oversam-
pling techniques do, because instances similar in complexity do not
have to be close in distance. For example, as observed in Table 1,
3

instances A, B, C and D are the defective instances from a dataset. To
take a simple example, the complexity of the instances is calculated as
the sum of each metric with equal weight. The complexities of A, B and
C are 10, 14 and 18, respectively. A is closer to B than C with regard
to the complexity. However, the distance between A and B (8.94) is
larger than that between A and C (6.32). This means the combination
of A and B could produce a more diverse synthetic instance than the
combination of A and C.

The second benefit is that the synthetic instances generated by two
instances that are close in complexity also have similar complexity,
which ensures that as few synthetic instances as possible are wrongly
placed outside the region of the minority class, like in MAHAKIL, and
thus enhances the ability of prediction models to find defects.

Furthermore, instances with different complexity have different
tendencies to be defective in SDP. However, existing oversampling
techniques do not consider the complexity of different instances. An
extremely complex instance will have a very high probability of being
defective, and thus contains little information for prediction models. In
contrast, a less complex defective instance provides prediction models
with more information, and therefore deserves more attention. In addi-
tion, considering the effort spent on inspecting instances, more defects
could be found if the instances with less complexity are inspected first,
assuming the same limits on testing capacity. COSTE therefore ranks
instances in the ascending order based on the complexity of each. The
higher-ranked instances are less complex than those ranked below.
COSTE then uses the less complex instances to generate synthetic
instances more often than those ranked below, which strengthens the
less complex instances.

We also notice that existing oversampling techniques treat the
weight of each metric identically, which is not realistic in practice.
Therefore, we use a meta-heuristic method to automatically explore
the optimal weight for each metric. Specifically, differential evolution
(DE), which has exhibited good performance [38–40], is selected in this
study. Once the optimal weight of each metric is fixed, we calculate
the complexity of each instance by summing all weighted metrics
and rank all instances by their complexity. Instances ranked adjacent
have similar complexity. The adjacent instances are then averaged
to generate synthetic instances. Using adjacent instances to generate
synthetic instances enables COSTE to explore as many combinations of
instances as possible, thus avoiding the case where generated synthetic
instances fall into a certain sub-cluster like in SMOTE. The details of
COSTE are presented in Section 4.

3. Related work and background

3.1. Class imbalance problem

The class imbalance problem is observed in various domains [41,42]
and greatly degrades the performance of prediction models in SDP.
Normally, there exist more non-defective than defective instances in the
datasets used in SDP. Using these imbalanced datasets to train predic-
tion models will bias the models toward the non-defective instances so
that the trained models will tend to ignore the defective instances [43].
To alleviate the problem in SDP, many class imbalance learning tech-
niques have been proposed. The three general techniques are data
sampling [12,22,23], ensemble learning [44–47] and cost-sensitive
learning [48–51].

Ensemble learning combines multiple classifiers and assigns differ-
ent weights to each classifier. However, such techniques are normally
time-consuming and still ignore the imbalance problem of datasets.
In addition, although several prediction models can be combined in
ensemble learning techniques, how to effectively leverage the combi-
nation of multiple prediction models and ensure the diversity of each
individual model needs further investigation [50].

Cost-sensitive learning aims to build prediction models with the
lowest misclassification cost. In SDP, misclassification of defective in-
stances normally leads to higher cost than misclassification of non-
defective instances [51]. However, assigning an appropriate cost to

wrongly classified instances is an issue that has not been addressed.



Information and Software Technology 129 (2021) 106432S. Feng et al.

S
i
S
b
S
S
e
o
b
i
t
a
T
t
e
t
p
t
S
T
r

g
s
t
i
t
w
o
n
w
M
t
i
c
c

3

c
d
o
s
n
i
d

T
D
e
b

𝑋

a

𝑋

N

𝑥

w

a

𝑉

w
f
u

d

𝑈

T

𝑢

I
c
f
c

t

We focus on data sampling techniques because they are independent
of prediction models, easy to observe and faithfully represent the nature
of the research object. In addition, data sampling is easier to apply and
more practical than the two aforementioned techniques. As outlined
above, undersampling and oversampling are the two general sampling
techniques found in the literature [16,52,53].

For undersampling techniques, random undersampling (RUS) is the
simplest form. It randomly removes instances from the majority class
of the datasets to achieve dataset balance. However, undersampling is
less common than oversampling in SDP, because the instances removed
from the majority class may contain important information for classi-
fiers. ROS, which randomly duplicates instances belonging to the mi-
nority class, is the simplest form of oversampling techniques. However,
ROS only copies the existing minority class instances, which means it
provides no new information for classifiers to learn and therefore may
result in the overgeneralization of prediction models. To deal with this
problem, Chawla et al. [22] proposed SMOTE, which generates new
synthetic instances by combining a certain minority class instance with
previously defined 𝐾 minority class nearest neighbor instances. Because
MOTE generates synthetic instances by combining instead of replicat-
ng instances, it generates more diverse instances than ROS. However,
MOTE can still lead to the overgeneralization of prediction models
ecause it only selects the nearest neighbor instances. On the basis of
MOTE, several modifications have been proposed (e.g., Borderline-
MOTE and MWMOTE). Borderline-SMOTE [23], proposed by Han
t al. puts greater emphasis on those minority class instances that lie
n the decision boundary. By selecting those instances, the decision
oundary is strengthened. Barua et al. [54] proposed MWMOTE, which
dentifies the most informative minority class instances and leverages
he information provided by the nearest majority class instances to
ssign different weights to those informative minority class instances.
his enables the classifiers to emphasize those minority class instances
hat provide more information. Huda et al. [55] proposed a novel
nsemble oversampling technique that combines several oversampling
echniques to generate an ensemble prediction model. Lin et al. [56]
roposed a novel oversampling technique, which is different from
he idea of SMOTE. They extended the concept of Adaptive Subspace
elf-organizing map to Kernel Adaptive Subspace Self-organizing map.
hen the instances are generated in the well-trained subspaces and
econstructed in the original space.

MAHAKIL, proposed by Bennin et al. [12] aims to solve the over-
eneralization problem brought by SMOTE and generate more diverse
ynthetic instances. It ranks instances based on the Mahalanobis dis-
ance and separates instances into two groups. The two corresponding
nstances from each group are together selected to generate new syn-
hetic instances. The pairs of selected instances are not close in distance,
hich enhances the diversity of the synthetic instances. MAHAKIL
utperforms and is more stable than SMOTE-based oversampling tech-
iques. However, MAHAKIL fails to retain the ability to find defects
hen it improves the diversity of data, which makes it less useful.
oreover, another limitation of MAHAKIL is that the Mahalanobis dis-

ance cannot be calculated when the number of minority class instances
s smaller than their dimensionality. Due to this limitation, MAHAKIL
annot function properly in some cases where the number of minority
lass instances is smaller than the number of metrics.

.2. Effort-aware defect prediction

Although the conventional SDP prediction models based on binary
lassification algorithms achieve satisfactory performance, they do not
istinguish between a complex and simple defects. The effort spent
n inspecting a complex instance is normally much larger than that
pent on inspecting a simple instance. However, testing resources are
ormally limited in reality, and it is impossible for SQA teams to
nspect all instances in a software project. Therefore, effort-aware
4

efect prediction has been proposed, which takes the effort spent on W
inspecting different instances into consideration. Kamei et al. [31]
used lines of code as a proxy for effort and proposed a state-of-the-
art effort-aware defect prediction model that could find 35% defects
of a software project with only 20% of the effort that it would take
to inspect all instances in the project. Compared with the conventional
SDP prediction models, effort-aware prediction models are more useful
in daily SQA activities and for aiding the development of high-quality
software.

3.3. Differential evolution

Storn and Price [57] proposed DE as a method of real-parameter
optimization, providing an alternative to inverting random bits. DE
is similar to evolutionary algorithms (EAs) in that it is also based on
mutation, crossover and selection to attain optimal parameters. Unlike
conventional EAs, however, DE first evolves a population of candidate
solutions and mutates the next generation by perturbing this generation
with a scaled difference. Then, crossover is performed to improve
the diversity of the population. By using a fitness function, the best
candidate that has been seen in all generations is selected when DE
terminates. This candidate is treated as the final solution. The brief
stepwise procedure of DE is as follows:

(1) Initialization. DE initializes a population (at G = 0) that includes
𝑁 randomly generated vectors 𝑋(𝐺)

𝑖 with d features.

𝑋(𝐺)
𝑖 = (𝑥(𝐺)

𝑖,1 , 𝑥
(𝐺)
𝑖,2 ,… , 𝑥(𝐺)

𝑖,𝑑 ). (1)

he size 𝑁 of the population remains the same until the termination of
E. Each vector is a candidate solution in the population. The value of
ach feature in each vector should be in a certain range that is defined
y the minimum bound as

𝑚𝑖𝑛 = (𝑥𝑚𝑖𝑛,1, 𝑥𝑚𝑖𝑛,2,… , 𝑥𝑚𝑖𝑛,𝑑 ), (2)

nd the maximum bound as

𝑚𝑎𝑥 = (𝑥𝑚𝑎𝑥,1, 𝑥𝑚𝑎𝑥,2,… , 𝑥𝑚𝑎𝑥,𝑑 ). (3)

ormally, DE initializes the jth feature of the ith vector as follows
(0)
𝑖,𝑗 = 𝑥𝑚𝑖𝑛,𝑗 + 𝑟𝑎𝑛𝑑 ∗ (𝑥𝑚𝑎𝑥,𝑗 − 𝑥𝑚𝑖𝑛,𝑗 ), (4)

here rand is a random number in the range from 0 to 1.
(2) Mutation. The mutant vector is generated after initialization

ccording to
(𝐺+1)
𝑖 = 𝑋(𝐺)

𝑟1
+ 𝐹 ∗ (𝑋(𝐺)

𝑟2
−𝑋(𝐺)

𝑟3
), (5)

here 𝑟1, 𝑟2 and 𝑟3 are the generated vectors and randomly selected
rom the population. F is a scaling factor between 0 and 2, which is
sed to control the amplification of (𝑋(𝐺)

𝑟2 −𝑋(𝐺)
𝑟3 ).

(3) Crossover. After mutation, crossover is applied to increase the
iversity of the mutant vector. The trial vector is introduced as
(𝐺+1)
𝑖 = (𝑢(𝐺+1)

𝑖,1 , 𝑢(𝐺+1)
𝑖,2 ,… , 𝑢(𝐺+1)

𝑖,𝑑 ), (6)

he crossover scheme of the feature 𝑢(𝐺+1)
𝑖,𝑗 is performed as

(𝐺+1)
𝑖,𝑗 =

{

𝑣(𝐺+1)
𝑖,𝑗 if (𝑟𝑎𝑛𝑑𝑏(𝑗) ≤ CR)𝑜𝑟𝑗 = 𝑟𝑛𝑏𝑟(𝑖)

𝑥(𝐺)
𝑖,𝑗 if (𝑟𝑎𝑛𝑑𝑏(𝑗) > CR)𝑎𝑛𝑑𝑗 ≠ 𝑟𝑛𝑏𝑟(𝑖)

. (7)

n Eq. (7), randb(j) is a random number between 0 and 1. CR is the
rossover rate, which is defined by the user in advance. 𝑣(𝐺+1)

𝑖,𝑗 is the 𝑗th
eature of 𝑉 (𝐺+1)

𝑖 . rnbr(i) is a random number that is used to randomly
hoose the value of a feature 𝑣(𝐺+1)

𝑖,𝑗 .
(4) Selection. The trial vector 𝑈 (𝐺+1)

𝑖 is selected as a new member of
he next generation if the trial vector can maximize the fitness function.
hen DE terminates, the best candidate is selected as the final solution.



Information and Software Technology 129 (2021) 106432S. Feng et al.

4

4

C
f
c
N
p
l
c
d
d

4

s
d
r
A
a
m
w
n

𝑋

Fig. 1. Applying min–max normalization.

Fig. 2. Applying optimal weight.

. Methodology

.1. Overview of COSTE

In this study, we propose a novel oversampling method named
omplexity-based OverSampling TEchnique (COSTE). In COSTE, we

irst calculate the weighted sum of each metric of an instance as its
omplexity. DE is applied to find the optimal weight for each metric.
ext, COSTE ranks all instances in the ascending based on their com-
lexity. The purpose of ranking is that the higher-ranked instances are
ess complex and should be inspected first in preference to the more
omplex instances. COSTE then averages pairs of adjacent minority
efective instances to generate new synthetic instances. The detailed
escription of COSTE is introduced in the following subsections.

.2. Applying min–max normalization

In this phase, the desired number of synthetic minority class in-
tances is calculated first. Then we apply data normalization to the
ataset to relieve the negative effect of different weights of various met-
ics on both the prediction models and the calculation of complexity.
fter applying data normalization, the metrics of all instances fall into
similar range of values, thus eliminating bias toward any particular
etric. In this study, we adopt the min–max normalization method,
hich adjusts all values into the range from 0 to 1. The min–max
ormalization method is mathematically defined in (8)

∗ =
(𝑋 − 𝑚𝑖𝑛)

, (8)
5

(𝑚𝑎𝑥 − 𝑚𝑖𝑛)
Table 2
Hyperparameter Configurations of DE.

