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Abstract—Deep Reinforcement Learning (DRL) is a paradigm
of artificial intelligence where an agent uses a neural network
to learn which actions to take in a given environment. DRL
has recently gained traction from being able to solve complex
environments like driving simulators, 3D robotic control, and
multiplayer-online-battle-arena video games. Numerous imple-
mentations of the state-of-the-art algorithms responsible for train-
ing these agents, like the Deep Q-Network (DQN) and Proximal
Policy Optimization (PPO) algorithms, currently exist. However,
studies make the mistake of assuming implementations of the
same algorithm to be consistent and thus, interchangeable. In
this paper, through a differential testing lens, we present the
results of studying the extent of implementation inconsistencies,
their effect on the implementations’ performance, as well as
their impact on the conclusions of prior studies under the
assumption of interchangeable implementations. The outcomes of
our differential tests showed significant discrepancies between the
tested algorithm implementations, indicating that they are not in-
terchangeable. In particular, out of the five PPO implementations
tested on 56 games, three implementations achieved superhuman
performance for 50% of their total trials while the other two
implementations only achieved superhuman performance for less
than 15% of their total trials. Furthermore, the performance
among the high-performing PPO implementations was found
to differ significantly in nine games. As part of a meticulous
manual analysis of the implementations’ source code, we analyzed
implementation discrepancies and determined that code-level
inconsistencies primarily caused these discrepancies. Lastly, we
replicated a study and showed that this assumption of imple-
mentation interchangeability was sufficient to flip experiment
outcomes. Therefore, this calls for a shift in how implementations
are being used. In addition, we recommend for (1) replicability
studies for studies mistakenly assuming implementation inter-
changeability, (2) DRL researchers and practitioners to adopt
the differential testing methodology proposed in this paper to
combat implementation inconsistencies, and (3) the use of large
environment suites.

Index Terms—reinforcement learning, differential testing

I. INTRODUCTION

Deep Learning (DL) and Deep Reinforcement Learning
(DRL) are popular paradigms of Artificial Intelligence (AI)
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that use neural networks to solve a problem. Different from
DL, where the dataset is fixed and re-used throughout the
training process, DRL allows for online learning in a con-
trolled environment where the dataset is not fixed but rather
procured from the environment on-the-fly—the very reason it
is chosen over DL in some scenarios such as video games
and autonomous driving [1]–[3]. More formally, DRL is a
paradigm of AI where a program, or more specifically, an
agent, learns the optimal action to take in an environment
after iterating multiple times through it. DRL has proven to
be extremely effective in games with recent advances in the
field; for example, DeepMind’s AlphaZero [4] became the
first algorithm to beat a world-champion computer program at
Chess, Shogi, and Go and OpenAI’s OpenAI Five [5] became
the first algorithm to defeat the human world champions at
the popular online video game Dota 2. Furthermore, DRL’s
applications span beyond those of games, from time-dependent
systems like autonomous vehicles [6] and stock trading [7] to
precision-focused systems like 3D robotic control [8], [9].

Similar to DL libraries like TensorFlow and PyTorch,
numerous DRL libraries providing algorithm implementations
have been created. With more than 10K GitHub stars, RL-
lib [10], Baselines [11], and Dopamine [12] are among the
most popular DRL libraries. RLlib from Ray specialises in
the distributed training of DRL algorithms, at a scalable
level. Baselines from OpenAI and Dopamine from Google are
research-focused libraries, built towards the quick replication
and refinement of DRL algorithms.

In DRL studies, it is common to conduct comparisons
between different algorithms [8], [9], [13], [14]. Moreover, as
multiple implementations of an algorithm currently exist, some
comparative studies use unoriginal implementations [15]–
[18]. This is because researchers—as well as practitioners—
assume that an algorithm would perform equally well across
its implementations and thus, use them interchangeably. To
demonstrate this, we systematically conducted a literature
review which included research papers from two popular AI
conferences and identified 23 research papers making this



assumption, with publishing dates ranging from 2017 to 2024.
DRL algorithms are not guaranteed to be consistent. On

the contrary, they have a high risk of inconsistencies. Firstly,
this is due to the large amount of hyperparameters—tunable
values that guide and control the learning process. Being a
combination of both DL and Reinforcement Learning (RL),
DRL inherits hyperparameters from both of them. Secondly,
because of the large amount of hyperparameters, DRL libraries
run a higher risk of (1) making mistakes, and (2) improv-
ing or worsening algorithms via seemingly minor code-level
implementation choices [19]. This results in DRL libraries
implementing their own flavour of an algorithm, leading to
similar but distinct implementations of the same algorithm in
the DRL domain.

We conducted a pilot study to attain an initial assessment on
the extent and effects of the aforementioned implementation
inconsistencies. In particular, we compared five implemen-
tations of the Deep Q-Network (DQN) algorithm [20] and
observed performance discrepancies as well as code-level
inconsistencies. If a mature algorithm like DQN, which has
already been extensively studied, standardized, and built upon,
exhibits such disparity across some of the most popular
implementations, it raises concerns about (1) the level of
inconsistency and potential issues with the implementations of
less mature algorithms, and (2) the validity of existing research
that assume interchangeable algorithm implementations. Vary-
ing efficacies of the same algorithm across its implementations
might render comparisons from studies that assume inter-
changeability invalid. This could have wide-ranging effects, as
the conclusions of many studies might need to be re-examined.

In this paper, we assess the extent of implementation
inconsistencies in the context of DRL and how they affect
research under the assumption that implementations are con-
sistent and interchangeable. At a high-level, our study relies
on differential testing, which is a well-known software testing
methodology [21]. In particular, we conducted a large-scale
study (of approximately 10K GPU hours) to compare the
efficacy of multiple implementations of the same algorithm
to identify potential inconsistencies. Using differential testing,
we answer the following research questions:

• RQ1: How prevalent are discrepancies between imple-
mentations of the same algorithm? Varying efficacies of
an algorithm across its implementations would produce
untrustworthy results and conclusions from studies that
assume implementation interchangeability—using alter-
nate implementations over the original. Thus, it is im-
portant to study the extent of these variances first before
assuming that implementations are interchangeable. We
answered RQ1 by using differential testing and state-of-
the-art DRL comparison techniques to assess different
implementations of the Proximal Policy Optimization
(PPO) algorithm [9] in terms of efficacy (i.e., mean
reward), with statistical guarantees.

