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Abstract—Given that smart contracts execute transactions
worth hundreds of millions of dollars daily, the issue of smart
contract security has attracted considerable attention over the
past few years. Traditional methods for detecting vulnerabilities
heavily rely on manually developed rules and features, leading to
the problems of low accuracy, high false positives, and poor scala-
bility. Although deep learning-inspired approaches were designed
to alleviate the problem, most of them rely on monothetic features,
which may result in information incompetence during the learning
process. Furthermore, the lack of available labeled vulnerability
datasets is also a major limitation. To address these issues, we collect
and construct a dataset of five labeled smart contract vulnerabil-
ities, and propose DeepFusion, a vulnerability detection method
that fuses code representation information, including program
slice information and abstraction syntax tree (AST) structured
information. First, we develop automated tools to extract contract
vulnerability slicing information from source code, and extract
structured information from source code-converted AST. Second,
code features and global structured features are fused into the
data. Finally, the fused data are input into the Bidirectional Long
Short-Term Memory+ Attention (BiLSTM+ATT) model for smart
contract vulnerability detection. The BiLSTM model can capture
long-term dependencies in both directions and is more suitable
for processing serialized information generated by DeepFusion,
while the attention mechanism can highlight the characteristic
information of vulnerabilities. We conducted experiments via col-
lecting a real smart contract dataset. The experimental results show
that our method significantly outperforms the existing methods in
detecting the vulnerabilities of reentrancy, timestamp dependence,
integer overflow and underflow, Use tx.origin for authentication,
and Unprotected Self-destruct Instruction by 6.36%, 6.42%, 16.5%,
21.29%, and 25.05%, respectively. To the best of our knowledge,
the latter two vulnerabilities are the first to be detected using deep
learning methods.

Index Terms—Abstraction syntax tree (AST), data fusion,
program slicing, smart contract, vulnerability detection.

Received 20 March 2023; revised 3 August 2024; accepted 7 October 2024.
This work was supported in part by the National Natural Science Foundation of
China under Grant 62272145 and Grant U21B2016, in part by CloudTech-RMIT
Green Bitcoin Joint Research Program, in part by the Fundamental Research
Funds for the Central Universities at Sun Yat-sen University under Grant
24qnpy153, and in part by the National Natural Science Foundation of China
under Grant 62402499. Associate Editor: W. Chu. (Corresponding author:
Pengcheng Zhang.)

Hanting Chu, Pengcheng Zhang, and Shunhui Ji are with the College of Com-
puter Science and Software Engineering, Hohai University, Nanjing 211100,
China (e-mail: pchzhang@hhu.edu.cn).

Hai Dong is with the School of Computing Technologies, RMIT University,
Melbourne, VIC 3000, Australia (e-mail: hai.dong@rmit.edu.au).

Yan Xiao is with the School of Computing, NUS University, Kent Ridge,
Singapore 119077 (e-mail: dcsxan@nus.edu.sg).

Digital Object Identifier 10.1109/TR.2024.3480010

I. INTRODUCTION

B LOCKCHAIN is essentially a distributed shared transac-
tion ledger, the concept of which was first proposed by

Nakamoto in 2008 [1]. Blockchain technology is decentralized,
tamper-proof, and traceable. Smart contracts, among the most
successful applications of blockchain technology, have garnered
significant attention from both academia and industry [2], [3],
[4]. A smart contract is a computer program that runs on
a blockchain platform, usually written in Solidity, a Turing-
complete high-level programming language [5]. Anyone can
write a smart contract and publish it to run on Ethereum. The
security of a smart contract relies on the safety of its supporting
platform Ethereum and its Solidity code. In the past, security
issues with smart contracts have caused significant financial
losses. In the DAO [6] incident that occurred in June 2016,
attackers exploited a reentrancy vulnerability in the smart con-
tracts to make off with over 3.6 million Ether.