Hyperparameters Values

The population size, N 200
The number of generations, G 20
The mutation constant, 𝐹 0.3
The crossover rate, CR 0.9
The minimum bound, 𝑚𝑖𝑛 −1
The maximum bound, 𝑚𝑎𝑥 1

where X is the original value of the original data, and min and max
represent the minimum and maximum values of the original data,
respectively. 𝑋∗ is the normalized value of the original data.

To illustrate the whole process more clearly, we take a simple
example. Fig. 1 shows four defective instances 𝑋1, 𝑋2, 𝑋3 and 𝑋4 with
the metrics of lines of code, number of children and weighted method
per class. COSTE first applies the min–max normalization method to
these four instances.

4.3. Calculating complexity and rank

Given a vector of metrics of an instance 𝑋𝑖 = (𝑥1, 𝑥2,… , 𝑥𝑑 ), we
calculate the complexity of each instance based on Eq. (9)

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑖 =
𝑑
∑

𝑗=1
𝛼𝑗𝑥𝑗 , (9)

where d equals the number of metrics of an instance and 𝛼𝑗 is the
weight of each metric 𝑥𝑗 .

In this study, 𝛼𝑗 is optimized by DE. The range of 𝛼𝑗 explored by
DE is set from −1 to 1. If a certain metric is positively correlated with
the complexity of instances, DE will automatically set it as a positive
number. Otherwise, the value of this certain metric will be set as a
negative number by DE. A fitness function is used to explore 𝛼𝑗 so
that the prediction models can achieve the best overall performance,
which is measured by the area under the ROC curve (AUC) in this
study (where ROC is the receiver operating characteristic). There is
no uniform rule for the hyperparameter settings of DE. By convention,
the population size is set to 10 times the dimensionality of instances.
For the scaling factor 𝐹 and the crossover rate CR, we tried different
combinations. We chose values of 𝐹 from 0.6 to 2.0 with intervals of
0.2. For CR, we chose values from 0.3 to 0.9 with intervals of 0.1.
Experimentally, we found that the combination of 𝐹 equaling 0.3 and
CR equaling 0.9 minimized the prediction models’ execution time while
performing comparably to the other combinations. Therefore, we set
𝐹 as 0.3 and CR as 0.9. The number of generations G is set to 20,
because we found that convergence was achieved in no more than
20 generations on all four classifiers across all datasets. The detailed
configuration of DE is presented in Table 2.

In Fig. 2, 𝛼1, 𝛼2 and 𝛼3 are the optimal weights explored by DE for
each metric.

Then the complexity of each instance can be computed by summing
the values of each weighted metric. Having done this, COSTE ranks
instances in the ascending order based on their complexity.

Fig. 3 shows the four instances with weighted metrics ranked in the
ascending order based on their complexity, which is the weighted sum
of each metric. 𝑋1 is the instance with the lowest complexity, and 𝑋3
is the instance with the highest complexity.

4.4. Generating new synthetic instances

In the final phase, COSTE generates new synthetic instances by
averaging pairs of adjacent minority class instances from the top-ranked
to the bottom-ranked. The complexity of each newly generated instance
is the average complexity of the two adjacent instances. If the number

of newly generated instances is still smaller than the desired number



Information and Software Technology 129 (2021) 106432S. Feng et al.

u
m
w
t
i
𝑁
v
b
c
t

o

t
f
n

Fig. 3. Calculating complexity and rank.

Fig. 4. Generating synthetic instances.

calculated previously, we insert the newly generated instances into the
original dataset and repeat the above phases from 4.3 to 4.4 until the
desired number is reached.

In Fig. 4, new synthetic instances are generated by averaging pairs
of adjacent instances. For example, the synthetic instance 𝑁𝑒𝑤1 is
generated by averaging 𝑋1 and 𝑋2.

Algorithm 1 shows the pseudo-code of COSTE. Line 1 initializes
an array for temporarily storing newly generated instances. Line 2
describes the phase of applying data normalization. Lines 3 and 4 are
the phases of calculating complexity and ranking instances. In COSTE,
n minority class instances can generate at most n-1 synthetic instances.
If the needed number of synthetic instances is larger than the number of
minority class instances minus 1, Lines 7 to 17 are executed. Otherwise,
Lines 18 to 27 are executed. At the end, COSTE returns the balanced
dataset.

5. Experimental design

In this section, the research questions, the details of the datasets,
the adopted oversampling techniques, the four classifiers, the perfor-
mance measures, the statistical tests and the experimental procedure
are presented.

5.1. Research questions

To evaluate COSTE, the following research questions are formu-
lated.

RQ1: Does COSTE contribute to the diversity of the datasets?
6

Algorithm 1 COSTE algorithm
Input: Dataset 𝑁 including the minority class instances 𝑁𝑚𝑖𝑛 and the majority class instances
𝑁𝑚𝑎𝑗
Output: Balanced dataset 𝑁𝑏𝑎𝑙
1: 𝐴𝑟𝑟𝑎𝑦𝑠𝑦𝑛 ← array for storing new synthetic instances
2: apply the min-max normalization method to the dataset
3: for each instance 𝑋𝑖 in 𝑁𝑚𝑖𝑛, calculate its complexity using Equation (9).
4: rank 𝑋𝑖 in the ascending order based on complexity
5: calculate the number of new synthetic instances needed 𝑇 , 𝑇 = 𝑛𝑢𝑚𝑏𝑒𝑟(𝑁𝑚𝑎𝑗 ) −

𝑛𝑢𝑚𝑏𝑒𝑟(𝑁𝑚𝑖𝑛)
6: if 𝑇 > 𝑛𝑢𝑚𝑏𝑒𝑟(𝑁𝑚𝑖𝑛) − 1 then
7: for 𝑖 = 1, 2, ..., 𝑛𝑢𝑚𝑏𝑒𝑟(𝑁𝑚𝑖𝑛) − 1 do
8: new synthetic instance 𝑋𝑛𝑒𝑤 = (𝑋𝑖 +𝑋(𝑖+1))∕2
9: add 𝑋𝑛𝑒𝑤 into 𝐴𝑟𝑟𝑎𝑦𝑠𝑦𝑛
10: end for
11: update 𝑁𝑚𝑖𝑛 by merging 𝑁𝑚𝑖𝑛 and 𝐴𝑟𝑟𝑎𝑦𝑠𝑦𝑛
12: repeat Line 5
13: else
14: for 𝑖 = 1, 2, ..., 𝑇 − 1 do
15: new synthetic instance 𝑋𝑛𝑒𝑤 = (𝑋𝑖 +𝑋(𝑖+1))∕2
16: add 𝑋𝑛𝑒𝑤 into 𝐴𝑟𝑟𝑎𝑦𝑠𝑦𝑛
17: end for
18: update 𝑁𝑚𝑖𝑛 by merging 𝑁𝑚𝑖𝑛 and 𝐴𝑟𝑟𝑎𝑦𝑠𝑦𝑛
19: end if
20: return balanced dataset 𝑁𝑏𝑎𝑙 by merging 𝑁𝑚𝑖𝑛 and 𝑁𝑚𝑎𝑗

SMOTE generates synthetic instances that are similar to the existing
instances and thus lack diversity because only the nearest neighbor in-
stances are selected, which may lead to overgeneralization of prediction
models. To evaluate whether COSTE improves the diversity of the data
distribution, we conduct experiments to compare the distance between
the instances selected by oversampling techniques when applied sep-
arately to oversample datasets. In addition, according to Bennin [12],
another indicator of the diversity of synthetic instances produced by
an oversampling technique is a lower 𝑝𝑓 value. Therefore, we further
compare the 𝑝𝑓 values of each oversampling technique. If the distance
between the selected instances in COSTE is larger than those in SMOTE-
based oversampling techniques and COSTE obtains a lower 𝑝𝑓 value,
we can conclude that COSTE does contribute to the diversity within the
data distribution.

RQ2: Does COSTE improve the diversity within the data distri-
bution at the expense of its ability to find defects?

MAHAKIL [12] selects unique and dissimilar instances to generate
synthetic minority class instances and thus improves the diversity
within the data distribution. However, the improvement of the diversity
is at the expense of the ability of prediction models to find defects,
i.e., probability of detection (𝑝𝑑) values decrease. This makes MAHAKIL
less useful than SMOTE-based oversampling techniques because it finds
fewer defects. Whether COSTE improves the diversity within the data
distribution at the expense of a decrease of 𝑝𝑑 values needs further
investigation. Furthermore, when the testing resources are limited, it
is preferable to select an oversampling technique that can find more
defects with the same resources. 𝑁𝑜𝑟𝑚(𝑃𝑜𝑝𝑡) and 𝐴𝐶𝐶 are commonly
sed in effort-aware defect prediction to reflect the ability of prediction
odels to find defects with limited testing resources. In this study,
e obtain the values of 𝑁𝑜𝑟𝑚(𝑃𝑜𝑝𝑡) and 𝐴𝐶𝐶 of each oversampling

echnique using 20% of the effort that it would take to inspect all
nstances. We thus conduct experiments and compare the resulting 𝑝𝑑,
𝑜𝑟𝑚(𝑃𝑜𝑝𝑡) and 𝐴𝐶𝐶 values of different oversampling techniques. If the

alues of 𝑝𝑑, 𝑁𝑜𝑟𝑚(𝑃𝑜𝑝𝑡) and 𝐴𝐶𝐶 of COSTE are comparable to or even
etter than SMOTE-based oversampling techniques and MAHAKIL, we
an conclude that COSTE improves the diversity without compromising
he ability of prediction models to find defects.

RQ3: How does COSTE perform compared with the existing
versampling techniques?

If COSTE successfully improves the diversity within the data dis-
ribution while maintaining the ability to find defects, its overall per-
ormance should be better than those of the other oversampling tech-
iques. To compare their overall performances, we adopt AUC [58–60]



Information and Software Technology 129 (2021) 106432S. Feng et al.
Table 3
Description of the metrics.

Abbreviation Description

Static

WMC Weighted methods per class
DIT Depth of Inheritance Tree
NOC Number of children
CBO Coupling between object classes
RFC Response for a class
LCOM Lack of cohesion in methods
CA Afferent couplings
CE Efferent couplings
NPM Number of public methods
LCOM3 Lack of cohesion in methods, different from

LCOM
LOC Lines of code
DAM Data access metric
MOA Measure of aggregation
MFA Measure of functional abstraction
CAM Cohesion among methods of class
IC Inheritance coupling
CBM Coupling between methods
AMC Average method complexity
MAX(CC) Maximum value of CC methods of the

investigated class
AVG(CC) Arithmetic mean of the CC value in the

investigated class

Table 4
Description of 23 imbalanced datasets collected from the PROMISE repository.

Projects # Instances Defect ratio

Ant-1.3 125 16
Ant-1.4 178 22.5
Ant-1.5 293 10.9
Ant-1.6 351 26.2
Ant-1.7 745 22.3
Camel-1.0 339 3.8
Camel-1.2 608 35.5
Camel-1.4 872 16.6
Camel-1.6 965 19.5
Ivy-1.4 241 6.6
Ivy-2.0 352 11.4
Jedit-3.2 272 33.1
Jedit-4.0 306 24.5
Jedit-4.1 312 25.3
Jedit-4.2 367 13.1
Log4j-1.0 135 25.2
Log4j-1.1 109 33.9
Poi-2.0 314 11.8
Synapse-1.2 256 33.6
Velocity-1.6 229 34.1
Xalan-2.4 723 15.2
Xerces-1.2 440 16.1
Xerces-1.3 453 15.2

and 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 [16,61,62], which are commonly used as overall per-
formance measures in SDP, where higher values would indicate that
COSTE is superior to the other oversampling techniques

5.2. Datasets

To increase the generalizability of the experimental results, 23
releases of 10 open source projects from the PROMISE repository
were included. These datasets are measured by the static metric. The
percentages of defective instances in these selected projects are less
than 50%. The details of the static metrics are presented in Table 3.
The details of the adopted datasets are presented in Table 4.

5.3. Baselines

We compare COSTE with three common SMOTE-based oversam-
pling techniques, SMOTE, Borderline-SMOTE and MWMOTE, and one
7

recently proposed oversampling technique, MAHAKIL. The following is
a brief introduction of these four techniques.

SMOTE. SMOTE [22] is the most common synthetic oversampling
technique in SDP. Based on the KNN algorithm, SMOTE generates new
synthetic instances by combining an instance with one of its 𝐾 nearest
neighbors, all of which belong to the minority class. The use of the
KNN algorithm in SMOTE ensures that the newly generated instance
lies in the region of the minority class. However, it also makes the
performance of SMOTE heavily reliant on the selection of the nearest
neighbor instances.

Borderline-SMOTE. Borderline-SMOTE [23] is an improved ver-
sion of SMOTE. Instead of treating every instance equally, Borderline-
SMOTE puts more focus on those instances that are hard for prediction
models to classify. These instances are referred to as borderline in-
stances because they are closer to the borderline between the majority
and minority classes. This technique selects as the initial instances
those borderline instances that have more majority class than minority
class nearest neighbor instances. By doing this, the borderline between
the majority and minority classes becomes clearer, thus improving the
performance of prediction models.