• RQ2: Why do implementation discrepancies occur?
Understanding why implementation discrepancies occur
is vital to creating effective solutions. Thus, we answered

RQ2 by investigating the root cause of the discrepancies
found in RQ1. In particular, similar to the pilot study, we
inspected the implementations’ source code for inconsis-
tencies that accounted for the discrepancies found.

• RQ3: Can the assumption of interchangeable im-
plementations alter the outcomes of an experiment?
There would be cause for concern if using a different
algorithm implementation was significant enough to flip
experiment outcomes, as studies which assumed imple-
mentation interchangeability might then need to be re-
examined. Thus, to determine if this was possible, we
answered RQ3 by replicating a study that assumed im-
plementation interchangeability [16], but with a different
Deep Deterministic Policy Gradient (DDPG) implemen-
tation [22], and compared the outcomes.

Our experiments showed that DRL implementations were
mistaken to be interchangeable, leading to significant alter-
ations in experimental outcomes. In particular, out of the
five PPO implementations tested on 56 environments, three
implementations consistently outperformed the other two im-
plementations in all comparison techniques used. Moreover,
we statistically show that even the high-performing PPO
implementations differed significantly among themselves in
nine environments. When investigating the root cause of these
discrepancies, we found multiple code-level inconsistencies
that accounted for the discrepancies found. Lastly, our exper-
iments showed that this assumption of implementation inter-
changeability was also significant enough to alter experiment
outcomes by flipping two out of the three outcomes tested
from the replicated study.

Thus, we recommend for (1) replicability studies for studies
mistakenly assuming implementation interchangeability, (2)
DRL researchers and practitioners to adopt the differential
testing methodology proposed in this paper to combat imple-
mentation inconsistencies, and (3) the use of large environment
suites. Furthermore, a key implication for researchers studying
software testing is that, despite DRL’s stochasticity and non-
deterministic output, differential testing still can be applied.
Therefore, the techniques used in this paper are potentially
applicable to non-AI stochastic systems that can benefit from
differential testing. Our source code is publicly available and
can be found at https://doi.org/10.5281/zenodo.14249024.

II. BACKGROUND

In this section, we discuss the necessary terminology used
in this study.

a) Environment and agent: RL has two basic compo-
nents, the agent and the environment. The agent can be
viewed as the main processing component and the environment
represents the domain the agent tries to solve. At any arbitrary
timestep t, the environment passes the current state St and
reward Rt to the agent, which in turn executes an action
At in the environment. Agents use various algorithms to
determine the best possible action At at state St. In our study,
we primarily considered Q-learning (QL) [23] and Policy

https://doi.org/10.5281/zenodo.14249024


Fig. 1: Applying SBCI to all trials from a configuration.

Gradient (PG) [24] based algorithms as they were commonly
implemented by libraries.

b) Stratified bootstrap confidence intervals: Stratified
Bootstrap Confidence Intervals (SBCI) [25] is a systematic and
standardized way of reporting performance-based metrics, like
an agent’s mean reward, in DRL. SBCI involves bootstrapping
the results of a few similarly configured trials to create a
distribution that represents the true result distribution for that
particular configuration more accurately, as illustrated in Fig-
ure 1. All trials (left) are (1) stratified bootstrapped (sampling
with replacement, with equal proportions per environment) to
form a sample (middle), and (2) subsequently aggregated ac-
cording to a metric (e.g., mean) to form an aggregated sample
(AS). After multiple aggregated samples are accumulated, a
distribution is then formed with confidence guarantees. SBCI
is particularly useful when testing an algorithm over a large
suite of environments since it significantly reduces the number
of trials needed per environment for reliable estimates.

III. MOTIVATION

In this section, we discuss the literature review and the pilot
study that motivated this paper.

A. Literature Review

Although we were aware of studies that made the assump-
tion of interchangeable algorithm implementations [15]–[18],
we decided to conduct a systematic and reproducible literature
review to properly justify this assumption.

a) Methodology: We reviewed recently accepted papers
from two popular AI conferences—the conference on Neural
Information Processing Systems (NeurIPS) and the Interna-
tional Conference on Machine Learning (ICML), both of the
year 2023. Since both conferences combined had more than
5K accepted papers (3,584 for NeurIPS and 1,865 for ICML),
we used the conference data provided by Paper Copilot [26]
and a Python library named PDFPlumber [27] to automatically
download the accepted papers and filter them by searching
for keywords. We selected these keywords based on two
assumption scenarios that primarily occurred in the studies we
were already aware of; (1) when studies use an implementation
that was not the original [15], [16] or (2) when studies
alternate between two different implementations of the same
algorithm in their experiments [17], [18], with the latter being
a manifestation of the former. Thus, to narrow down our
literature to review, we searched for papers which had the
key phrase “Reinforcement Learning” in their title as well as
references to at least two popular DRL libraries (see Table I for
the list of popular DRL libraries). The keywords used to search

for popular DRL libraries were “RLlib, Baselines3, Tianshou,
CleanRL, and Baselines”. For completeness, all searches were
done in a case-insensitive manner.

b) Analysis: In total, we identified ten papers from
NeurIPS, six papers from ICML, and seven papers from
other conferences under the assumption of interchangeable
algorithm implementations. Examples of studies conforming to
the first aforementioned scenario are the works by Beukman et
al. [28], Chiappa et al. [29], and Gerstgrasser et al. [30], where
alternate implementations were used over the original for the
SAC [31], PPO, and DQN algorithms respectively. Examples
of studies conforming to the second aforementioned scenario
are the works by Raghunath et al. [17] and Wolk et al. [18].
Raghunath et al. [17] integrated their study with the SAC
algorithm in a single-agent setting as well as a multi-agent
setting to demonstrate effectiveness. However, Raghunath et al.
used different SAC implementations for both settings, assum-
ing that they were consistent and thus, interchangeable. Given
that their experiments show marginal differences between both
single-agent and multi-agent settings [17, Figure 2], if the
SAC implementations were not interchangeable, a change
in SAC implementation could easily flip the experimental
outcomes. Similarly, Wolk et al. [18] integrated their study
with the PPO algorithm in multiple settings. However, Wolk
et al. used different PPO implementations for some settings,
assuming they were interchangeable. This potentially inval-
idates their comparisons, especially for those with marginal
differences [18, Table 2].

c) Key takeaways: With numerous studies found to be
under the assumption of interchangeable algorithm implemen-
tations, the notion that researchers—as well as practitioners—
assume interchangeability is well-justified and potentially war-
rants study re-examinations if implementations were found to
not be interchangeable.