Smart contracts are insecure and there are three main reasons
why they can be easily attacked by attackers: 1) Economic
performance. Smart contracts usually handle and manipulate
transactions related to encrypted digital currency. For attack-
ers, attacking smart contracts can bring them huge economic
benefits. 2) Programming language. The application scenarios
of smart contract are complex and dynamic. At present, the
programming language of smart contract is still novel and
rough [7]. In the real-world scenario, it may be difficult for
contract developers to conduct tests, resulting in asset security
problems of smart contracts. 3) Deployment platform. Different
from traditional languages, smart contracts cannot be modified
once deployed. The existence of security vulnerabilities in smart
contracts will lead to unexpected behavior in contracts, which
goes against the original intention of creating fair and reliable
contracts. Vulnerability detection is a crucial topic in smart
contract security research [8]. Many tools have been developed
for detecting vulnerabilities [9], [10], [11], [12], [13], [14], [15],
[16]. At present, most of the research work on vulnerability
detection rely on traditional methods, that is, manually defining
and summarizing vulnerability rules according to the charac-
teristics of vulnerabilities to be detected [17], [18]. However,
such manually developed detection rules may lead to high false
positive rates and are unable to cope with complex vulnerability
patterns [19]. Furthermore, with the explosive growth of smart
contracts, the detection rules developed by domain experts are
less flexible and adaptable to diversity and dynamic changes of
smart contract vulnerabilities [20].
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Compared with these methods, smart contract vulnerability
detection based on deep learning has higher accuracy and com-
pleteness. It mainly employs deep learning to learn and analyze
the lexical, syntax, control flow, data flow, and other information
of the code [18]. However, these deep learning-based vulnera-
bility detection methods are still in the early stage. Most of the
existing methods, such as TMP and DR-GCN [21], rely on single
graph features to process the vulnerability programs, which is
deficient in a global structured view (e.g., the structure of AST
(Abstract Syntax Tree)). This limitation prevents these methods
from further improving their detection performance. To solve the
above problems, we propose DeepFusion, a method combining
structured information from AST with program slices. Specif-
ically, DeepFusion first analyzes the data flow, control flow
of a smart contract, and adopts the program slicing technique
to automatically extract vulnerability code slices. Next, the
syntax parser is used to compile the smart contract to generate
AST. DeepFusion then employs the custom traversal method
to automatically extract the AST structured information of the
contract. Finally, based on a predefined deep learning model,
DeepFusion can fuse the characteristics of contract vulnerability
slice information and AST structured information. It is able to
detect five serious contract vulnerabilities in the Ethereum smart
contract environment.

Contributions: The main contributions of this article are as
follows:

1) We combine sliced information with AST structured in-
formation to construct the data fragments that highlight
vulnerabilities while preserving the overall data structure
and enhancing the interpretability of the data.

2) DeepFusion is the first method to detect tx.origin vulner-
ability and unprotected self-destruct instruction vulner-
ability. To this end, we propose a simple and effective
feature fusion-based detection network model based on
BiLSTM+ATT. To the best of our knowledge, this is the
first time such a technique is employed in this area.

3) The experiments show that DeepFusion outperforms the
other existing methods in terms of vulnerability detection
accuracy, recall, precision, and F1 score. In the case
of Reentrancy, Timestamp Dependency, Use tx.origin,
Integer Overflow and Underflow and Unprotected Self-
Destruct Instruction vulnerabilities, the highest accuracy
of the existing methods is increased by 6.36%, 6.42%,
21.29%, 16.5%, and 25.05%, respectively. DeepFusion
achieves an average accuracy, recall, precision, and F1
score of 90.74%, 90.80%, 90.29%, and 90.65% for the
five vulnerabilities. Our collected dataset and implemen-
tations of DeepFusion are released at https://github.com/
Tourneso/DeepFusion.

The rest of this article is organized as follows:
Section II provides background information pertinent to this
research, encompassing smart contract vulnerability detection,
vulnerability classification frameworks, types of vulnerabilities,
and call graphs. Section III details our approach. Section IV
demonstrates the validation of our method using a collected
dataset of buggy smart contracts. After a discussion of related

work in Section V, the article concludes with future work plans
in Section VI.