MWMOTE. Different from SMOTE, which treats instances equally,
MWMOTE [54] assigns different weights to those hard-to-learn minor-
ity class instances. MWMOTE leverages the information provided not
only by the minority class instances, but also by the majority class in-
stances. Based on the distance from the nearest majority class instances,
MWMOTE calculates the different weights for different informative
instances and then generate synthetic instances using a clustering ap-
proach.

MAHAKIL. Unlike SMOTE-based oversampling techniques, MA-
HAKIL [12] ranks and selects the minority class instances based on
the Mahalanobis distance to generate new instances. In this way, it
facilitates the selection of initial instances and reduces the overgener-
alization problem, allowing it to outperform the previous oversampling
techniques. However, due to the inherent limitations of the Maha-
lanobis distance, MAHAKIL is unreliable in situations when the number
of minority class instances is smaller than their dimensionality. To deal
with this limitation, MAHAKIL adopts the feature selection technique
to reduce the dimensionality of instances when the number of minority
class instances is small. To avoid introducing variation and bias and en-
sure an objective comparison among different oversampling techniques,
we only select datasets with which MAHAKIL can work appropriately
without applying the feature selection technique.

In this study, the 𝐾 value for the KNN algorithm in SMOTE and
Borderline-SMOTE is set to the default value of 5. As for the hy-
perparameter for MWMOTE, we follow the author’s setting in [54].
The Euclidean distance is adopted as the distance metric in SMOTE,
Borderline-SMOTE and MWMOTE.

5.4. Performance measures

The objective of SDP is to predict defective data as accurately
as possible. However, when the datasets are imbalanced, the overall
accuracy is not an appropriate performance measure. In such a sit-
uation, even if all instances were predicted as non-defective without
any consideration of their actual properties, the overall accuracy would
still remain high because the non-defective instances would vastly
outnumber the defective instances. As such, performance measures
that are not significantly affected by dataset imbalance are preferable,
such as AUC and 𝑏𝑎𝑙𝑎𝑛𝑐𝑒. In SDP, performance measures are normally
computed based on the confusion matrix. A typical confusion matrix is
shown in Table 5. Normally, defective instances are labeled as positive
and non-defective instances as negative in SDP [63]. True positive (TP)
represents the number of positive instances that are correctly predicted
as positive. False positive (FP) represents the number of negative



Information and Software Technology 129 (2021) 106432S. Feng et al.

𝑏

m

v
t
t
𝑁
m
a
t
t
𝛿

5

t
n
m
f
n
s
h

5

s
o
t
s
c
a
v
𝑝
C
o
m
t
d
t
u
a
r
m
h
d
t

Fig. 5. An LOC-based cumulative lift chart.

instances are wrongly predicted as positive. True negative (TN) is the
number of negative instances that are correctly predicted as negative.
False negative (FN) is the number of positive instances that are wrongly
predicted as negative. In this study, we adopt AUC, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, 𝑝𝑑 and 𝑝𝑓
as the performance measures. These four indicators are widely used for
performance evaluation [18,64,65] in SDP. AUC [66] and 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 [36]
are used to measure the overall performance of prediction models.
𝑏𝑎𝑙𝑎𝑛𝑐𝑒, 𝑝𝑑 and 𝑝𝑓 are defined as below:

𝑝𝑑 = 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(10)

𝑝𝑓 = 𝐹𝑃
𝑇𝑁 + 𝐹𝑃

(11)

𝑎𝑙𝑎𝑛𝑐𝑒 = 1 −

√

(0 − 𝑝𝑓 )2 + (1 − 𝑝𝑑)2
√

2
(12)

For AUC, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 and 𝑝𝑑, higher values represent better perfor-
ance, while for 𝑝𝑓 , lower values are better. A high 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 value

indicates that 𝑝𝑑 is reasonably high and 𝑝𝑓 is reasonably low at the
same time. Although we require a high 𝑝𝑑, reflecting a strong ability to
find defects, the trade-off between the two means that high 𝑝𝑑 values
usually result in high 𝑝𝑓 values, which makes the model less efficient.
The AUC metric can effectively describe the trade-off and better reflect
the overall performance of a prediction model. Therefore, the fitness
function in DE is designed to choose the solution that maximizes the
AUC of prediction models. Then, we collect the values of 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, 𝑝𝑑
and 𝑝𝑓 when the maximum AUC is achieved.

In effort-aware defect prediction, the effort spent on inspecting
instances is measured by their lines of code: the more lines of code an
instance has, the more effort will be spent on inspecting it. 𝑁𝑜𝑟𝑚(𝑃𝑜𝑝𝑡)
[32] and 𝐴𝐶𝐶 [31] have been widely adopted to measure the effort-
aware performance of prediction models in previous studies. 𝐴𝐶𝐶
denotes the 𝑝𝑑 value when inspecting the top-ranked instances using
20% of the total effort that would be needed to inspect all instances.
The mathematical definition of 𝑁𝑜𝑟𝑚(𝑃𝑜𝑝𝑡) is given below:

𝑁𝑜𝑟𝑚(𝑃𝑜𝑝𝑡) =
𝑃𝑜𝑝𝑡 −𝑤𝑜𝑟𝑠𝑡(𝑃𝑜𝑝𝑡)

𝑜𝑝𝑡𝑖𝑚𝑎𝑙(𝑃𝑜𝑝𝑡) −𝑤𝑜𝑟𝑠𝑡(𝑃𝑜𝑝𝑡)
(13)

In Eq. (13), 𝑃𝑜𝑝𝑡 is equal to 1 − 𝛥𝑜𝑝𝑡, where 𝛥𝑜𝑝𝑡 is the area between the
optimal model and the prediction model in the LOC-based cumulative
8

lift chart. Fig. 5 presents an LOC-based cumulative lift chart.
Table 5
Confusion Matrix.

Predicted positive Predicted negative

Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

5.5. Performance comparison

In this study, we compare COSTE with the other oversampling
techniques with respect to diversity, ability to find defects and overall
performance. Therefore, in addition to comparing the distance between
the selected instances in each oversampling technique to check whether
COSTE increases diversity, we compare the AUC, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, 𝑝𝑑, 𝑝𝑓 ,
𝑁𝑜𝑟𝑚(𝑃𝑜𝑝𝑡) and 𝐴𝐶𝐶 values of each technique to establish whether
COSTE’s performance is superior overall. We also adopt the Wilcoxon
rank sum test (𝑝-value <.05) to check whether the performance differ-
ences between any two oversampling techniques are significant. The
Wilcoxon rank sum test is a non-parametric test that takes the null
hypothesis that two techniques are the same while the alternative
hypothesis is that two techniques are significantly different. If the 𝑝-
alue is less than 0.05, the null hypothesis is rejected, which indicates
hat there exists a statistically significant difference between the two
echniques. When comparing two techniques, higher AUC, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, 𝑝𝑑,
𝑜𝑟𝑚(𝑃𝑜𝑝𝑡) and 𝐴𝐶𝐶 values and lower 𝑝𝑓 values are better. Further-
ore, to quantify the difference between the performance of COSTE

nd the other oversampling techniques beyond 𝑝-value interpretation,
he effect size is computed (i.e., Cliff’s 𝛿). According to [67], we classify
he effect size as negligible (0 < Cliff’s 𝛿 < 0.147), small (0.147 < Cliff’s
< 0.33), medium (0.33 < Cliff’s 𝛿 < 0.474) or large (Cliff’s 𝛿 > 0.474).

.6. Classifiers

We adopt four common classifiers to enhance the generalizability of
his study and the convenience of its replication by others, namely K-
earest neighbor (KNN) [68], random forest (RF) [69], support vector
achine (SVM) [70] and multilayer perceptron (MLP) [71]. Because we

ocus on the performance of COSTE and the other oversampling tech-
iques instead of tuning the hyperparameters of different classifiers, the
klearn package [72] in Python is adopted for our experiments and the
yperparameters for the selected classifiers are set to the default values.

.7. Experimental procedure

To gain a comprehensive understanding of COSTE’s performance,
everal experiments are conducted. First, we investigate the diversity
f each oversampling technique to answer RQ1. For each oversampling
echnique, we calculate the Euclidean distance between the instances
elected by the technique in a dataset. We conduct 10 replicates and
alculate the average distance as the final result to reduce the variation
nd bias. In addition, considering Bennin’s conclusion that low 𝑝𝑓
alues represent high diversity of synthetic data, we also present the
𝑓 values of each oversampling technique. To compare the 𝑝𝑓 values of
OSTE with those of the other oversampling techniques, we apply each
versampling technique to imbalanced datasets and build prediction
odels with the oversampled datasets. Before we apply each technique

o the imbalanced datasets, we use 5-fold cross-validation to divide the
atasets into five folds. To keep the ratio of minority class instances
o majority class instances the same as in the original datasets, we
se stratification to divide the datasets. Then we select four folds
s the parent training data to build the prediction models, and the
emaining fold is treated as the parent testing data to validate the
odels’ performance. This is iterated five times to ensure all folds
ave been used for both training and testing. After the division is
one, we apply COSTE and the other oversampling techniques only
o the training data. When COSTE is applied, we further divide the



Information and Software Technology 129 (2021) 106432S. Feng et al.

t
l
o

C
K

Table 6
Average distance between the selected instances of each oversampling technique.

Dataset COSTE SMOTE Borderline MWMOTE MAHAKIL

ant-1.3 1.05 0.84 0.92 0.47 1.20
ant-1.4 0.85 0.66 0.63 0.53 1.41
ant-1.5 0.95 0.70 0.69 0.81 1.14
ant-1.6 0.83 0.54 0.67 1.05 1.11
ant-1.7 0.84 0.47 0.47 1.02 1.13
camel-1.0 1.13 1.04 0.92 1.05 1.33
camel-1.2 0.89 0.32 0.34 1.18 1.27
camel-1.4 0.95 0.40 0.40 1.13 1.19
camel-1.6 0.85 0.32 0.29 1.03 1.13
ivy-1.4 1.14 1.12 1.04 0.85 1.32
ivy-2.0 0.94 0.68 0.49 0.97 1.22
jedit-3.2 0.79 0.50 0.51 1.18 1.28
jedit-4.0 0.77 0.48 0.43 1.04 1.14
jedit-4.1 0.76 0.51 0.43 1.12 1.17
jedit-4.2 0.75 0.58 0.47 0.95 1.27
log4j-1.0 0.97 0.82 0.74 1.22 1.27
log4j-1.1 1.08 0.82 0.79 1.12 1.37
poi-2.0 0.96 0.65 0.49 0.97 1.18
synapse-1.2 1.11 0.59 0.74 1.17 1.30
velocity-1.6 0.95 0.51 0.50 1.13 1.27
xalan-2.4 1.01 0.56 0.57 1.02 1.36
xerces-1.2 0.79 0.46 0.48 0.74 1.49
xerces-1.3 0.98 0.57 0.59 1.12 1.39

average 0.93 0.61 0.59 0.99 1.26

four parent training folds into five subfolds. Then we take the four
new subfolds as the training data and the remaining subfold as the
testing data to decide the optimal weights for each metric by using DE.
This procedure is also conducted five times to ensure all bins are used
for training and testing. The parent testing data are kept unchanged.
According to the assumption that most machine learning algorithms
perform best when the data are balanced and the conclusion of Ahmad
Abu [73] that oversampling techniques attain the best performance
at 50%, we terminate the oversampling process when the numbers of
minority class and majority class instances are equal. Then the balanced
training data are used to train prediction models, and the 𝑝𝑓 values of
these prediction models are validated by the testing data. We iterate
the above process 10 times to reduce the impact of randomness. After
10 iterations, we take the average 𝑝𝑓 values of each technique as the
final results. AUC, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, 𝑝𝑑, 𝑁𝑜𝑟𝑚(𝑃𝑜𝑝𝑡) and 𝐴𝐶𝐶 are calculated in
the same way as 𝑝𝑓 during the above process. Fig. 6 shows the whole
flow of the experiments that compare each oversampling technique.

Based on the average distance and 𝑝𝑓 values, we can answer RQ1
and establish whether COSTE generates more diverse oversampled
instances. To answer RQ2, we compare the 𝑝𝑑, 𝑁𝑜𝑟𝑚(𝑃𝑜𝑝𝑡) and 𝐴𝐶𝐶
values of each oversampling technique, with higher 𝑝𝑑 values indi-
cating better ability to find defects and higher 𝑁𝑜𝑟𝑚(𝑃𝑜𝑝𝑡) and 𝐴𝐶𝐶
values indicating that more defects can be found with the same testing
effort. To answer RQ3, we compare the AUC and 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 values of
each oversampling technique. If COSTE obtains higher AUC and 𝑏𝑎𝑙𝑎𝑛𝑐𝑒
values than the other oversampling techniques, we can conclude that
it is superior.

6. Experimental results

Here we exhibit the experimental results to answer the research
questions, comparing the performance of each oversampling technique
across each performance measure using the obtained performance val-
ues.