B. Pilot Study

We conducted a pilot study to attain an initial assessment on
the extent and effects of implementation inconsistencies before
conducting a more thorough comparison on a larger scale as
DRL experiments can often be computationally expensive.

a) Methodology: We trained agents from five DQN
implementations (with the same hyperparameters) to solve
three games from the Atari 2600 benchmark [32], as illus-
trated in Figure 2. Since there were installation issues with
the original DQN implementation, and the DQN’s authors
subsequently vouched for Dopamine’s implementation as an
accurate alternative in a GitHub issue, we used Dopamine’s
DQN implementation as the baseline.1 Moreover, we also
included our own DQN implementation (i.e., Ours).

b) Analysis: We observed stark discrepancies in the
training curves, with the majority of implementations perform-
ing suboptimally when compared to Dopamine, with either low
final mean rewards or high variance among their trials (i.e.,
elongated shaded regions). To account for these discrepancies,

1All links to issues and pull requests are included in the source code.
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we investigated code-level inconsistencies. Firstly, we found
that Stable Baselines3 [33] and Dopamine both differ in how
they form the stack of frames as input to the Q-network,
with the former duplicating frames to account for missing
frames and the latter filling the missing frames with zeros
instead, as illustrated in Figure 3 (left). Secondly and more
importantly, we noticed that they also differ in how they
decay certain hyperparameters, like the ϵ-value for the ϵ-
greedy policy—a strategy where the ϵ-value (decayed with
time) encourages an agent’s exploration in an environment. As
shown in Figure 3 (right), Stable Baselines3 starts the decay
immediately, regardless of how many frames have passed,
while Dopamine waits and only starts the decay much later
on. As this directly impacts how an agent behaves, it could
explain the discrepancy, in terms of curve steepness, between
the two implementations.

c) Key takeaways: The discovery of efficacy discrep-
ancies as well as major code-level inconsistencies among
implementations of an already mature algorithm suggests the
conjecture that implementations are not interchangeable and
warrants a study of larger scale, with less mature algorithms
and more environments.

IV. METHODOLOGY

In this section, we discuss the approach we adopted to
address the three RQs. In particular, (1) how we selected, com-

TABLE I: DRL Libraries

DRL Library 1
2

1 DQN PPO Stars (K) Last Commit

RLlib ✓ ✓ ✓ 31.62 2024
Dopamine ✓ ✓ ✕ 10.4 2024
Stable Baselines3 ✓ ✓ ✓ 8.2 2024
Tianshou ✓ ✓ ✓ 7.5 2024
CleanRL ✓ ✓ ✓ 4.6 2024
OpenSpiel ✕ ✓ ✓ 4.1 2024
ReAgent ✓ ✓ ✓ 3.5 2024
ElegantRL ✓ ✓ ✓ 3.5 2024
Acme ✓ ✓ ✓ 3.4 2024
Tensorforce3 ✓ ✓ ✓ 3.3 2024
TF-Agents ✓ ✓ ✓ 2.7 2024
TorchRL ✓ ✓ ✓ 2.0 2024
Coach3 ✓ ✓ ✓ 2.3 2022
Tonic RL ✓ ✕ ✓ 0.39 2021
Catalyst-RL ✓ ✓ ✓ 0.046 2021
Baselines ✓ ✓ ✓ 15.4 2020
Spinning Up4 ✓ ✕ ✓ 9.7 2020
Keras-RL ✓ ✓ ✕ 5.5 2019

1 At least half of the algorithms implemented are QL or PG-based.
2 With respect to the entire Ray codebase and not just RLlib.
3 Will no longer be maintained.
4 Does not support GPU computations.

pared, and debugged implementations, (2) how we replicated
a study, and (3) the experimental settings.

A. Selecting Algorithms and Implementations

Due to significant hardware requirements, testing and com-
paring all algorithms with their respective implementations
would have been infeasible. Thus, in order to assess the
prevalence of discrepancies between different implementations
of the same algorithm in RQ1, we first determined which
algorithms and implementations were representative of the
DRL domain. Table I depicts a list of popular DRL libraries,
sorted firstly by last commit date, and secondly by GitHub
stars. Furthermore, we investigated the type of algorithms that
were commonly implemented and determined that (1) QL or
PG-based algorithms were the most common, and (2) DQN
and PPO were the most common QL and PG-based algorithms
respectively. Subsequently, we narrowed our scope to selecting
just one algorithm, as it then allowed us to conduct a large-



scale comparison across more implementations with a large
environment suite.

We chose to test and compare PPO implementations over
DQN implementations for RQ1 due to their low memory costs.
Memory was a primary concern because it determines how
many trials we were able to run concurrently on our GPU
servers. Since the memory costs for DQN are significantly
higher than that of PPO (e.g., 1M states vs 1K states in
the Atari 2600 benchmark [9], [20]), we chose to test PPO
implementations instead. To put this in a better perspective,
we could run eight concurrent PPO trials compared to two
concurrent DQN trials on our GPU servers. Moreover, we
limited our selection of PPO implementations to just five
implementations, so that we could incorporate a larger suite of
environments in our tests. Thus, we selected the implementa-
tion by Baselines since it was the original PPO implementation
and subsequently selected implementations from the four most
popular actively maintained libraries for RQ1, to wit, RLlib,
Stable Baselines3, Tianshou [34], and CleanRL [35]. It would
be a strong indication that libraries are inconsistent with their
implementations of other algorithms if they were already
inconsistent with a widely used algorithm, like PPO.