II. BACKGROUND

A. Vulnerability Classification Framework

Numerous studies have addressed the classification and stan-
dardization of smart contract vulnerabilities [22]. In 2017,
Atzei et al. [23] were pioneers in analyzing Ethereum smart
contract vulnerabilities, classifying them into three categories:
programming language, virtual machine, and blockchain [24].
Subsequently, Dika et al. [25] adopted this classification, cat-
egorizing security issues into low, medium, and high risks.
The decentralized application security project (DASP) in 2018
identified ten types of high-risk vulnerabilities [26]. Two years
later, Chen et al. [27] analyzed real Ethereum smart contracts
and discussion posts, defining 20 types of flaws concerning
security, usability, maintainability, and reusability. In addition,
Zhang et al. [28] extended the IEEE Standard Classification
for Software Anomalies to develop JiuZhou, a comprehensive
framework that categorizes and assigns severity levels to 49
types of vulnerabilities.

This article focuses on the detection of five kinds of smart
contract vulnerabilities selected upon their high severity and/or
prevalence, i.e., Reentrancy vulnerability, Timestamp Depen-
dency vulnerability, Use tx.origin for authentication vulnera-
bility and Integer Overflow and Underflow vulnerability and
Unprotected Self-Destruct Instruction vulnerability.

B. Vulnerability Type

Many factors need to be taken into account in the process of
selecting the types of vulnerability to be detected. It needs to
consider not only a vulnerability’s extent of damage, but also
its universality [12]. Therefore, we select the following five
vulnerabilities as the research targets.

Reentrancy: The reentrancy vulnerability is one of the most
destructive types of security vulnerabilities. The infamous DAO
attack [29], [30] exploited this vulnerability. It typically occurs
when a transfer is made to an external user address, and the ex-
ternal user address recursively calls the same function of the con-
tract [19]. Solidity language includes a default fallback function
without a function name or parameters, which is automatically
triggered when a transfer occurs in a smart contract. During the
transfer operation, a reentrancy attack can be triggered before the
contract state variables are modified. Consequently, an attacker
can trigger a malicious fallback function, causing the smart
contract to repeatedly call the transfer function until the account
balance reaches 0.

Timestamp Dependency: The Ethereum protocol stipulates
that miners can freely set the timestamp of the block when the
timestamp difference is less than 900 s [25]. If the smart contract
developer uses the timestamp as one of the key execution condi-
tions for executing a transaction or generating random numbers,
there are risks of timestamp dependence vulnerabilities. When
the smart contract uses the timestamp as the execution condition
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of the ether transmission, attackers can form an attack by ma-
nipulating the timestamp in the block to disguise the transaction,
resulting in the loss of property.

Integer Overflow and Underflow: The integer overflow and
underflow vulnerability occurs when the result of an operation
exceeds the value range of the function itself [31], which results
in an out-of-bounds value. Smart contracts issuing ethers are
prone to integer overflow and underflow vulnerabilities. There
have been numerous cases where smart contracts are exploited
by attackers to launch attacks due to integer overflow and under-
flow vulnerabilities, which is a high-risk vulnerability [32]. An
attacker may use this vulnerability to transfer a large number
of ethers to a specific address at the cost of a relatively small
amount of ethers, which may result in serious financial loss.

Use tx.origin for authentication: The tx.origin variable in the
Solidity language is a global variable that represents the address
of a contract initiating a transaction [33]. For example, if contract
A initiates a transaction that calls contract B, and contract B
calls contract C, the entire call chain can be abstracted as A →
B→C, then tx.origin is the address of contract A and msg.sender
is the address of contract B. Use tx.origin for authentication
refers to the use of the tx.origin variable to determine the control
authority of a contract instead of using the msg.sender variable.
An attacker may use this vulnerability to disguise their identity
and launch an attack against the user who invokes the contract.

Unprotected Self-Destruct Instruction: Since smart contracts
are immutable postdeployment, they often include a destruction
function, necessitating the incorporation of a suicide function
during the contract’s development [34]. If a defect is identified
within the contract, financial losses can be mitigated by acti-
vating the suicide function, which terminates the contract and
reallocates the ethers to a predetermined address. However, if a
smart contract with a suicide function lacks adequate permission
controls, any user can execute this function, prematurely ending
the contract and redirecting its ethers to an address of their
choosing. Such vulnerabilities can compromise the contract’s
intended functionality and lead to significant financial losses.