RQ1: Does COSTE contribute to the diversity of the datasets?
To answer RQ1, we first compare the average distance between

the instances that are selected by each oversampling technique to
generate synthetic instances. According to Bennin’s work [12], the
further the distance between those selected instances, the more diverse
the distribution of the generated instances. Thus, we can inspect the
9

Table 7
Comparison among COSTE, SMOTE, Borderline, MWMOTE and MAHAKIL in terms of
𝑝𝑓 .
𝑝𝑓 COSTE SMOTE Borderline MWMOTE MAHAKIL

SVM 0.300 0.346 0.350 0.326 0.293
𝑝-value < .05 < .05 < .05 > .05
Cliff’s 𝛿 0.221 0.263 0.146 0.040
KNN 0.214 0.266 0.261 0.234 0.216
𝑝-value < .05 < .05 < .05 > .05
Cliff’s 𝛿 0.418 0.384 0.255 0.059
RF 0.126 0.128 0.128 0.121 0.129
𝑝-value > .05 > .05 > .05 > .05
Cliff’s 𝛿 0.028 0.025 0.059 0.028
MLP 0.190 0.222 0.229 0.208 0.191
𝑝-value < .05 < .05 < .05 > .05
Cliff’s 𝛿 0.395 0.448 0.259 0.041
average 0.207 0.241 0.242 0.223 0.207
𝑝-value < .05 < .05 < .05 > .05
Cliff’s 𝛿 0.353 0.289 0.183 0.028

diversity for each oversampling technique. Table 6 records the average
distance for all 23 datasets oversampled by COSTE, SMOTE, Borderline-
SMOTE (Borderline), MWMOTE and MAHAKIL. It can be clearly seen
that MAHAKIL achieves the largest average distance (1.26), while the
average distance of COSTE (0.93) is larger than those of SMOTE (0.61)
and Borderline (0.59). Specifically, the distances of COSTE are larger
than those of SMOTE and Borderline for all 23 individual datasets. The
average distance of COSTE is similar to that of MWMOTE (0.99).

According to Bennin [12], lower 𝑝𝑓 values represent more diverse
synthetic instances. Therefore, we compare the 𝑝𝑓 values for each
oversampling technique. From Table 7, we can see that COSTE obtains
the lowest average 𝑝𝑓 value (0.207). MAHAKIL also performs well, with
the same average 𝑝𝑓 value (0.207). Borderline performs the worst in
terms of 𝑝𝑓 with a value of 0.242. Specifically, while COSTE obtains
the lowest 𝑝𝑓 values on the KNN and MLP classifiers, it fails to do so
on the SVM and RF classifiers, where instead MAHAKIL performs the
best on the SVM classifier and MWMOTE performs the best on the RF
classifier.

We also statistically analyze the 𝑝𝑓 values of each oversampling
echnique. Based on the Wilcoxon rank sum test at the confidence
evel of 95%, COSTE performs significantly better than SMOTE-based
versampling techniques in terms of average 𝑝𝑓 value. Specifically,

COSTE is significantly better than SMOTE-based oversampling tech-
niques on the SVM, KNN and MLP classifiers in terms of 𝑝𝑓 . The
exception is that COSTE does not significantly outperform SMOTE-
based oversampling techniques on the RF classifier. AS for the effect
size, the differences between COSTE and SMOTE-based oversampling
techniques are practically significant and that between COSTE and
MAHAKIL is negligible in terms of 𝑝𝑓 .

To conclude the above observations, the diversity of COSTE is
higher than those of SMOTE, Borderline and MWMOTE and is also
comparable to that of MAHAKIL based on the average distance and
𝑝𝑓 values. This confirms our expectation that COSTE could generate
more diverse synthetic instances than SMOTE-based oversampling tech-
niques. Therefore, the answer to RQ1 is ‘‘yes’’: COSTE does contribute
to the diversity within the data distribution.

RQ2: Does COSTE improve the diversity within the data distri-
bution at the expense of its ability to find defects?

The ability of prediction models to find defects is reflected by 𝑝𝑑,
𝑁𝑜𝑟𝑚(𝑃𝑜𝑝𝑡) and 𝐴𝐶𝐶, higher values of which represent higher defect-
finding ability. Therefore, we compare 𝑝𝑑, 𝑁𝑜𝑟𝑚(𝑃𝑜𝑝𝑡) and 𝐴𝐶𝐶 values
between different oversampling techniques to answer RQ2.

Table 8 records the 𝑝𝑑 values of all 23 datasets oversampled by
OSTE, SMOTE, Borderline, MWMOTE and MAHAKIL on the SVM,
NN, RF and MLP classifiers as well as the 𝑝-values in terms of 𝑝𝑑. We

can see that all five oversampling techniques possess their highest 𝑝𝑑
values on the SVM classifier. COSTE achieves a better 𝑝𝑑 value (0.690)



Information and Software Technology 129 (2021) 106432S. Feng et al.
Fig. 6. Experimental framework of COSTE.
Table 8
Comparison among COSTE, SMOTE, Borderline, MWMOTE and MAHAKIL in terms of
𝑝𝑑.
𝑝𝑑 COSTE SMOTE Borderline MWMOTE MAHAKIL

SVM 0.690 0.692 0.686 0.677 0.652
𝑝-value > .05 > .05 > .05 < .05
Cliff’s 𝛿 0.032 0.074 0.013 0.130
KNN 0.623 0.608 0.595 0.573 0.557
𝑝-value > .05 < .05 < .05 < .05
Cliff’s 𝛿 0.117 0.147 0.331 0.374
RF 0.447 0.432 0.430 0.432 0.433
𝑝-value < .05 < .05 < .05 < .05
Cliff’s 𝛿 0.100 0.110 0.108 0.079
MLP 0.595 0.596 0.603 0.582 0.568
𝑝-value > .05 > .05 > .05 < .05
Cliff’s 𝛿 0.040 0.085 0.021 0.062
average 0.589 0.583 0.578 0.566 0.552
𝑝-value >.05 > .05 < .05 < .05
Cliff’s 𝛿 0.043 0.025 0.130 0.168

Table 9
Comparison among COSTE, SMOTE, Borderline, MWMOTE and MAHAKIL in terms of
𝑁𝑜𝑟𝑚(𝑃𝑜𝑝𝑡).

𝑁𝑜𝑟𝑚(𝑃𝑜𝑝𝑡) COSTE SMOTE Borderline MWMOTE MAHAKIL

SVM 0.641 0.632 0.628 0.630 0.621
𝑝-value > .05 > .05 > .05 < .05
Cliff’s 𝛿 0.040 0.070 0.051 0.081
KNN 0.663 0.642 0.639 0.630 0.621
𝑝-value < .05 < .05 < .05 < .05
Cliff’s 𝛿 0.214 0.244 0.353 0.365
RF 0.612 0.606 0.610 0.613 0.606
𝑝-value > .05 > .05 > .05 > .05
Cliff’s 𝛿 0.036 0.059 0.025 0.040
MLP 0.633 0.629 0.633 0.624 0.619
𝑝-value > .05 > .05 > .05 < .05
Cliff’s 𝛿 0.070 0.036 0.089 0.123
average 0.637 0.627 0.627 0.624 0.616
𝑝-value < .05 < .05 < .05 < .05
Cliff’s 𝛿 0.100 0.089 0.142 0.176

than Borderline, MWMOTE and MAHAKIL, but is inferior to SMOTE
(0.692) on the SVM classifier. It can be seen that MAHAKIL obtains
the lowest 𝑝𝑑 value among all techniques on that classifier. For the
KNN classifier, COSTE achieves the best 𝑝𝑑 value (0.623) and MAHAKIL
10
still performs the worst among all the techniques. For the RF classifier,
COSTE gains the best 𝑝𝑑 value (0.447) while the other four techniques
perform similarly. For the MLP classifier, Borderline obtains the best 𝑝𝑑
value (0.603). Regarding the average 𝑝𝑑 value, COSTE performs well,
which shows that instead of decreasing the ability of finding defects,
COSTE is good at finding defects as the other techniques, and MAHAKIL
obtains a much lower average 𝑝𝑑 value than the other techniques. This
is in agreement with Agrawal’s finding [30] that MAHAKIL improves
the diversity of the generated data at the expense of decreasing the
ability to find defects.

Table 9 shows that COSTE outperforms all of the other oversampling
techniques on the SVM, KNN and RF classifiers in terms of 𝑁𝑜𝑟𝑚(𝑃𝑜𝑝𝑡).
Specifically, COSTE achieves a value of 0.641, while MAHAKIL per-
forms the worst, with a value of only 0.621, on the SVM classifier.
On the KNN classifier, the 𝑁𝑜𝑟𝑚(𝑃𝑜𝑝𝑡) value of COSTE is 0.663 and
that of SMOTE is the second highest at 0.642. On the RF classifier,
MAHAKIL performs the worst, with values of only 0.606, while COSTE
still performs well and obtains 0.612 in terms of 𝑁𝑜𝑟𝑚(𝑃𝑜𝑝𝑡). On the
MLP classifier, COSTE and Borderline performs the best. Regarding the
average 𝑁𝑜𝑟𝑚(𝑃𝑜𝑝𝑡) value on all four classifiers, COSTE obtains 0.637
while MAHAKIL obtains the lowest average of only 0.616. Table 10
presents the 𝐴𝐶𝐶 values of all five oversampling techniques. COSTE is
the best-performing oversampling technique, outperforming all other
techniques on all four classifiers in terms of 𝐴𝐶𝐶.

We again perform the Wilcoxon rank sum test at the confidence
level of 95% to investigate the statistical significance of the differences
between the compared oversampling techniques. From Table 8, we
observe that COSTE significantly outperforms all the four techniques
on the RF classifiers. In addition, COSTE performs significantly better
than MAHAKIL on all the selected classifiers and also better than
MWMOTE on the KNN classifier. From Table 9, the performance of
COSTE is significantly better than those of SMOTE, Borderline, MW-
MOTE and MAHAKIL in terms of the average 𝑁𝑜𝑟𝑚(𝑃𝑜𝑝𝑡) values. COSTE
also performs well on the KNN classifier, on which it significantly
outperforms all the other techniques. In terms of the average 𝐴𝐶𝐶
values, COSTE significantly outperforms all the compared techniques.
Furthermore, the values of Cliff’s 𝛿 effect sizes show that practical effect
sizes exist between COSTE and MWMOTE and MAHAKIL in terms of
𝑝𝑑, 𝑁𝑜𝑟𝑚(𝑃𝑜𝑝𝑡) and 𝐴𝐶𝐶. The Cliff’s 𝛿 sizes between the performance

of COSTE and those of SMOTE and Borderline are small.



Information and Software Technology 129 (2021) 106432S. Feng et al.

o
I
p
r
t
h
t

o
w
a
t
v
s
a
t
M
o
i
o
𝑏

9
c
o
o
M
t
a
n
c
a
o

T
C
A

Table 10
Comparison among COSTE, SMOTE, Borderline, MWMOTE and MAHAKIL in terms of
𝐴𝐶𝐶.
𝐴𝐶𝐶 COSTE SMOTE Borderline MWMOTE MAHAKIL

SVM 0.377 0.358 0.352 0.355 0.355
𝑝-value < .05 < .05 < .05 < .05
Cliff’s 𝛿 0.074 0.123 0.089 0.119
KNN 0.411 0.380 0.374 0.365 0.361
𝑝-value < .05 < .05 < .05 < .05
Cliff’s 𝛿 0.206 0.227 0.267 0.259
RF 0.347 0.341 0.342 0.346 0.340
𝑝-value > .05 < .05 > .05 > .05
Cliff’s 𝛿 0.070 0.074 0.055 0.043
MLP 0.385 0.372 0.371 0.365 0.360
𝑝-value < .05 < .05 < .05 < .05
Cliff’s 𝛿 0.119 0.074 0.180 0.198
average 0.380 0.362 0.360 0.358 0.354
𝑝-value < .05 < .05 < .05 < .05
Cliff’s 𝛿 0.108 0.115 0.157 0.172

The value of 𝑝𝑑 is closely related to the value of 𝐴𝐶𝐶. Normally, the
higher 𝑝𝑑 value, the higher 𝐴𝐶𝐶 value. In this study, COSTE obtains
similar 𝑝𝑑 values to SMOTE and Borderline while it obtains significantly
better 𝐴𝐶𝐶 values than SMOTE and Borderline, which highlights the
positive effect of COSTE on effort-aware defect prediction.

To summarize, the performance of COSTE is comparable to or even
better than those of the other techniques in terms of 𝑝𝑑, 𝑁𝑜𝑟𝑚(𝑃𝑜𝑝𝑡)
and 𝐴𝐶𝐶 according to the experimental results and analysis above.
Therefore, we can answer RQ2 by confirming that COSTE improves the
diversity within the data distribution without degrading the ability of
prediction models to find defects.

RQ3: How does COSTE perform compared to the existing over-
sampling techniques?

To answer RQ3, we leverage AUC and 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 to compare the
verall performance of COSTE and the other oversampling techniques.
n [74], high 𝑝𝑑 and low 𝑝𝑓 are recommended as the more stable
erformance measures for oversampling techniques. As mentioned in
egard to RQ1 and RQ2, COSTE achieves lower 𝑝𝑓 and higher 𝑝𝑑 values
han the other oversampling techniques. If COSTE can also obtain
igher AUC and 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 values, we can conclude that it is superior to
he other oversampling techniques.