B. Comparing DRL Performance

Differential testing compares the outputs of two systems
when given the same input. Should the outputs be the same,
the systems are considered to be correct for the given input.
Conversely, should the outputs be different, the systems are
considered to have differing behaviour. Differential testing
is primarily used as a black-box testing technique and thus,
widely applicable for systems with neural networks [36]–[40].
However, the same differential testing methodology used by
the aforementioned DL studies cannot be directly applied to
DRL without first addressing the domain’s stochasticity.

a) Differential testing in DRL: The core challenge of
applying differential testing to DRL systems is the inherent
stochasticity present in the systems. A given input might not
consistently produce the same output, as observed in the pilot
study, in Figure 2. We address this uncertainty by using SBCI
to attain accurate and reliable estimates. In particular, when
testing PPO implementations in RQ1, the inputs were PPO’s
hyperparameters—an algorithm’s configuration, manually set
to be consistent with the original publication, across all tested
implementations. To compare fairly with other PPO imple-
mentations, utilizing SBCI, the outputs of all trials from a
PPO implementation were stratified bootstrapped with respect
to multiple aggregation metrics, to evaluate different aspects of
efficacy. This results in point estimates with confidence bands
for all aggregation metrics used, for all PPO implementations
tested, allowing for a more accurate and reliable comparison.

b) Environments: Since an agent’s performance is de-
pendent on the difficulty of an environment [32], to further
increase the fairness of our comparisons in RQ1, we used
a large and diverse suite of environments from the Atari
2600 benchmark (56 environments) when testing the PPO
implementations—the same environments commonly used to

benchmark new algorithms [8], [9], [14], [20], [41], [42]. This
was done to ensure that all implementations were tested in as
many situations as possible to better compare their agents’
generalization capabilities—to perform in any environment.

c) Human normalized score: Prior to the application of
any statistical techniques post-training, it is common to first
normalize the outputs (i.e., mean rewards) of trials from the
Atari 2600 benchmark suite with respect to the mean rewards
attained by a professional human tester, so as to properly gauge
superhuman performance in games [14], [20], [41], [42]. Thus,
to obtain a single human normalized score representing the
efficacy of a PPO trial in RQ1, we first took the mean reward
attained from the last 100 training episodes instead of just
the reward from the last training episode for a more accurate
estimate of an agent’s efficacy [9], [43]. Subsequently, we
applied min-max normalization to the mean reward,

Score =
MeanReward100 −RandomPlay

HumanPlay −RandomPlay
(1)

where min and max represent the reward attained from random
and human play respectively, referenced from a previous
study [42]. The agent is superhuman if Score > 1.

d) Statistical techniques: In this study, it is essential that
we draw statistically-sound conclusions about any potential
discrepancies among the implementations, particularly when
dealing with stochastic algorithms. To this end, aside from
statistical tests like ANOVA [44], we used a variety of state-
of-the-art techniques specifically tailored for DRL.

Firstly, we incorporated an environment-wise one-way
ANOVA to compare the effect of PPO implementation on
MeanReward100. With a null hypothesis of equal implemen-
tation means, rejecting it (i.e., p-value < 0.05) translates to a
statistically significant difference in means. However, (1) a
one-way ANOVA does not pinpoint outliers, (2) with large
amounts of data, minor effects can easily cause statistically
significant differences, and (3) statistical insignificance does
not imply absence of effect [25], [45]. Thus, we decided to
include additional techniques for broader perspectives.

Subsequently, to further compare the PPO implementations,
we applied SBCI to their scores with respect to two different
aggregation metrics [25]; (1) fraction of trials with Score > τ ,
and (2) probability of improvement (POI). The first metric re-
sults in a performance profile across all of an implementation’s
trials, to gauge the number of trials that achieved superhuman
game performance (i.e., when τ = 1). The second metric uses
more direct, one-to-one pairwise comparisons with the Mann-
Whitney U-statistic [46], that is,

P (Xm > Ym) =
1

N2

N∑
i=1

N∑
j=1

S(xm,i, ym,j),

where S(x, y) =


1, if y < x,
1
2 , if y = x,

0, if y > x.

(2)

Here, we directly compute the POI of implementation X over
implementation Y with N trials each, on environment m. The



primary assumption is that for X to be better than Y , X has
to outperform Y sufficiently often. The final POI of X over Y ,
P (X > Y ), is subsequently attained by calculating the POI
for all environments 1

M

∑M
m=1 P (Xm > Ym). Post-SBCI, the

point estimates and confidence bands attained from this metric
are further analyzed with the Neyman-Pearson testing crite-
rion [47], [48] for statistical significance and meaningfulness.
Statistical significance where P (X > Y ) > 0.5 ∧ 0.5 /∈ CI
rules out the effect of noise on the point estimates. On the
other hand, statistical meaningfulness where CIupper > 0.75
ensures that X outperforms Y often enough. X is considered
to be better than Y if both aforementioned criteria are met.
Thus, the POI metric directly measures the likelihood that an
implementation X outperforms implementation Y on a ran-
dom environment, complementing the performance profiles.

C. Debugging Discrepancies

To locate the root cause of discrepancies found in RQ1 for
RQ2, we adopted a best-effort debugging approach similar
to that of the pilot study. Moreover, we focused on the
high-performing PPO implementations as they likely differed
from code-level inconsistencies rather than critical bugs. In
particular, we manually inspected the PPO implementations’
source codes to identify any inconsistencies that could account
for the discrepancies found. Upon finding any inconsistencies,
we (1) corrected them to be consistent across implementations,
(2) re-tested the implementations, and (3) re-compared the
implementations to determine if the discrepancies were still
present. Although time-consuming as this required us to build
an in-depth understanding of the source codes, it was necessary
in order to ascertain that the inconsistencies were indeed the
cause of the discrepancies found. Lastly, we also informed
the implementations’ developers, via GitHub issues, of the
unresolved discrepancies, as a final attempt to address them.