C. Call Graph

A call graph (also known as call multigraph) [35] is a control
flow graph that represents the call relationship between sub-
programs of a computer program. A simple application of call
graphs is to find procedures that have never been called. Call
graphs can be used for the human to understand a program. They
can also serve as a basis for other types of analysis, such as the
analysis of value flow between tracking processes, or changing
impact prediction. Call graphs can also be used to detect program
execution exceptions or code injection attacks. In this article, we
analyze the calling relationship between internal functions of a
contract based on the call graph generated by Slither, so as to
obtain the possible data flow and control flow information.

III. DEEPFUSION

A. Overview of DeepFusion

DeepFusion is a deep learning-based vulnerability detection
tool for Ethereum smart contracts, which adopts a supervised

learning paradigm. It can detect five types of severe vulnerabil-
ities. Fig. 1 shows the overall workflow of DeepFusion. Deep-
Fusion includes three parts: data preprocessing and represen-
tation, model training, and model prediction. DeepFusion first
conducts experiments using the manually collected, annotated,
and verified dataset collected by Data Collection described in
Section III-B. Second, for different vulnerability types, Deep-
Fusion extracts the corresponding target function fragments (de-
scribed in Section III-C: Target Function Extractor). On the basis
of the above function fragments, DeepFusion analyzes the data
flow and control flow of the vulnerable contracts, and extracts
the vulnerability program slicing information (implemented by
Program Slicing Extractor described in Section III-D) and AST
structured information (obtained by AST Structured Informa-
tion Extractor introduced in Section III-E). DeepFusion fuses
the two kinds of information, and then enters the information
into a predesigned model for training and prediction (imple-
mented by Model Training and Model Prediction depicted in
Section III-F).

B. Data Collection

Before detailing the proposed vulnerability detection ap-
proach, we outline the data collection process. The dataset was
sourced in two primary ways: initially, the keywords smart con-
tract vulnerability, smart contracts buggy, and smart contracts
defects were employed to identify relevant data on GitHub and
the Gitter chat room.1 Subsequently, Karl,2 a tool used in con-
junction with Mythril for blockchain monitoring, was utilized
to gather new smart contracts from the Ethereum.3 Karl and
Mythril can pinpoint addresses of smart contracts potentially
harboring vulnerabilities. For data labeling, we utilized tools
such as Mythril, Oyente, Slither, and SmartCheck to evaluate
the collected contracts. If at least three out of these four tools
indicated an issue, a contract line was manually verified and
labeled as vulnerable. These verified and labeled contracts were
then incorporated into the vulnerability dataset. This process
involved two blockchain security developers, each with over five
years of experience in smart contract development and security
auditing. They reviewed the code to confirm the presence of
vulnerabilities and their specific types, thereby ensuring the
accuracy of the labels.

C. Target Function Extractor

The goal of target function extractor is to obtain function
fragments related to vulnerabilities. DeepFusion analyzes the
global generated by Slither to extract complete function-call
paths from a contract. A function-call path refers to a sequence of
nodes, each of which denotes a function. The linear relationship
in this function-call path represents that the previous function
calls the next function. It is noteworthy that for different types
of vulnerabilities, the internal workflows and the employed
techniques of target function extractor are distinct.

1[Online]. Available: https://gitter.im/orgs/ethereum/rooms/
2[Online]. Available: https://github.com/cleanunicorn/karl
3[Online]. Available: https://etherscan.io
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Fig. 1. Overall flowchart for DeepFusion.