Tables 11 and 12 show the AUC and 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 values, respectively,
f all five oversampling techniques on the four classifiers, together
ith the 𝑝-values. Table 11 shows that COSTE consistently outperforms
ll of the other oversampling techniques across all four classifiers in
erms of AUC. COSTE with the KNN classifier achieves the highest AUC
alue (0.704). Considering its simplicity, the KNN classifier performs
urprisingly well and holds its own as an accurate classifier. The
verage AUC value of COSTE is 0.690, which is much higher than
hose of SMOTE (0.672), Borderline (0.669), MWMOTE (0.672) and
AHAKIL (0.674). Similarly, COSTE also obtains higher 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 values

n all four classifiers than the other oversampling techniques, as shown
n Table 12. Besides COSTE, the overall performances of the other four
versampling techniques are roughly equal in terms of both AUC and
𝑎𝑙𝑎𝑛𝑐𝑒 values.

We perform the Wilcoxon rank sum test at the confidence level of
5% to analyze whether the overall performance of COSTE is signifi-
antly better than those of the compared methods on the four classifiers
ver all datasets. From the results, it is obvious that the AUC values
f COSTE are significantly higher than those of SMOTE, Borderline,
WMOTE and MAHAKIL on all classifiers. The only exception is that

here is no significant difference between the performance of COSTE
nd that of MAHAKIL on the RF classifier. Considering 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, there is
o significant difference between COSTE and MAHAKIL on the SVM
lassifier, and no significant difference between COSTE and SMOTE
nd Borderline on the MLP classifier. For the effect size, COSTE again
utperforms the other oversampling techniques, achieving small or
11
able 11
omparison among COSTE, SMOTE, Borderline, MWMOTE and MAHAKIL in terms of
UC.
AUC COSTE SMOTE Borderline MWMOTE MAHAKIL

SVM 0.692 0.675 0.669 0.675 0.679
𝑝-value < .05 < .05 < .05 < .05
Cliff’s 𝛿 0.183 0.225 0.183 0.095
KNN 0.704 0.672 0.668 0.669 0.672
𝑝-value < .05 < .05 < .05 < .05
Cliff’s 𝛿 0.301 0.308 0.297 0.274
RF 0.661 0.654 0.653 0.655 0.654
𝑝-value < .05 < .05 < .05 > .05
Cliff’s 𝛿 0.066 0.104 0.062 0.070
MLP 0.703 0.688 0.687 0.687 0.688
𝑝-value < .05 < .05 < .05 < .05
Cliff’s 𝛿 0.130 0.172 0.104 0.089
average 0.690 0.672 0.669 0.672 0.674
𝑝-value < .05 < .05 < .05 < .05
Cliff’s 𝛿 0.191 0.191 0.172 0.153

Table 12
Comparison among COSTE, SMOTE, Borderline, MWMOTE and MAHAKIL in terms of
𝑏𝑎𝑙𝑎𝑛𝑐𝑒.
𝑏𝑎𝑙𝑎𝑛𝑐𝑒 COSTE SMOTE Borderline MWMOTE MAHAKIL

SVM 0.666 0.647 0.641 0.643 0.652
𝑝-value < .05 < .05 < .05 > .05
Cliff’s 𝛿 0.180 0.233 0.202 0.089
KNN 0.679 0.652 0.644 0.642 0.641
𝑝-value < .05 < .05 < .05 < .05
Cliff’s 𝛿 0.229 0.323 0.312 0.285
RF 0.593 0.584 0.581 0.584 0.584
𝑝-value < .05 < .05 < .05 < .05
Cliff’s 𝛿 0.104 0.115 0.100 0.089
MLP 0.673 0.662 0.660 0.657 0.651
𝑝-value > .05 > .05 < .05 < .05
Cliff’s 𝛿 0.078 0.100 0.096 0.100
average 0.653 0.636 0.632 0.632 0.632
𝑝-value < .05 < .05 < .05 < .05
Cliff’s 𝛿 0.157 0.183 0.146 0.134

medium effect sizes in terms of average AUC and average 𝑏𝑎𝑙𝑎𝑛𝑐𝑒
values.

To show a more detailed comparison, we record the AUC values
of each single dataset on the four classifiers in Tables 13–16. W/D/L in
these tables represents Win/Draw/Loss, i.e., the number of the datasets
on which COSTE performs better than, the same as, or worse than
the other techniques in terms of AUC. These tables show that COSTE
achieves the best AUC values and outperforms the other oversampling
techniques on most datasets. The prediction models trained on the
datasets oversampled by COSTE consistently have positive win-loss
values. Specifically, COSTE wins on 18, 23 and 18 out of 23 datasets
against SMOTE, Borderline and MWMOTE, respectively, on the SVM
classifier. MAHAKIL performs well on that classifier, obtaining the
second most wins. For the KNN classifier, COSTE strongly outperforms
all of the other oversampling techniques on all datasets. On the RF and
MLP classifiers, a similar trend is seen. MWMOTE gains the second most
wins on the RF and MLP classifiers over the 23 datasets.

Fig. 7 shows the boxplot for AUC values of the 23 datasets over-
sampled by COSTE, SMOTE, Borderline, MWMOTE and MAHAKIL on
the four classifiers. For the SVM classifier, COSTE achieves the highest
median AUC value, SMOTE achieves the highest maximum and highest
minimum AUC values. Moreover, COSTE gains the highest maximum,
median and minimum AUC values on the KNN and RF classifiers. On
the MLP classifier, COSTE obtains the highest maximum AUC value
while Borderline obtains the highest median AUC value.

These experimental results show that COSTE achieves the best over-
all performance among the five oversampling techniques. Therefore,
we can answer RQ3 by concluding that compared with the other
oversampling techniques, COSTE performs better and obtains a more
competitive prediction performance.



Information and Software Technology 129 (2021) 106432S. Feng et al.

T
A

Fig. 7. Boxplot for AUC on 23 datasets oversampled by the five oversampling techniques on the four classifiers.
able 13
UC values on 23 datasets using the SVM classifier.
Dataset COSTE SMOTE Borderline MWMOTE MAHAKIL

ant-1.3 0.758 0.749 0.740 0.734 0.781
ant-1.4 0.561 0.559 0.556 0.557 0.546
ant-1.5 0.728 0.688 0.680 0.698 0.700
ant-1.6 0.762 0.763 0.752 0.762 0.751
ant-1.7 0.722 0.715 0.701 0.719 0.726
camel-1.0 0.716 0.677 0.690 0.661 0.595
camel-1.2 0.543 0.536 0.521 0.525 0.533
camel-1.4 0.663 0.648 0.644 0.656 0.667
camel-1.6 0.599 0.588 0.586 0.593 0.590
ivy-1.4 0.662 0.627 0.588 0.617 0.642
ivy-2.0 0.738 0.711 0.718 0.733 0.715
jedit-3.2 0.766 0.734 0.715 0.751 0.752
jedit-4.0 0.694 0.697 0.692 0.695 0.693
jedit-4.1 0.746 0.689 0.676 0.679 0.705
jedit-4.2 0.743 0.721 0.734 0.724 0.759
log4j-1.0 0.744 0.720 0.732 0.719 0.742
log4j-1.1 0.781 0.786 0.779 0.781 0.780
poi-2.0 0.680 0.669 0.677 0.673 0.671
synapse-1.2 0.661 0.656 0.626 0.656 0.663
velocity-1.6 0.648 0.650 0.643 0.648 0.654
xalan-2.4 0.703 0.685 0.682 0.692 0.693
xerces-1.2 0.543 0.502 0.514 0.502 0.502
xerces-1.3 0.758 0.758 0.753 0.758 0.758

average 0.692 0.675 0.669 0.675 0.679

W/D/L 18/1/4 23/0/0 18/4/1 16/1/6

7. Discussion

7.1. Why COSTE performs the best

Essential to a superior oversampling technique is the ability to
generate new instances that provide as much useful information as
possible for prediction models to learn, while ensuring that as few
newly generated instances as possible are wrongly introduced into
the majority class. All SMOTE-based oversampling techniques share a
similar strategy for generating synthetic instances, i.e., using the KNN
algorithm to select the nearest neighbor instances for oversampling.
This ensures that the generated instances correctly fall into the region
12
Table 14
AUC values on 23 datasets using the KNN classifier.

Dataset COSTE SMOTE Borderline MWMOTE MAHAKIL

ant-1.3 0.712 0.658 0.686 0.661 0.702
ant-1.4 0.650 0.577 0.559 0.559 0.591
ant-1.5 0.755 0.727 0.692 0.725 0.728
ant-1.6 0.738 0.718 0.730 0.715 0.684
ant-1.7 0.745 0.722 0.720 0.727 0.736
camel-1.0 0.582 0.569 0.512 0.521 0.510
camel-1.2 0.570 0.552 0.553 0.530 0.549
camel-1.4 0.645 0.591 0.601 0.624 0.605
camel-1.6 0.670 0.633 0.635 0.633 0.622
ivy-1.4 0.528 0.522 0.520 0.502 0.509
ivy-2.0 0.726 0.669 0.689 0.682 0.707
jedit-3.2 0.762 0.741 0.759 0.733 0.743
jedit-4.0 0.763 0.750 0.748 0.749 0.736
jedit-4.1 0.767 0.716 0.719 0.738 0.732
jedit-4.2 0.747 0.702 0.701 0.716 0.724
log4j-1.0 0.784 0.723 0.731 0.734 0.716
log4j-1.1 0.819 0.781 0.755 0.786 0.771
poi-2.0 0.684 0.624 0.638 0.653 0.665
synapse-1.2 0.727 0.713 0.705 0.697 0.702
velocity-1.6 0.687 0.675 0.666 0.671 0.663
xalan-2.4 0.691 0.680 0.663 0.665 0.671
xerces-1.2 0.677 0.653 0.641 0.628 0.640
xerces-1.3 0.770 0.753 0.744 0.741 0.759

average 0.704 0.672 0.668 0.669 0.672

W/D/L 23/0/0 23/0/0 23/0/0 23/0/0

of the minority class as far as possible. However, selecting instances
that are close in distance risks the problem of generating instances
that lack diversity, which leads to overgeneralization and the increase
of 𝑝𝑓 values. In addition, if there are sub-clusters in the minority
class instances, SMOTE-based oversampling techniques will only gen-
erate synthetic instances within each sub-cluster. This will worsen the
overgeneralization of prediction models.

MAHAKIL uses a different strategy to select the instances that are
used to generate synthetic instances, aiming at generating more diverse
synthetic instances. By selecting pairs of dissimilar instances that are
further in distance to ensure the diversity of the synthetic instances, it
produces lower 𝑝𝑓 values than SMOTE-based oversampling techniques.



Information and Software Technology 129 (2021) 106432S. Feng et al.

c
p
o
o
b
f
o

7

p
c
e
a
f
5
o
t
m

Table 15
AUC values on 23 datasets using the RF classifier.

Dataset COSTE SMOTE Borderline MWMOTE MAHAKIL

ant-1.3 0.655 0.617 0.640 0.600 0.598
ant-1.4 0.606 0.600 0.594 0.596 0.614
ant-1.5 0.639 0.635 0.646 0.642 0.641
ant-1.6 0.733 0.737 0.731 0.735 0.747
ant-1.7 0.716 0.711 0.701 0.712 0.726
camel-1.0 0.496 0.517 0.515 0.520 0.499
camel-1.2 0.585 0.581 0.578 0.581 0.581
camel-1.4 0.611 0.613 0.609 0.599 0.596
camel-1.6 0.594 0.585 0.591 0.591 0.598
ivy-1.4 0.519 0.507 0.512 0.520 0.511
ivy-2.0 0.644 0.644 0.634 0.648 0.635
jedit-3.2 0.737 0.736 0.737 0.735 0.730
jedit-4.0 0.712 0.695 0.694 0.700 0.699
jedit-4.1 0.746 0.725 0.728 0.735 0.720
jedit-4.2 0.693 0.701 0.698 0.696 0.689
log4j-1.0 0.701 0.661 0.675 0.707 0.692
log4j-1.1 0.763 0.737 0.741 0.749 0.730
poi-2.0 0.636 0.627 0.621 0.625 0.630
synapse-1.2 0.722 0.720 0.715 0.723 0.713
velocity-1.6 0.680 0.702 0.689 0.685 0.678
xalan-2.4 0.642 0.633 0.634 0.635 0.641
xerces-1.2 0.655 0.661 0.652 0.652 0.664
xerces-1.3 0.706 0.706 0.683 0.688 0.720

average 0.661 0.654 0.653 0.655 0.654

W/D/L 15/2/6 18/1/4 14/0/9 15/0/8

Table 16
AUC values on 23 datasets using the MLP classifier.