D. Replicating a Study

In order to determine if the assumption of interchangeable
implementations could alter the outcomes of an experiment
in RQ3, we replicated experiments from a study that made
the assumption. Islam et al. [16] opted to use an alternate
implementation of the DDPG algorithm over the original [22]
and recommended ideal hyperparameter values for the DDPG
algorithm, assuming that the DDPG implementations were
interchangeable. We chose this specific study because (1)
many works based on the study’s results, as its more than 300
citations show, (2) it adhered to the current best practices by
providing detailed descriptions of the hyperparameter values
and implementations used, and (3) it was simple. In particular,
the study investigated the best value for a few commonly
used hyperparameters, in terms of efficacy. The study tested
different values for each hyperparameter investigated with
DDPG on the HalfCheetah environment from the MuJoCo
benchmark suite [49]. We replicated the experiments involving
the network architecture, reward scale, and batch size hy-
perparameters, but with a different DDPG implementation—
Stable Baselines3’s DDPG implementation—to investigate if
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Fig. 4: Performance profiles for the five PPO implementations
tested across 56 environments, where the shaded regions
indicate pointwise 95% confidence bands based on SBCI.

using a different implementation was significant enough to
flip experiment outcomes. Furthermore, we used the same
differential testing methodology as in RQ1 (and RQ2), for
accurate and reliable comparisons.

E. Experimental Settings

We conducted our experiments concurrently on three GPU
servers running the Ubuntu LTS operating system. The first
server had three NVIDIA RTX A4000 GPUs with an AMD
Ryzen Threadripper 3970X CPU. The second server had four
NVIDIA RTX 2070 SUPER GPUs with an Intel Core i9-
10900X CPU. The last server had one NVIDIA RTX 3090
GPU with an AMD Ryzen 9 5950X CPU. As we did not
compare in terms of training speed, the trials were compa-
rable across servers—DRL libraries use either TensorFlow or
PyTorch, which conforms to 32-bit floating point precision by
default. Furthermore, when configuring the PPO implementa-
tions for RQ1 (and RQ2), we used a hyperparameter set similar
to the one used by the original implementation [9], with the
only difference being that we excluded LSTM layers in the
neural network, to speed up training [50]. We opted for the
speed-up since this is a large-scale comparison-focused study,
amounting to approximately 10K GPU hours. When config-
uring Stable Baselines3’s DDPG implementation for RQ3,
we followed the hyperparameter set used by the replicated
study [16]. We trained five agents for each (1) (implementa-
tion, environment) permutation for RQ1 (and RQ2) and (2)
(hyperparameter, value) permutation for RQ3. We trained five
agents (i.e., five trials) for each permutation as it was sufficient
for reliable SBCI estimates with the Atari benchmark [25].

V. RESULTS

In this section, we present the outcomes from our experi-
ments addressing RQ1, RQ2, and RQ3.

A. Prevalence of Implementation Discrepancies

The performance profiles in Figure 4 demonstrate stark
discrepancies between the five PPO implementations tested.



TABLE II: Discrepancies Among The High-Performing PPO Implementations

Game
Mean Reward Over 5 Trials One-way ANOVA1

Stable Baselines3 CleanRL Baselines Baselines108 F-statistic2 p-value2 Reject2 F-statistic3 p-value3 Reject3

Atlantis 881191.6 946388.0 2088141.2 848217.6 262.634 1.241e-10 Yes 2.925 9.229e-02 No
ChopperCommand 5519.0 6056.8 841.4 913.6 157.884 2.408e-09 Yes 152.909 2.897e-09 Yes
DoubleDunk -2.7 -3.4 -13.4 -3.0 956.997 5.850e-14 Yes 2.713 1.066e-01 No
Gopher 1521.1 4946.4 4752.1 5086.4 8.636 4.747e-03 Yes 8.189 5.718e-03 Yes
Krull 10369.7 9589.3 9535.5 9653.7 17.274 2.936e-04 Yes 4.453 3.577e-02 Yes
Robotank 19.8 9.5 13.9 12.7 5.365 2.165e-02 Yes 6.366 1.305e-02 Yes
Tennis -4.2 -4.2 -14.2 -3.9 7.101 9.229e-03 Yes 0.004 9.959e-01 No
VideoPinball 37962.8 55677.5 48812.4 72580.8 5.875 1.664e-02 Yes 4.793 2.951e-02 Yes
Zaxxon 10241.2 5548.4 6024.6 6685.6 6.263 1.372e-02 Yes 7.351 8.238e-03 Yes

1 Reject null hypothesis of equal implementation means if p-value < 0.05.
2 With respect to Stable Baselines3, CleanRL, and Baselines.
3 With respect to Stable Baselines3, CleanRL, and Baselines108—108K frames per episode.
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Fig. 5: Pairwise POI for the five PPO implementations tested
across 56 environments, where vertical stripes represent point
estimates, and shaded regions indicate 95% confidence bands
based on SBCI. X is considered to be better than Y if the
point estimate is both statistically significant and meaningful.
Comparisons where X is better than Y are indicated in red.

Specifically, we can see two groups with similar performance;
(1) Stable Baselines3, CleanRL, and Baselines where 50% of
their trials attained superhuman performance (i.e., τ > 1),
and (2) RLlib and Tianshou where less than 15% of their
trials attained superhuman performance. For conciseness, we
subsequently refer to these two groups as high-performing and
low-performing groups respectively. Although it cannot yet
be inferred that the high-performing implementations are, in
general, superior in terms of performance.

a) Probability of improvement between implementations:
Figure 5 shows that the high-performing group is objectively
better than the low-performing group. In particular, the pair-
wise POI between the two groups is both statistically signifi-
cant, where P (X > Y ) > 0.5 ∧ 0.5 /∈ CI , and meaningful,
where CIupper > 0.75. From the pairwise comparisons, it is
also observed that Stable Baselines3, CleanRL, and Baselines
are on par with each other, with the pairwise comparisons
among themselves being neither statistically significant nor
meaningful. However, as shown in Table II, when consider-
ing individual environments, we found statistically significant

discrepancies. We later determined these discrepancies to be
caused by implementation inconsistencies in RQ2.

b) Per-environment discrepancies: The one-way
ANOVA in Table II with respect to Baselines (not the 108
variant) shows that the PPO implementations from the high-
performing group were found to significantly differ in nine
environments, contrasting the above-discussed aggregated
comparisons. This discrepancy can also be observed in
the training curves, shown in Figure 6, with Atlantis and
DoubleDunk. Specifically, the curves from Stable Baselines3
and CleanRL noticeably differ from Baselines’ curves.