1) Target Function Extractor of Reentrancy (TFER):
Reentrancy vulnerability is considered as an invocation to
call-statements that can call back to itself through a chain of
calls. On the basis of the global call-graph, TFER analyzes
the abstract syntax tree json file generated by solc (official
compiler of solidity) to locate the function path containing
the call-statement, TFER extracts function paths containing
call-statements. If there are statements that perform checks on
account balance information, TFER will extract these state-
ments. For example, if the user balance is deducted before using
call.value for transfer, then the contract usually does not suffer
from the reentrancy vulnerability. In addition, for the objectivity
of the dataset, the deposit paths in which a function is declared
as payable will be extracted for the extraction of the full func-
tion fragment containing the transaction. TFER subsequently
extracts the complete functional fragments in accordance with
the specified function paths.

2) Target Function Extractor of Timestamp Dependence
(TFET): Timestamp Dependence vulnerability exists when a
smart contract uses the block.timestamp or now as part of the
attributes to perform critical operations, then the miners can con-
trol the attributes related to mining and blocks. If the functions
of the contract depend on these attributes, the miner can interfere
with the functions of the contract. TFET extracts function paths
containing block.timestamp or now in the collected dataset. If
there is a variable calling on the value of block.timestamp or
a statement passing block.timestamp as an argument, TFET
will extract the statement. For example, if block.timestamp is
assigned to a variable, which is used or restricted by strict
condition statements, e.g., require or assert in the next process,
we consider that this contract does not contain timestamp de-
pendence. TFET subsequently extracts the complete functional
fragments in accordance with the specified function paths.

3) Target Function Extractor of Integer Overflow and Under-
flow (TFEI): In solidity, an overflow or underflow occurs when

the value of an integer variable is higher or lower than it can
handle, which can lead to unpredictable situations. Therefore,
it is important to validate the input parameters and output
results before arithmetic operations are performed in a smart
contract. TFEI first searches for function paths containing the
arithmetic operations-statements in the contracts. If there is a
safemath library function that constrains arithmetic operations
or a conditional statement that constrains variables of arithmetic
operations, TFEI will extract these constraint statements. For ex-
ample, if a contract’s function fragments containing arithmetic
operations are bound by the safemath library, we consider that
this contract does not contain integer overflow and underflow.
TFEI subsequently extracts the complete functional fragments
in accordance with the specified function paths.

4) Target Function Extractor of Use Tx.origin (TFETX):
TFETX first searches for function paths containing the tx.origin-
statements in the contracts. If there are tx.origin-statements in
a contract’s function modifier), all function fragments modified
by this function modifier will become our target functions. If
msg.sender==tx.origin is used to reject an external contract to
invoke the current contract, we will identify this function as
the target function. TFETX subsequently extracts the complete
functional fragments in accordance with the specified function
paths.

5) Target Function Extractor of Unprotected Self-Destruct
Instruction (TFEU): The self-destruct and suicide functions in
smart contracts are the methods that can be used to remove an
already deployed contract on Ether. The self-destruct and suicide
functions can be called to stop the contract when there is a secu-
rity problem. If the access to these functions is not well protected,
then the smart contract can be compromised by an attacker.
TFEU first search for paths containing a suicide-statement or a
selfdestruct-statement. If there is a variable calling on the value
of a suicide-statement or a self-destruct-statement, TFEU also
extracts the statement. For example, if a suicide-statement or a
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Algorithm 1: Program Slicing Extractor Algorithm.

self-destruct-statement is assigned to a variable, which is used
or restricted by strict condition statements, e.g., require or assert
in the next process, we consider that this contract does not con-
tain unprotected self-destruct instruction. TFEU subsequently
extracts the complete functional fragments in accordance with
the specified function paths.

D. Program Slicing Extractor

Techniques of program slicing [36] are utilized to extract the
semantic information from the code. Program Slicing Extractor
is designed to extract program slicing information related to
vulnerabilities. Here, we mainly use the abstract syntax tree json
file generated by solc to extract the vulnerability program slicing
information. Algorithm 1 shows the whole process of Program
Slicing Extractor.

Given target functional fragments’ source code SC and asso-
ciated vulnerability standardsV S, we intend to obtain a program
slice of a contract for the vulnerability. First, we use solc to
compile the contract to generate AST and then generate the
variable setV C of the contract based on the vulnerability criteria
in Line 1-2. In Line 3, we traverse the contract AST. For each
statement that has data dependence on the V C, all of them are
added to the program slice set as the extracted program slice
information of the contract as shown in Lines 4–7. Moreover,
for each statement that has control dependence on the V C, all
of them are also added into the program slice in Lines 8–11.