Dataset COSTE SMOTE Borderline MWMOTE MAHAKIL

ant-1.3 0.743 0.681 0.710 0.670 0.703
ant-1.4 0.635 0.602 0.609 0.611 0.641
ant-1.5 0.673 0.659 0.678 0.652 0.667
ant-1.6 0.766 0.764 0.762 0.768 0.761
ant-1.7 0.763 0.749 0.731 0.743 0.749
camel-1.0 0.684 0.618 0.585 0.616 0.599
camel-1.2 0.602 0.600 0.596 0.607 0.604
camel-1.4 0.662 0.661 0.665 0.671 0.654
camel-1.6 0.652 0.652 0.651 0.657 0.623
ivy-1.4 0.570 0.518 0.526 0.522 0.505
ivy-2.0 0.728 0.729 0.733 0.718 0.706
jedit-3.2 0.779 0.765 0.768 0.772 0.772
jedit-4.0 0.744 0.725 0.714 0.713 0.747
jedit-4.1 0.772 0.760 0.755 0.744 0.752
jedit-4.2 0.746 0.737 0.732 0.734 0.727
log4j-1.0 0.748 0.729 0.731 0.714 0.738
log4j-1.1 0.771 0.770 0.765 0.764 0.772
poi-2.0 0.645 0.633 0.656 0.640 0.653
synapse-1.2 0.736 0.721 0.721 0.719 0.731
velocity-1.6 0.696 0.700 0.704 0.713 0.696
xalan-2.4 0.698 0.700 0.694 0.704 0.696
xerces-1.2 0.604 0.606 0.597 0.622 0.577
xerces-1.3 0.743 0.751 0.722 0.756 0.758

average 0.703 0.688 0.687 0.687 0.688

W/D/L 17/1/5 18/0/5 15/0/8 16/1/6

However, the use of such distantly separated instances may accidentally
widen the minority class boundary, so that the synthetic instances may
wrongly fall outside the region of the minority class. This degrades the
ability of prediction models to find defects and results in low 𝑝𝑑 values.

COSTE leverages the complexity of instances to aid in selecting
those that are used to generate synthetic instances. This avoids the
issues mentioned above. First, COSTE can avoid selecting instances that
are too close together because instances with similar complexity do not
have to be close in distance. In addition, using adjacent instances to
generate synthetic instances, COSTE can explore more possible combi-
nations of instances and avoid all of the generated synthetic instances
falling into a certain sub-cluster, like in SMOTE. Therefore, COSTE
generates more diverse synthetic instances than SMOTE-based over-
13

sampling techniques. Second, to generate synthetic instances, COSTE m
Table 17
Comparison between COSTE and D-COSTE.

Classifier Technique AUC 𝑁𝑜𝑟𝑚(𝑃𝑜𝑝𝑡) 𝐴𝐶𝐶

SVM
COSTE 0.692 0.641 0.377
D-COSTE 0.689 0.636 0.373
𝑝-value > .05 > .05 > .05

KNN
COSTE 0.704 0.663 0.411
D-COSTE 0.703 0.657 0.406
𝑝-value > .05 > .05 > .05

RF
COSTE 0.661 0.612 0.347
D-COSTE 0.654 0.609 0.331
𝑝-value > .05 > .05 < .05

MLP
COSTE 0.703 0.633 0.385
D-COSTE 0.700 0.630 0.377
𝑝-value > .05 > .05 < .05

selects pairs of related instances rather than dissimilar instances like
MAHAKIL, so that no synthetic instance falls outside the region of the
minority class, thus protecting the ability of the prediction models to
find defects.

In addition, SMOTE-based oversampling techniques and MAHAKIL
consider all metrics of instances as equal in weight, which is not real-
istic, as different metrics make different contributions to the likelihood
of discovering a defect. COSTE uses DE to optimize the weight for each
metric. Varying the weight of different metrics forces the prediction
models to pay more attention to metrics of higher weight and therefore
learn more useful information, which enhances their performance.

7.2. Do instances ranked in the descending or ascending order really affect
the performance of coste?

In COSTE, we rank instances in the ascending order based on
complexity for two reasons: (1) the defective instances of lower com-
plexity provide the prediction models with more information than those
of higher complexity and (2) the less complex instances should be
inspected first to minimize the testing effort. In COSTE, the higher-
ranked instances will be used more often to generate synthetic instances
than the instances ranked below them. To prove that ranking instances
in the ascending order rather than the descending order does affect
the performance of the prediction models, we rerun COSTE under the
setting that ranks instances in the descending order, referred to as
D-COSTE. Table 17 presents the comparison between COSTE and D-
COSTE. We can see that the performance of COSTE is consistently better
than that of D-COSTE in terms of AUC, 𝑁𝑜𝑟𝑚(𝑃𝑜𝑝𝑡) and 𝐴𝐶𝐶 on all four
lassifiers. On the SVM and KNN classifiers, the difference between the
erformance of COSTE and that of D-COSTE is not significant. However,
n the RF classifier, COSTE significantly outperforms D-COSTE in terms
f 𝐴𝐶𝐶. On the MLP classifier, the 𝐴𝐶𝐶 value of COSTE is significantly
etter than that of D-COSTE. To summarize, COSTE consistently outper-
orms D-COSTE, which agrees with our assumption as well as justifies
ur choice to rank instances in the ascending order in COSTE.

.3. The contribution of different metrics to the complexity of instances

In this section, we discuss the optimal weight of each metric ex-
lored by DE. We believe that these optimal weights can reflect the
ontribution of different metrics to the complexity of instances to some
xtent. As mentioned in Section 5.7, we adopt 5-fold cross-validation
nd iterate 10 times for each dataset. Therefore, we will get 50 results
or each dataset. We select the best performance of COSTE from the
0 results in terms of AUC. We do this because when the performance
f COSTE achieves the best, the optimal weight could better reflect
he actual weight of metrics. To investigate which metric contributes
ore to the complexity of instances, we rank all the metrics by the
agnitude of the absolute values of the optimal weights. Because of



Information and Software Technology 129 (2021) 106432S. Feng et al.

2
a
s
o
m
m
c
s
t
e
e
I
a
p
w
s
o

o
t
o
b
t
s
e
a
t
s
n
t
T
n
n
w

s
(
p
f
m
m
i

9

i

Table 18
The five most influential metrics for the datasets achieving the highest AUC values on
the SVM classifier.

Metric 1 Metric 2 Metric 3 Metric 4 Metric 5

ant-1.6 CAM IC DIT NOC MFA
+ + + − −

jedit-3.2 CBM CA WMC NPM LOC
− − − + +

jedit-4.1 NPM AVG(CC) AMC CBO LCOM3
+ − + − −

log4j-1.1 CBM LCOM LCOM3 CAM MAX(CC)
+ + − + −

+ indicates positively correlated metrics.
− indicates negatively correlated metrics.

Table 19
The five most influential metrics for the datasets achieving the highest AUC values on
the KNN classifier.

Metric 1 Metric 2 Metric 3 Metric 4 Metric 5

ant-1.6 NOC MFA NPM AVG(CC) WMC
+ − − + −

jedit-3.2 CBM MFA DIT LCOM DAM
+ − − − −

jedit-4.1 MOA IC CE RFC AVG(CC)
+ − − + +

log4j-1.1 MAX(CC) WMC LCOM CAM CBO
− − + − +

+ indicates positively correlated metrics.
− indicates negatively correlated metrics.

Table 20
The five most influential metrics for the datasets achieving the highest AUC values on
the RF classifier.

Metric 1 Metric 2 Metric 3 Metric 4 Metric 5

ant-1.6 CA NOC LCOM DIT DAM
+ − − + −

jedit-3.2 NPM RFC DIT LOC AMC
− − + − −

jedit-4.1 IC CE WMC AMC LCOM
+ + − − −

log4j-1.1 NOC NPM MFA CE LOC
+ − − − +

+ indicates positively correlated metrics.
− indicates negatively correlated metrics.

the limited space, we only present the correlation of the five most
influential metrics with the complexity of instances, and part of the
studied datasets, on which COSTE achieves the highest AUC values
among all the studied datasets.

From Tables 18 to 21, we can see that the metrics of DIT, LCOM,
CE and CAM are the most influential metrics to the complexity of an
instance based on the number of occurrences of each metric. However,
for each single dataset on each classifier, the most influential metrics
vary a lot. For example, the five most influential metrics for ant-
1.6 on the SVM classifier is CAM, IC, DIT, NOC and MFA, which is
totally different from that of jedit-3.2 on the SVM classifier. Therefore,
we conclude that the distributions of different datasets in SDP vary
significantly and the future oversampling techniques should pay more
attention to the differences among different metrics to improve.

8. Threats to validity

This section discusses the threats to the external, internal, and
construct validity of our experimental study.
14

n

Table 21
The five most influential metrics for the datasets achieving the highest AUC values on
the MLP classifier.

Metric 1 Metric 2 Metric 3 Metric 4 Metric 5

ant-1.6 LOC CE LCOM3 NOC LCOM
+ + − − +

jedit-3.2 CE CAM AMC RFC AVG(CC)
+ − − − +

jedit-4.1 CA CAM LCOM3 DIT RFC
− + + + +

log4j-1.1 RFC CAM DIT CE LCOM3
− − − − −

+ indicates positively correlated metrics.
− indicates negatively correlated metrics.

External Validity. In our study, the experiments were performed on
3 datasets. These datasets were selected from the PROMISE repository
nd have been used in several previous studies [12,65,75]. Here, only
tatic code metrics were used in our experiments. We cannot claim that
ur results are generalizable to other types of metrics such as process
etrics. The lack of generalizability to other datasets or other types of
etrics threatens the external validity of our results. However, static

ode metrics were widely adopted and have performed well in previous
tudies [76–78], and datasets measured by static code metrics are easy
o collect. Moreover, a detailed description of our technique and the
xperiments are provided. Therefore, it would be easy to replicate our
xperiments using any available dataset with different types of metrics.
n addition, only four classifiers were adopted in our experiments
nd the parameters were set to the defaults. The performance of our
roposed technique on other classifiers or with different parameters
as not validated here. Four common oversampling techniques were

elected for comparison. We intend to extend our comparison to more
versampling techniques and more classifiers in the future.
Internal Validity. COSTE depends on DE to find the optimal weight

f each metric. DE has several advantages such as few parameter set-
ings, high performance, and applicability to high-dimensional complex
ptimization problems. However, the unstable convergence is a draw-
ack of DE. In addition, the parameters in SMOTE-based oversampling
echniques are randomly generated, which could also have introduced
ome bias into our results. To minimize such bias, we iterated the
xperiments 10 times to reduce the randomness and instability. In
ddition, the original MAHAKIL adopts multicollinearity techniques
o eliminate some metrics when the number of defective instances is
maller than the dimensionality of the minority class instances. This is
ecessary because the Mahalanobis distance cannot be computed when
he number of minority class instances is less than the dimensionality.
o ensure an objective comparison between the oversampling tech-
iques, we only selected datasets whose defective instances were more
umerous than their dimensionality. With these datasets, MAHAKIL can
ork properly without applying multicollinearity techniques.
Construct Validity. One threshold-independent performance mea-

ure (AUC) and five threshold-dependent performance measures
𝑏𝑎𝑙𝑎𝑛𝑐𝑒, 𝑝𝑑, 𝑝𝑓 , 𝑁𝑜𝑟𝑚(𝑃𝑜𝑝𝑡) and 𝐴𝐶𝐶) were used to evaluate the
erformance of these oversampling techniques. These six selected per-
ormance measures are common in SDP. However, if other performance
easures are adopted, different results may be obtained. To reach a
ore general conclusion, we plan to adopt more performance measures

n our future work.

. Conclusion and future work

In SDP, defect-containing datasets are normally imbalanced, which
s referred to as the class imbalance problem. Oversampling tech-

iques are the common choice to alleviate the problem. However,



Information and Software Technology 129 (2021) 106432S. Feng et al.

d
f
t
n
v
C
t
a
C
a
t
c
w
M
t
i

f
a
2
c
i

existing oversampling techniques generate either near-duplicated in-
stances, which result in overgeneralization and high 𝑝𝑓 , or overly
iverse instances, which hurt the ability of the prediction models to
ind defects and result in low 𝑝𝑑. In addition, existing oversampling
echniques do not take into consideration the fact that the effort
eeded for inspecting different instances varies considerably. To alle-
iate these issues, we propose a novel oversampling technique named
omplexity-based Oversampling TEchnique (COSTE). COSTE leverages
he complexity of instances, instead of the distance between them, to
id in selecting those that are used to generate synthetic instances.
OSTE can avoid selecting instances that are too close in distance
nd instead generate more diverse instances by selecting the those
hat are similar in complexity. Additionally, by selecting instances
lose in complexity, it avoids selecting those that are too dissimilar,
hich would hurt the ability of the prediction models to find defects.
oreover, COSTE forces the prediction models to pay more attention

o the less complex instances by prioritizing these during synthetic
nstance generation.

We empirically evaluate the effect of COSTE by comparison with
our oversampling techniques (SMOTE, Borderline-SMOTE, MWMOTE
nd MAHAKIL) using four classifiers (SVM, KNN, RF and MLP) on
3 imbalanced datasets. The experimental results show that COSTE
onsistently performs significantly better than the other four techniques
n terms of all performance measures (AUC, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, 𝑝𝑑, 𝑝𝑓 , 𝑁𝑜𝑟𝑚(𝑃𝑜𝑝𝑡)

and 𝐴𝐶𝐶) at the confidence level of 95%. Specifically, COSTE sig-
nificantly outperforms SMOTE-based oversampling techniques and is
comparable to MAHAKIL in terms of 𝑝𝑓 . COSTE decreases 𝑝𝑓 by 16.9%
compared to SMOTE-based oversampling techniques. COSTE also out-
performs both SMOTE based oversampling techniques and MAHAKIL
in terms of 𝑝𝑑. COSTE increases 𝑝𝑑 by 6.7% compared to MAHAKIL.
The performance of COSTE is also significantly better than those of
SMOTE-based oversampling techniques and MAHAKIL when measured
using overall metrics. COSTE increases AUC and 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 by 3.1%
and 3.3%. Considering the effort needed to inspect instances, COSTE
increases 𝑁𝑜𝑟𝑚(𝑃𝑜𝑝𝑡) and 𝐴𝐶𝐶 by 3.4% and 7.3% respectively. Due to
the superior performance of COSTE, we recommend it as an efficient
alternative to address the class imbalance problem in SDP.