The PPO implementations from the low-performing group
were observed to attain low mean rewards in the majority of
environments, similar to the pattern observed in Assault and
Breakout. Tianshou could, however, solve some simple envi-
ronments, like Pong and Tennis. These environments, however,
have low score caps that are easily reached by agents [51],
and therefore, not a strong indication of an implementation’s
predictive power. Lastly, all five PPO implementations were
unable to solve some environments like MontezumaRevenge
and PrivateEye. This was, however, expected because these
environments have sparse rewards [32], making them espe-
cially hard in the context of DRL, where agents use rewards
as feedback for previously executed actions.

c) Key takeaways: All of the aforementioned observa-
tions point strongly towards code-level inconsistencies and
bugs between the tested PPO implementations. In particu-
lar, environment-dependent inconsistencies between the high-
performing implementations, and critical bugs with the low-
performing implementations. This is surprising, considering
that (1) PPO is a common algorithm, (2) the implementations
were from established libraries, and (3) Atari 2600, one of the
most widely known benchmarks, was used.

Thus, researchers should exercise caution when interchang-
ing implementations of the PPO algorithm as their experiments
might yield different outcomes, depending on the implemen-
tation and environment used. Furthermore, since code-level
inconsistencies are observed to be a recurring pattern (also
with DQN implementations), this now raises concerns about
the reliability of the implementations of other less mature
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algorithms as well. Researchers should not take the reliability
and interchangeability of implementations for granted.

RQ1 Summary: Discrepancies between different im-
plementations of the same algorithm are prevalent. In
particular, out of the five popular PPO implementa-
tions tested on 56 environments, three implementa-
tions attained superhuman performance for 50% of
their trials while the other two implementations only
attained superhuman performance for less than 15%
of their trials. Moreover, among the high-performing
implementations, statistically significant performance
differences were also observed in nine environments.

B. Reasons for Discrepancies

In our manual analysis, we found three code-level inconsis-
tencies among the high-performing PPO implementations, one

of which explained the performance differences. In particular,
the inconsistency with the number of frames per episode
influenced the performance while the inconsistencies with
gradient clipping and averaging did not.

a) Frames per episode: Firstly, Baselines used the Gym
library [52] for the Atari 2600 benchmark, which defaulted
to more than 108K frames per episode while Stable Base-
lines3 and CleanRL used the Gymnasium library [53], which
defaulted strictly to 108K frames per episode. This was one
of the reasons for the discrepancies observed in RQ1. Since
the frames per episode were higher in Baselines, their agents
spent more time in an environment before it gets reset—
directly affecting the training process. After correcting this
by configuring max_episode_steps to be 27K (108K
frames) in Baselines’ environment preprocessing function
make_atari, the implementations no longer significantly
differed in three environments (out of nine), as seen in Table II.
Furthermore, the training curves among the implementations
were also observed to be more consistent when compared to
those of RQ1, as shown in Figure 7.

b) Gradient clipping: Secondly, the implementations
differed in how they clipped gradients—commonly used to
stabilize updates in a neural network and is dependent on the
DL library used. In particular, Stable Baselines3 and CleanRL
used clip_grad_norm from the PyTorch library to clip
gradients while Baselines used clip_by_global_norm
from the TensorFlow library. These two functions clip the gra-
dients differently. To determine if this clipping inconsistency
caused the discrepancies observed in RQ1, we (1) disabled
gradient clipping across all high-performing implementations,
and (2) re-tested and re-compared the implementations. The
performance without gradient clipping exhibited the same dis-
crepancies as before and therefore, the clipping inconsistencies
were not significant enough to have caused the discrepancies.



0 1 2 3 4 5

0

2500

5000

M
ea

n 
R

ew
ar

d
Network Architecture

100, 50, 25
100, 100
400, 300

0 1 2 3 4 5

0

2000

4000

6000
Reward Scale

4 4.5 5

3000

4000

5000

0.1
0.01
1.0

0 1 2 3 4 5

0

2000

4000

6000

Batch Size

4 4.5 5

4000

5000

6000

64
32
128

Number of Timesteps (in millions)

Fig. 8: Training curves for three DDPG hyperparameter experiments on the HalfCheetah environment. Similar to PPO, five
agents were trained for each (hyperparameter, value) permutation and the training curves were aggregated to display the mean,
minimum, and maximum within the shaded regions. The dotted lines represent the efficacy reported in the replicated study.

0.2 0.4 0.6 0.8 1.0
P(X > Y)

(BS) 128
(BS) 128
(BS) 32
(RS) 1.0
(RS) 1.0

(RS) 0.01
(NA) 400, 300
(NA) 400, 300
(NA) 100, 100

X

32 (BS)
64 (BS)
64 (BS)
0.01 (RS)
0.1 (RS)
0.1 (RS)
100, 100 (NA)
100, 50, 25 (NA)
100, 50, 25 (NA)

Y

Fig. 9: Pairwise POI for three DDPG hyperparameter ex-
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is both statistically significant and meaningful. Comparisons
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c) Gradient averaging: Lastly, Baselines also averaged
gradients over multiple processes using OpenMPI [54] to
make updates in the neural network more efficient, something
not implemented by either Stable Baselines3 or CleanRL. As
this would have affected the gradients in the neural network,
we (1) disabled gradient averaging in Baselines, and (2) re-
tested and re-compared the implementations. The performance
without gradient averaging exhibited the same discrepancies as
before and therefore, the averaging inconsistencies were not
significant enough to have caused the discrepancies.

d) Key takeaways: We found multiple implementation
inconsistencies, one of which had a significant impact on per-
formance. The frames per episode inconsistency is an example
of a difference that has a major impact on performance and
that even the original implementation can be inconsistent. In
fact, there are six environments in Table II that still differ—
hinting at more inconsistencies among the high-performing
implementations. The three inconsistencies observed can be
classified as either API-based where the issue stems from the

use of an external API (like frames per episode or gradient
clipping), or logic-based where the issue lies internally (like
gradient averaging)—types of inconsistencies also commonly
found among AI implementations [55], [56]. Moreover, we
do not believe that these inconsistencies are in any way
intentional, but rather, oversights stemming from a domain of
high complexity, a phenomenon commonly observed with DL
implementations [55]. This reaffirms the notion that it is not
necessarily the case that DRL implementations are consistent
and interchangeable because of the high risk of inconsistencies
associated with the DRL paradigm—being a combination of
both DL and RL.