1) Program Slicing Extractor of Reentrancy (PSER): For
the reentrancy vulnerability, PSER initially extracts the address
variable located ahead of the call-statements from the target
functional fragments described in Section III-C-1. It then forms
program slices with all statements that operate on the address
variable.

Fig. 2 shows a Reentrancy program before and after slicing.
First, PSER locates the call.value function on line 165 and adds
the transfer (157, 172) to the set of slicing. It then extracts all
statements that contain _to variable (158, 159, 161, 164, 165,
166, 167, 170) preceding the call.value function. In particular, if
the variable is present in a conditional judgment statement (e.g.,
in an if), PSER extracts the entire conditional judgment (161,

Fig. 2. Comparison before and after program slicing of a reentrancy vulnera-
bility example (slicing information is preserved as circled in red).

Fig. 3. Comparison before and after program slicing of a timestamp depen-
dence vulnerability example (slicing information is preserved as circled in red).

168, 169, 171). Finally, the entire set of statements is combined
as (157, 158, 159, 161, 164, 165, 166, 167, 168, 169, 170, 171,
172).

2) Program Slicing Extractor of Timestamp Dependence
(PSET): For the timestamp dependence vulnerability, PSET first
locates the position of block.timestamp or now, and then checks
whether the variable is assigned to another variable. Next, com-
bined with the AST json file generated by solc, PSET analyzes
the statements that use the variable in the next function fragment,
followed by composing the above statements into slices.

A comparison of a timestamp dependence vulnerability ex-
ample before and after slicing is shown in Fig. 3. First, PSET
locates the variable block.timestamp on line 595, and adds
the updatePool function (589, 604) to this set of slicing. But
the variable is located in the if-statement. PSET thus adds
the whole if-conditional judgment code block to this set (595,
596, 597, 598). In the if-conditional code block, the next step
is to find the statements that have the data dependence with
pool.lastRewardBlock (599, 600, 601, 602). Finally, the entire
set of timestamp dependence is jointed with (589, 590, 595, 596,
597, 598, 599, 600, 601, 602, 604).

3) Program Slicing Extractor of Integer Overflow and Un-
derflow (PSEI): For the integer overflow and underflow vulner-
ability, PSEI first locates the position of arithmetic operations,
and then checks if any other variable makes a call to that variable.
Next, combined with the AST json file generated by solc, PSEI
analyzes the statements that use the variable in the next function
fragment, followed by composing the above statements into
slices.

Fig. 4 shows an Integer Overflow and Underflow program
before and after slicing. First, PSEI extracts the arithmetic op-
erations on line 257 and locates the batchTransfer function (255,
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Fig. 4. Comparison before and after program slicing of an integer overflow
and underflow vulnerability example (slicing information is preserved as circled
in red).

Fig. 5. Comparison before and after program slicing of a tx.origin vulnerabil-
ity example (slicing information is preserved as circled in red).

268), then finds all the variables associated with this arithmetic
operations (258, 259, 262). It extracts the statements that contain
these variables and are not bound by the safeMath function. If
the variables appear in a loop statement, PSEI extracts the entire
loop (262, 263, 264, 265). Finally, the whole set of statements is
combined as (255, 257, 258, 259, 262, 263, 264, 265, 266, 267).

4) Program Slicing Extractor of Use Tx.origin (PSETX):
For the Use Tx.origin vulnerability, PSETX first locates the
position of tx.origin-statements. If tx.origin is used as a variable
of address type, PSETX obtains all statements that operate with
this address variable. Next, combined with the AST json file
generated by solc, PSETX analyzes the statements that use
the variable in the next function fragment, and forms these
statements into slices.

A comparison of a tx.origin vulnerability example before
and after slices is shown in Fig. 5. First, PSETX locates the
variable tx.origin on line 273. Since this variable is in the
require-statement judgment, PSETX adds all subsequent state-
ments (275, 276, 278, 279). Finally, it extracts all statements
that contain variables (271, 273, 275, 276, 278, 279, 280) and
combines the whole set of statements into a new slice.