In our future work, we intend to generalize COSTE to more software
datasets with various types of metrics, more classifiers and more per-
formance measures to validate the technique’s generalizability. Besides,
we also plan to develop a framework based on the complexity of
instances to improve the overall performance of effort-aware defect
prediction models. Moreover, considering that COSTE uses DE to op-
timize the weights of the metrics of instances, which increases the
execution time, we plan to adopt various techniques such as parallel
techniques [6] to expedite the execution of COSTE. By leveraging the
information provided by the complexity of instances, we plan to further
extend our work to semi-supervised or unsupervised learning research
similar to the work of Huda et al. [79].

CRediT authorship contribution statement

Shuo Feng: Conceptualization, Methodology, Experiment, Writing.
Jacky Keung: Supervision. Xiao Yu: Conceptualization, Writing - re-
view & editing. Yan Xiao: Writing - review & editing. Kwabena Ebo
Bennin: Writing - review & editing. Md Alamgir Kabir: Writing -
review & editing. Miao Zhang: Writing - review & editing.

Declaration of competing interest

No author associated with this paper has disclosed any potential or
pertinent conflicts which may be perceived to have impending conflict
with this work. For full disclosure statements refer to https://doi.org/
10.1016/j.infsof.2020.106432.
15
Acknowledgments

This work is supported in part by the General Research Fund of
the Research Grants Council of Hong Kong (No. 11208017) and the
research funds of City University of Hong Kong (7005028, 7005217),
and the Research Support Fund by Intel, China (9220097), and funding
supports from other industry partners (9678149, 9440227, 9440180
and 9220103).

References

[1] F.J. Buckley, R. Poston, Software quality assurance, IEEE Trans. Softw. Eng.
SE-10 (1) (1984) 36–41, http://dx.doi.org/10.1109/TSE.1984.5010196.

[2] F. Zhang, A.E. Hassan, S. McIntosh, Y. Zou, The use of summation to aggregate
software metrics hinders the performance of defect prediction models, IEEE
Trans. Softw. Eng. 43 (5) (2016) 476–491.

[3] N. Limsettho, K.E. Bennin, J.W. Keung, H. Hata, K. Matsumoto, Cross project
defect prediction using class distribution estimation and oversampling, Inf. Softw.
Technol. 100 (2018) 87–102.

[4] Z. Wan, X. Xia, A.E. Hassan, D. Lo, J. Yin, X. Yang, Perceptions, expectations,
and challenges in defect prediction, IEEE Trans. Softw. Eng. (2018).

[5] Z. Li, X.-Y. Jing, F. Wu, X. Zhu, B. Xu, S. Ying, Cost-sensitive transfer kernel
canonical correlation analysis for heterogeneous defect prediction, Autom. Softw.
Eng. 25 (2) (2018) 201–245.

[6] M.M. Ali, S. Huda, J. Abawajy, S. Alyahya, H. Al-Dossari, J. Yearwood, A
parallel framework for software defect detection and metric selection on cloud
computing, Cluster Comput. 20 (3) (2017) 2267–2281.

[7] N. Nagappan, T. Ball, A. Zeller, Mining metrics to predict component failures,
in: Proceedings of the 28th International Conference on Software Engineering,
ACM, 2006, pp. 452–461.

[8] T.J. Ostrand, E.J. Weyuker, R.M. Bell, Predicting the location and number of
faults in large software systems, IEEE Trans. Softw. Eng. 31 (4) (2005) 340–355.

[9] P. Tomaszewski, H. Grahn, L. Lundberg, A method for an accurate early
prediction of faults in modified classes, in: 2006 22nd IEEE International
Conference on Software Maintenance, IEEE, 2006, pp. 487–496.

[10] Y. Ma, G. Luo, X. Zeng, A. Chen, Transfer learning for cross-company software
defect prediction, Inf. Softw. Technol. 54 (3) (2012) 248–256.

[11] A. Okutan, O.T. Yıldız, Software defect prediction using Bayesian networks,
Empir. Softw. Eng. 19 (1) (2014) 154–181.

[12] K.E. Bennin, J. Keung, P. Phannachitta, A. Monden, S. Mensah, MAHAKIL:
Diversity based oversampling approach to alleviate the class imbalance issue
in software defect prediction, IEEE Trans. Softw. Eng. 44 (6) (2018) 534–550,
http://dx.doi.org/10.1109/TSE.2017.2731766.

[13] B. Krawczyk, Learning from imbalanced data: open challenges and future
directions, Prog. Artif. Intell. 5 (4) (2016) 221–232.

[14] G.M. Weiss, F. Provost, The effect of class distribution on classifier learning: an
empirical study, 2001.

[15] K. Yoon, S. Kwek, A data reduction approach for resolving the imbalanced data
issue in functional genomics, Neural Comput. Appl. 16 (3) (2007) 295–306.

[16] K.E. Bennin, J.W. Keung, A. Monden, On the relative value of data resampling
approaches for software defect prediction, Empir. Softw. Eng. 24 (2) (2019)
602–636, http://dx.doi.org/10.1007/s10664-018-9633-6.

[17] K.E. Bennin, J. Keung, A. Monden, Impact of the distribution parameter of
data sampling approaches on software defect prediction models, in: 2017 24th
Asia-Pacific Software Engineering Conference (APSEC), IEEE, 2017, pp. 630–635.

[18] L. Chen, B. Fang, Z. Shang, Y. Tang, Tackling class overlap and imbalance
problems in software defect prediction, Softw. Qual. J. 26 (1) (2018) 97–125.

[19] X. Zhang, Q. Song, G. Wang, K. Zhang, L. He, X. Jia, A dissimilarity-based
imbalance data classification algorithm, Appl. Intell. 42 (3) (2015) 544–565.

[20] L. Zhou, Performance of corporate bankruptcy prediction models on imbalanced
dataset: The effect of sampling methods, Knowl.-Based Syst. 41 (2013) 16–25.

[21] N. Japkowicz, S. Stephen, The class imbalance problem: A systematic study,
Intell. Data Anal. 6 (5) (2002) 429–449.

[22] N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, SMOTE: synthetic
minority over-sampling technique, J. Artificial Intelligence Res. 16 (2002)
321–357.

[23] H. Han, W.-Y. Wang, B.-H. Mao, Borderline-SMOTE: a new over-sampling method
in imbalanced data sets learning, in: International Conference on Intelligent
Computing, Springer, 2005, pp. 878–887.

[24] H. He, Y. Bai, E.A. Garcia, S. Li, ADASYN: Adaptive synthetic sampling approach
for imbalanced learning, in: 2008 IEEE International Joint Conference on Neural
Networks (IEEE World Congress on Computational Intelligence), IEEE, 2008, pp.
1322–1328.

[25] D.M.J. Tax, One-class classification: Concept learning in the absence of
counter-examples, 2002.

[26] R. De Maesschalck, D. Jouan-Rimbaud, D.L. Massart, The mahalanobis distance,
Chemometr. Intell. Lab. Syst. 50 (1) (2000) 1–18.

https://doi.org/10.1016/j.infsof.2020.106432
https://doi.org/10.1016/j.infsof.2020.106432
https://doi.org/10.1016/j.infsof.2020.106432
http://dx.doi.org/10.1109/TSE.1984.5010196
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb2
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb2
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb2
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb2
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb2
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb3
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb3
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb3
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb3
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb3
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb4
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb4
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb4
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb5
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb5
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb5
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb5
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb5
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb6
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb6
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb6
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb6
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb6
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb7
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb7
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb7
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb7
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb7
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb8
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb8
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb8
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb9
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb9
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb9
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb9
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb9
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb10
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb10
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb10
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb11
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb11
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb11
http://dx.doi.org/10.1109/TSE.2017.2731766
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb13
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb13
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb13
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb14
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb14
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb14
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb15
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb15
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb15
http://dx.doi.org/10.1007/s10664-018-9633-6
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb17
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb17
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb17
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb17
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb17
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb18
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb18
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb18
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb19
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb19
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb19
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb20
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb20
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb20
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb21
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb21
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb21
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb22
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb22
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb22
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb22
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb22
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb23
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb23
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb23
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb23
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb23
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb24
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb24
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb24
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb24
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb24
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb24
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb24
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb25
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb25
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb25
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb26
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb26
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb26


Information and Software Technology 129 (2021) 106432S. Feng et al.
[27] G.Y. Wong, F.H. Leung, S.-H. Ling, A novel evolutionary preprocessing method
based on over-sampling and under-sampling for imbalanced datasets, in: Iecon
2013-39th Annual Conference of the Ieee Industrial Electronics Society, IEEE,
2013, pp. 2354–2359.

[28] B. Turhan, T. Menzies, A.B. Bener, J. Di Stefano, On the relative value of cross-
company and within-company data for defect prediction, Empir. Softw. Eng. 14
(5) (2009) 540–578.

[29] K.E. Bennin, J. Keung, A. Monden, P. Phannachitta, S. Mensah, The significant
effects of data sampling approaches on software defect prioritization and clas-
sification, in: 2017 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), IEEE, 2017, pp. 364–373.

[30] A. Agrawal, T. Menzies, Is ‘‘better data’’ better than ‘‘better data miners’’?, in:
2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE),
IEEE, 2018, pp. 1050–1061.

[31] Y. Kamei, E. Shihab, B. Adams, A.E. Hassan, A. Mockus, A. Sinha, N. Ubayashi,
A large-scale empirical study of just-in-time quality assurance, IEEE Trans. Softw.
Eng. 39 (6) (2012) 757–773.

[32] T. Mende, R. Koschke, Effort-aware defect prediction models, in: 2010 14th
European Conference on Software Maintenance and Reengineering, IEEE, 2010,
pp. 107–116.

[33] Y. Yang, Y. Zhou, J. Liu, Y. Zhao, H. Lu, L. Xu, B. Xu, H. Leung, Effort-aware
just-in-time defect prediction: simple unsupervised models could be better than
supervised models, in: Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2016, pp. 157–168.

[34] F. Zhang, Q. Zheng, Y. Zou, A.E. Hassan, Cross-project defect prediction
using a connectivity-based unsupervised classifier, in: Proceedings of the 38th
International Conference on Software Engineering, ACM, 2016, pp. 309–320.

[35] J. Nam, S. Kim, CLAMI: Defect prediction on unlabeled datasets (T), in: 2015
30th IEEE/ACM International Conference on Automated Software Engineering
(ASE), 2015, pp. 452–463, http://dx.doi.org/10.1109/ASE.2015.56.

[36] T. Menzies, J. Greenwald, A. Frank, Data mining static code attributes to learn
defect predictors, IEEE Trans. Softw. Eng. 33 (1) (2006) 2–13.

[37] J.S. Shirabad, T.J. Menzies, The PROMISE Repository of Software Engineering
Databases, vol. 24, School of Information Technology and Engineering, University
of Ottawa, Canada, 2005.

[38] P.P. Biswas, P.N. Suganthan, R. Mallipeddi, G.A. Amaratunga, Optimal power
flow solutions using differential evolution algorithm integrated with effective
constraint handling techniques, Eng. Appl. Artif. Intell. 68 (2018) 81–100.

[39] F. Zhang, C. Deb, S.E. Lee, J. Yang, K.W. Shah, Time series forecasting for
building energy consumption using weighted support vector regression with
differential evolution optimization technique, Energy Build. 126 (2016) 94–103.

[40] A. Onan, S. Korukoğlu, H. Bulut, A multiobjective weighted voting ensemble clas-
sifier based on differential evolution algorithm for text sentiment classification,
Expert Syst. Appl. 62 (2016) 1–16.

[41] Y. Zhang, J.-x. Li, J. Zhao, S.-z. Wang, Y. Pan, K. Tanaka, S. Kadota, Synthesis
and activity of oleanolic acid derivatives, a novel class of inhibitors of osteoclast
formation, Bioorganic Med. Chem. Lett. 15 (6) (2005) 1629–1632.

[42] M.D. Saçar, J. Allmer, Data mining for microrna gene prediction: on the impact
of class imbalance and feature number for microrna gene prediction, in: 2013
8th International Symposium on Health Informatics and Bioinformatics, IEEE,
2013, pp. 1–6.

[43] F. Provost, Machine learning from imbalanced data sets 101, in: Proceedings of
the AAAI’2000 Workshop on Imbalanced Data Sets, vol. 68, AAAI Press, 2000,
pp. 1–3.

[44] Z. Sun, Q. Song, X. Zhu, Using coding-based ensemble learning to improve
software defect prediction, IEEE Trans. Syst. Man Cybern. B 42 (6) (2012)
1806–1817, http://dx.doi.org/10.1109/TSMCC.2012.2226152.