RQ2 Summary: Implementation discrepancies occur
primarily because of code-level inconsistencies be-
tween the implementations. In particular, we found
three inconsistencies among the high-performing PPO
implementations. Furthermore, correcting these in-
consistencies solved discrepancies among the high-
performing implementations in three environments.

C. Altering Experiment Outcomes

The study we replicated explored the best values, in terms
of efficacy, for commonly used hyperparameters with DDPG
on the HalfCheetah environment. Using a different DDPG
implementation, we replicated the experiments for three hy-
perparameters, to wit, network architecture (NA), reward scale
(RS), and batch size (BS). The training curves in Figure 8
and their respective pairwise POI in Figure 9 contrast those
originally reported by the replicated study.

a) Network architecture: Firstly, for the experiment on
network architecture, it can be seen in the training curves that
the (400, 300) architecture variant does not dominate the other
two variants as previously reported in the study (i.e., the dotted
lines), but instead, is on par with the (100, 100) variant, and
that both of them dominate the (100, 50, 25) variant. Their
respective pairwise POI reaffirms this, where (1) both (400,
300) and (100, 100) are better than (100, 50, 25), and (2)
(400, 300) is not better than (100, 100).



b) Reward scale: Secondly, for the experiment on reward
scale, it can be seen in the training curves that a scale of 1
(i.e., no scaling) does not dominate the other two variants as
previously reported in the study, but instead, is on par with
both of them. Their respective pairwise POI reaffirms this,
where neither variant was better than the other.

c) Batch size: Lastly, for the experiment on batch size,
the training curves show that the 128 variant dominates the
other two variants, similar to what was previously reported in
the study. Their pairwise POI reaffirms this, where (1) 128 is
better than both 64 and 32, and (2) 32 is not better than 64.

d) Implications: We have demonstrated that the empir-
ical outcomes originally reported by the study, although not
incorrect, can differ based on the algorithm implementation
used. Given that the study aimed to guide researchers towards
ideal hyperparameter configurations, researchers could build
on the conclusions of the study and not see the claimed
advantages due to these variances in outcomes.

e) Key takeaways: This study was just one of the many
studies that we could have replicated and we selected it be-
cause it adheres to the current best evaluation practices. How-
ever, the fact that using a different implementation was signif-
icant enough to alter experiment outcomes has serious impli-
cations on existing DRL research. In particular, with research
assuming that implementations are interchangeable [15]–[18],
possibly warranting follow-up studies to replicate them and
test whether their claims can be reproduced.

RQ3 Summary: The assumption of interchangeable
implementations was found to be significant enough
to be able to alter the outcomes of an experiment.
In particular, two out of three experiment outcomes
we replicated with a different DDPG implementation
differed from those of the original study.

VI. DISCUSSION

In this section we discuss the (1) key takeaways, (2)
actionable recommendations, and (3) issues and pull requests
we filed for the discrepancies and inconsistencies found.

a) Implementations are not interchangeable: In this
study, we have shown that the assumption of interchangeable
DRL implementations is (1) common among studies, (2)
detrimental to a study’s internal validity, potentially flipping
experiment outcomes, and thus, (3) mistaken. Hence, we
recommend for replicability studies to test whether the claims
of notable studies under this assumption can be reproduced.
Furthermore, we recommend for the replicability studies to
adopt the differential testing methodology used in this study
to increase the fairness of their comparisons.

b) Implementation inconsistencies exist: In RQ1 and
RQ2, we have shown that implementation discrepancies are
prevalent and that code-level inconsistencies cause these dis-
crepancies. Two out of three inconsistencies found were API-
based, suggesting that the complexity of DRL implementa-
tions, including their hyperparameters and stochasticity, make

it difficult for unit testing to eliminate potential issues—
something also observed in the DL domain [55]. Thus, we
believe that individually checking implementations will not
solve the inconsistencies in the long run. The inconsistencies
can instead, be addressed with a more sustainable approach,
at either the implementation or usage stage.

Firstly, for the implementation stage, we recommend that
developers of DRL libraries proactively compare against other
implementations using the differential testing methodology
proposed in this study. This differential testing methodology
can be easily automated with CI/CD and is already incor-
porated in other domains to address implementation incon-
sistencies as well [57], [58]. In fact, in response to our
GitHub issue, Tianshou indicated that they already had plans
for this. Secondly, for the usage stage, we recommend that
developers of DRL libraries explicitly document code-level
inconsistencies for their implementations. Researchers should
conduct their experiments with this in mind—acknowledging
that these inconsistencies exist and avoiding the risk of basing
their conclusions on them. We believe that this paves the way
for more reliable and consistent implementations.

c) Testing granularities: Although the differential testing
methodology used in this study is end-to-end (i.e., testing the
entire algorithm), we would like to highlight that differential
testing of individual functions or components is feasible as
well. However, one significant drawback in doing so is that
only a subset of functions can be tested, as noted by Herbold
and Tunkel [59] when they differential tested Machine Learn-
ing (ML) libraries. This is because of differences between the
hyperparameters and implementations of the functions. For
example, some DRL libraries might expose only a subset of
hyperparameters in their functions, or even combine functions
together, making it difficult to differential test them. Thus,
we opted to test end-to-end for completeness. Nonetheless,
functional testing has its advantages as well; (1) computational
costs can be reduced by testing only what needs to be
tested, and (2) inconsistencies can be localized more easily
by only inspecting the functions that were tested. Thus, we
recommend for researchers and practitioners to test end-to-end
when prioritizing completeness and at a functional level when
prioritizing computational costs and inconsistency localization.