[45] I.H. Laradji, M. Alshayeb, L. Ghouti, Software defect prediction using ensemble
learning on selected features, Inf. Softw. Technol. 58 (2015) 388–402, http:
//dx.doi.org/10.1016/j.infsof.2014.07.005, URL http://www.sciencedirect.com/
science/article/pii/S0950584914001591.

[46] X. Xia, D. Lo, E. Shihab, X. Wang, X. Yang, ELBlocker: Predicting blocking bugs
with ensemble imbalance learning, Inf. Softw. Technol. 61 (2015) 93–106, http:
//dx.doi.org/10.1016/j.infsof.2014.12.006, URL http://www.sciencedirect.com/
science/article/pii/S0950584914002602.

[47] H. Wang, T.M. Khoshgoftaar, A. Napolitano, A comparative study of ensemble
feature selection techniques for software defect prediction, in: 2010 Ninth
International Conference on Machine Learning and Applications, 2010, pp.
135–140, http://dx.doi.org/10.1109/ICMLA.2010.27.

[48] M. Liu, L. Miao, D. Zhang, Two-stage cost-sensitive learning for software defect
prediction, IEEE Trans. Reliab. 63 (2) (2014) 676–686, http://dx.doi.org/10.
1109/TR.2014.2316951.

[49] X.-Y. Jing, S. Ying, Z.-W. Zhang, S.-S. Wu, J. Liu, Dictionary learning based
software defect prediction, in: Proceedings of the 36th International Conference
on Software Engineering, ICSE 2014, ACM, New York, NY, USA, 2014, pp. 414–
423, http://dx.doi.org/10.1145/2568225.2568320, URL http://doi.acm.org/10.
1145/2568225.2568320.

[50] X. Yu, M. Wu, Y. Jian, K.E. Bennin, M. Fu, C. Ma, Cross-company defect
prediction via semi-supervised clustering-based data filtering and MSTrA-based
transfer learning, Soft Comput. 22 (10) (2018) 3461–3472, http://dx.doi.org/10.
1007/s00500-018-3093-1.
16
[51] D. Tomar, S. Agarwal, Prediction of defective software modules using class
imbalance learning, Appl. Comp. Intell. Soft Comput. 2016 (2016) 6:6, http:
//dx.doi.org/10.1155/2016/7658207.

[52] C. Drummond, R.C. Holte, et al., C4. 5, class imbalance, and cost sensitivity: why
under-sampling beats over-sampling, in: Workshop on Learning from Imbalanced
Datasets II, vol. 11, Citeseer, 2003, pp. 1–8.

[53] X. Guo, Y. Yin, C. Dong, G. Yang, G. Zhou, On the class imbalance problem,
in: 2008 Fourth International Conference on Natural Computation, Vol. 4, IEEE,
2008, pp. 192–201.

[54] S. Barua, M.M. Islam, X. Yao, K. Murase, MWMOTE–majority weighted minority
oversampling technique for imbalanced data set learning, IEEE Trans. Knowl.
Data Eng. 26 (2) (2012) 405–425.

[55] S. Huda, K. Liu, M. Abdelrazek, A. Ibrahim, S. Alyahya, H. Al-Dossari, S. Ahmad,
An ensemble oversampling model for class imbalance problem in software defect
prediction, IEEE Access 6 (2018) 24184–24195.

[56] C.-T. Lin, T.-Y. Hsieh, Y.-T. Liu, Y.-Y. Lin, C.-N. Fang, Y.-K. Wang, G. Yen, N.R.
Pal, C.-H. Chuang, Minority oversampling in kernel adaptive subspaces for class
imbalanced datasets, IEEE Trans. Knowl. Data Eng. 30 (5) (2017) 950–962.

[57] R. Storn, K. Price, Differential evolution–a simple and efficient heuristic for
global optimization over continuous spaces, J. Global Optim. 11 (4) (1997)
341–359.

[58] L. Gong, S. Jiang, R. Wang, L. Jiang, Empirical evaluation of the impact of class
overlap on software defect prediction, in: 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE), IEEE, 2019, pp. 698–709.

[59] T. Zhou, X. Sun, X. Xia, B. Li, X. Chen, Improving defect prediction with deep
forest, Inf. Softw. Technol. 114 (2019) 204–216.

[60] N. Li, M. Shepperd, Y. Guo, A systematic review of unsupervised learning
techniques for software defect prediction, Inf. Softw. Technol. (2020) 106287.

[61] Z. Li, X.-Y. Jing, X. Zhu, H. Zhang, B. Xu, S. Ying, Heterogeneous defect
prediction with two-stage ensemble learning, Autom. Softw. Eng. 26 (3) (2019)
599–651.

[62] X. Xia, D. Lo, S.J. Pan, N. Nagappan, X. Wang, Hydra: Massively compositional
model for cross-project defect prediction, IEEE Trans. Softw. Eng. 42 (10) (2016)
977–998.

[63] Y. Jiang, B. Cukic, Y. Ma, Techniques for evaluating fault prediction models,
Empir. Softw. Eng. 13 (5) (2008) 561–595, http://dx.doi.org/10.1007/s10664-
008-9079-3.

[64] T. Maciejewski, J. Stefanowski, Local neighbourhood extension of SMOTE
for mining imbalanced data, in: 2011 IEEE Symposium on Computational
Intelligence and Data Mining (CIDM), IEEE, 2011, pp. 104–111.

[65] P. He, B. Li, X. Liu, J. Chen, Y. Ma, An empirical study on software defect
prediction with a simplified metric set, Inf. Softw. Technol. 59 (2015) 170–190.

[66] A.P. Bradley, The use of the area under the ROC curve in the evaluation of
machine learning algorithms, Pattern Recognit. 30 (7) (1997) 1145–1159.

[67] V.B. Kampenes, T. Dybå, J.E. Hannay, D.I. Sjøberg, A systematic review of effect
size in software engineering experiments, Inf. Softw. Technol. 49 (11–12) (2007)
1073–1086.

[68] T. Cover, P. Hart, Nearest neighbor pattern classification, IEEE Trans. Inform.
Theory 13 (1) (1967) 21–27.

[69] Y. Ma, L. Guo, B. Cukic, A statistical framework for the prediction of
fault-proneness, in: Advances in Machine Learning Applications in Software
Engineering, IGI Global, 2007, pp. 237–263.

[70] F. Xing, P. Guo, M.R. Lyu, A novel method for early software quality prediction
based on support vector machine, in: 16th IEEE International Symposium on
Software Reliability Engineering (ISSRE’05), IEEE, 2005, pp. 10–pp.

[71] S. Sharmeen, S. Huda, J. Abawajy, M.M. Hassan, An adaptive framework against
android privilege escalation threats using deep learning and semi-supervised
approaches, Appl. Soft Comput. 89 (2020) 106089.

[72] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikit-learn: Machine
learning in python, J. Mach. Learn. Res. 12 (2011) 2825–2830.

[73] A.A. Shanab, T.M. Khoshgoftaar, R. Wald, A. Napolitano, Impact of noise and
data sampling on stability of feature ranking techniques for biological datasets,
in: 2012 IEEE 13th International Conference on Information Reuse Integration
(IRI), 2012, pp. 415–422, http://dx.doi.org/10.1109/IRI.2012.6303039.

[74] T. Menzies, A. Dekhtyar, J. Distefano, J. Greenwald, Problems with precision:
A response to ‘‘comments on’data mining static code attributes to learn defect
predictors’", IEEE Trans. Softw. Eng. 33 (9) (2007) 637–640.

[75] C. Tantithamthavorn, S. McIntosh, A.E. Hassan, K. Matsumoto, An empirical
comparison of model validation techniques for defect prediction models, IEEE
Trans. Softw. Eng. 43 (1) (2016) 1–18.

[76] G. Fan, X. Diao, H. Yu, K. Yang, L. Chen, Software defect prediction via
attention-based recurrent neural network, Sci. Program. 2019 (2019).

[77] M.M. Öztürk, Which type of metrics are useful to deal with class imbalance in
software defect prediction? Inf. Softw. Technol. 92 (2017) 17–29.

[78] J. Li, P. He, J. Zhu, M.R. Lyu, Software defect prediction via convolutional neural
network, in: 2017 IEEE International Conference on Software Quality, Reliability
and Security (QRS), IEEE, 2017, pp. 318–328.

[79] S. Huda, S. Miah, M.M. Hassan, R. Islam, J. Yearwood, M. Alrubaian, A.
Almogren, Defending unknown attacks on cyber-physical systems by semi-
supervised approach and available unlabeled data, Inform. Sci. 379 (2017)
211–228.

http://refhub.elsevier.com/S0950-5849(20)30188-9/sb27
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb27
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb27
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb27
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb27
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb27
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb27
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb28
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb28
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb28
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb28
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb28
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb29
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb29
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb29
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb29
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb29
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb29
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb29
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb30
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb30
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb30
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb30
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb30
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb31
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb31
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb31
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb31
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb31
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb32
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb32
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb32
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb32
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb32
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb34
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb34
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb34
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb34
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb34
http://dx.doi.org/10.1109/ASE.2015.56
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb36
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb36
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb36
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb37
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb37
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb37
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb37
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb37
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb38
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb38
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb38
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb38
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb38
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb39
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb39
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb39
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb39
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb39
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb40
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb40
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb40
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb40
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb40
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb41
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb41
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb41
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb41
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb41
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb42
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb42
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb42
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb42
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb42
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb42
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb42
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb43
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb43
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb43
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb43
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb43
http://dx.doi.org/10.1109/TSMCC.2012.2226152
http://dx.doi.org/10.1016/j.infsof.2014.07.005
http://dx.doi.org/10.1016/j.infsof.2014.07.005
http://dx.doi.org/10.1016/j.infsof.2014.07.005
http://www.sciencedirect.com/science/article/pii/S0950584914001591
http://www.sciencedirect.com/science/article/pii/S0950584914001591
http://www.sciencedirect.com/science/article/pii/S0950584914001591
http://dx.doi.org/10.1016/j.infsof.2014.12.006
http://dx.doi.org/10.1016/j.infsof.2014.12.006
http://dx.doi.org/10.1016/j.infsof.2014.12.006
http://www.sciencedirect.com/science/article/pii/S0950584914002602
http://www.sciencedirect.com/science/article/pii/S0950584914002602
http://www.sciencedirect.com/science/article/pii/S0950584914002602
http://dx.doi.org/10.1109/ICMLA.2010.27
http://dx.doi.org/10.1109/TR.2014.2316951
http://dx.doi.org/10.1109/TR.2014.2316951
http://dx.doi.org/10.1109/TR.2014.2316951
http://dx.doi.org/10.1145/2568225.2568320
http://doi.acm.org/10.1145/2568225.2568320
http://doi.acm.org/10.1145/2568225.2568320
http://doi.acm.org/10.1145/2568225.2568320
http://dx.doi.org/10.1007/s00500-018-3093-1
http://dx.doi.org/10.1007/s00500-018-3093-1
http://dx.doi.org/10.1007/s00500-018-3093-1
http://dx.doi.org/10.1155/2016/7658207
http://dx.doi.org/10.1155/2016/7658207
http://dx.doi.org/10.1155/2016/7658207
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb52
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb52
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb52
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb52
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb52
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb53
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb53
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb53
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb53
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb53
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb54
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb54
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb54
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb54
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb54
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb55
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb55
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb55
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb55
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb55
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb56
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb56
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb56
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb56
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb56
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb57
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb57
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb57
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb57
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb57
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb58
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb58
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb58
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb58
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb58
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb59
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb59
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb59
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb60
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb60
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb60
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb61
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb61
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb61
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb61
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb61
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb62
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb62
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb62
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb62
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb62
http://dx.doi.org/10.1007/s10664-008-9079-3
http://dx.doi.org/10.1007/s10664-008-9079-3
http://dx.doi.org/10.1007/s10664-008-9079-3
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb64
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb64
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb64
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb64
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb64
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb65
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb65
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb65
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb66
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb66
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb66
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb67
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb67
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb67
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb67
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb67
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb68
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb68
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb68
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb69
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb69
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb69
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb69
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb69
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb70
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb70
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb70
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb70
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb70
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb71
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb71
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb71
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb71
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb71
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb72
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb72
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb72
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb72
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb72
http://dx.doi.org/10.1109/IRI.2012.6303039
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb74
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb74
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb74
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb74
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb74
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb75
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb75
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb75
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb75
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb75
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb76
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb76
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb76
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb77
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb77
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb77
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb78
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb78
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb78
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb78
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb78
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb79
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb79
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb79
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb79
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb79
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb79
http://refhub.elsevier.com/S0950-5849(20)30188-9/sb79

	COSTE: Complexity-based OverSampling TEchnique to alleviate the class imbalance problem in software defect prediction
	Introduction
	Motivation
	Related work and background
	Class imbalance problem
	Effort-aware defect prediction
	Differential evolution

	Methodology
	Overview of COSTE
	Applying min–max normalization
	Calculating complexity and rank
	Generating new synthetic instances

	Experimental design
	Research questions
	Datasets
	Baselines
	Performance measures
	Performance comparison
	Classifiers
	Experimental procedure

	Experimental results
	Discussion
	Why COSTE performs the best
	Do instances ranked in the descending or ascending order really affect the performance of coste?
	The contribution of different metrics to the complexity of instances

	Threats to validity
	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