d) Large test suites are preferred: A test suite’s size is
correlated with its effectiveness [60] and should cover as many
situations as possible to increase its effectiveness [61]. Had
we instead opted for any of the optimal Atari environment
subsets proposed by Atari-5 [51], discrepancies among the
high-performing PPO implementations with six environments
in Table II would still have gone undetected. This under-
scores the importance of using a large environment suite for
comparative studies in the DRL domain. This is even more
applicable to studies on the extent of implementation discrep-
ancies, where existing studies in this area only used a small
environment suite for their experiments [19], [62]. Thus, we
recommend for DRL researchers and practitioners to prioritize
using a large environment suite whenever possible, with SBCI.
The additional computation costs can be significantly reduced



by using SBCI to effectively minimize the number of trials
required for accurate and reliable estimates.

e) Issues and pull requests: In total, we filed six issues
and one pull request on GitHub; (1) five issues and one pull
request for the discrepancies and inconsistencies found in RQ1
and RQ2—one issue for each DRL library tested and one
pull request for Baselines’ frames per episode inconsistency,
and (2) one issue for a discrepancy we found with RLlib’s
SAC [63] implementation during our preliminary experiments.
In response to our issues, the developers from Stable Base-
lines3 and CleanRL uncovered two additional inconsistencies
regarding timeouts and value clipping that could account
for the discrepancies among the remaining six environments
in Table II. The developers from Tianshou actively investigated
and confirmed that the cause for the discrepancies was because
of a misleading code example in their repository while the
developers from Baselines and RLlib have yet to acknowl-
edge our issues or pull request. RLlib’s developers, however,
acknowledged our issue regarding the SAC discrepancy, which
was later confirmed to be because of an inconsistency.

VII. THREATS TO VALIDITY

Here, we detail the steps taken to assess and mitigate the
most important threats to validity.

a) Internal validity: Firstly, one concern was with in-
correctly configuring the implementations. Since libraries aim
to implement algorithms that are both logically the same and
compatible with their existing architecture (e.g., by inheriting
from existing classes core to the library), they end up having
different naming conventions and function signatures. For
example, all of the PPO code for CleanRL is contained within
a single file with minimal functions, while the PPO code for
RLlib spans multiple files and functions. This diversity among
implementations is not specific to DRL and is also prevalent
in other domains as well, like ML [59].

To reduce the likelihood of a configuration oversight, we
closely followed the code examples provided by the imple-
mentations, modifying only where necessary. Furthermore,
to ascertain that the discrepancies found were not from a
configuration oversight, we adopted a best effort approach
when debugging them. In particular, we (1) manually re-
inspected the code for inconsistencies that could account for
the discrepancies, (2) re-tested and re-compared when an in-
consistency was found, and (3) contacted the implementations’
developers when we could not fix the discrepancy, as a final
attempt to address it. Moreover, we focused on the high-
performing implementations as their discrepancies were more
likely to stem from actual implementation inconsistencies,
rather than configuration oversights or critical bugs. Nonethe-
less, we still informed developers from all DRL libraries of
the discrepancies found. Lastly, we are confident that any
configuration oversights would not affect the key takeaways
of this study, as they could at most affect a small subset of
the results—–the discrepancies without known inconsistencies
from RLlib’s PPO implementation.

b) External validity: Secondly, one other concern is
that only implementations of two algorithms were tested.
We selected DQN and PPO because they are both common
(implemented in 16 out of the 18 DRL libraries inspected) and
from different DRL paradigms (QL and PG). If discrepancies
and code-level inconsistencies were prevalent among their
implementations, there is a high likelihood that they are
prevalent among implementations of other algorithms as well.
For example, inconsistencies we discovered a year ago with
RLlib’s implementation of SAC with their 2.2.0 release that
are still present in their current release—2.34.0. Furthermore,
their experimental results could potentially be extrapolated to
other similar algorithms in their respective paradigms as well,
as demonstrated with DDPG in RQ3.

VIII. RELATED WORK

In this section, we discuss existing related literature.
a) Implementation discrepancies in DRL: While there

have been recent studies reporting implementation discrepan-
cies in DRL, it was not their primary focus. One study focused
on the nuances between two different algorithms [19] while
another focused on how different values for hyperparameters
influenced the outcome [62], similar to [16]—the study we
replicated in RQ3. Building on the foundations laid by these
studies, our work incorporates several additional methodolo-
gies to further deepen the understanding of implementation
discrepancies; (1) systematic literature reviews and imple-
mentation selection, (2) large test suites, (3) DRL tailored
statistical techniques, and (4) root cause investigation.

b) Differential testing in AI: There has been an abun-
dance of studies using differential testing to identify and
localize discrepancies in AI. In DL, the most common ap-
proaches include either fuzzing, mutation, or targeted search-
ing to generate test cases for differential testing [36]–[40],
and can range from applications such as generating adversarial
inputs [64]–[66], testing DL implementations [67], [68], and
large language model based fuzzers [69]–[72]. Moreover, there
have also been comparative studies similar to this study, but
instead, accessing DL and ML implementations [59], [73],
[74]. Different from these studies, we now apply differential
testing in the DRL domain to investigate the assumption of
interchangeable DRL implementations.

IX. CONCLUSION

We conducted a large-scale testing-focused study to investi-
gate the assumption of interchangeable DRL implementations.
We observed significant discrepancies among the different
implementations, later determined to be caused by code-
level inconsistencies. We demonstrated that this assumption of
implementation interchangeability was then significant enough
to alter experimental outcomes. Lastly, we provided recom-
mendations for DRL researchers and practitioners on how to
reliably use, compare, and test DRL implementations. With the
emerging field of integrating DRL with software testing [75]–
[77], it is imperative to assess and improve the reliability of
DRL implementations and studies, sooner rather than later.
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