5) Program Slicing Extractor of Unprotected Self-Destruct
Instruction (PTSU): For the unprotected self-destruct instruc-
tion vulnerability, PTSU first locates the position of suicide-
statement or self-destruct-statement, and then checks whether
the variable is assigned to another variable. Next, combined
with the AST json file generated by solc, PTSU analyzes the
statements that use the variable in the next function fragment,
and forms these statements into slices.

A comparison of an unprotected self-destruct instruction vul-
nerability example before and after slices is shown in Fig. 6.
First, PTSU locates the variable self-destruct on line 233. Since
this variable is in the if-statement judgment, PTSU inserts sub-
sequent statements (233, 234). Finally, it extracts all statements
that contain variables (228, 229, 230, 231, 233, 234) and com-
bines the whole set of statements into a new slice.

Fig. 6. Comparison before and after program slicing of an unprotected self-
destruct instruction vulnerability example (slicing information is preserved as
circled in red).

Fig. 7. Example of an abstract syntax tree.

TABLE I
AST INFORMATION SERIALIZATION

E. AST Structured Information Extractor

The AST Structured Information Extractor is designed to
extract the structured information from the functional fragments
discussed in Section III-C. To achieve this, we employ ANTLR,4

a powerful parser generator that is adept at translating structured
text and analyzing language, to parse these function fragments
into an AST [30], [37]. The abstract syntax structure of the
source code is represented by the AST in a tree-like format.
In this process, the AST of the function fragments is serialized
using a depth-first search. It should be noted that, for different
types of vulnerability fragments in Section III-C, we use the
same traversal method to convert them into serialized AST
fragments. Fig. 7 shows a sample abstract syntax tree generated
by the ANTLR compilation. The results converted and shown in
Table I demonstrate that the structured information is preserved.

4[Online]. Available: https://github.com/solidity-parser/antlr
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Fig. 8. Example without normalization.

Fig. 9. Example with normalization.

F. Model Training and Model Prediction

1) Normalization and Embedding: Before inputting the data
of Section III-D into the model training and tesing, we need
to normalize the function fragments to eliminate the impact of
some variables. Especially, we focus on the following variables.
For user-defined variable names, function names are uniformly
represented by VAR{n}, Fun{n}, etc., where n represents the
order in which variables appear in the current function segments.

As shown in Fig. 8, for user-defined variables, it is valueless
for performing vulnerability feature extraction. Instead, we nor-
malize them to reduce the interference of semantically irrelevant
information and obtain the corresponding code slice word vector.
The data processed by Normalization are shown in Fig. 9.

We need to use word segmentation to convert the program
slicing of Section III-D and the AST structured fragments of
Section III-E into code tokens, and then use word embedding
to convert the above tokens into vectors, which are ready to be
inputted into the model for training and testing.

2) Our Model: The work of Dam et al. [38] has verified the
advantages of LSTM in code, since code follows a logical and
semantic structure and is closely coupled. In addition, vulnerable
code fragments is usually closely related to their context, which
can be handled by LSTM. Therefore, here we briefly introduce
the employed LSTM model and its variant (i.e., BiLSTM).
The LSTM model, designed to alleviate the gradient vanishing
problem in traditional RNNs, was devised to more accurately
find and exploit long-range context using special memory cells.
An LSTM layer is composed of several memory blocks, each
recurrently connected. Within each block, there are one or more
recurrently connected cell states Ct and a single model unit.
This unit includes an input gate it, an output gate ot, and a
forget gate ft, all of which regulate the flow of information
within the memory block. The forget gate determines which
information should be discarded from the cell state, while the
input gate decides the amount of new information to be added
to the cell state. The output gate determines the value to be
generated as output. The hidden state ht of an LSTM cell is

calculated according to (1)–(6). In these equations, C̃t represents
a vector of new candidate values,σ denotes the sigmoid function,
tanh is the hyperbolic tangent function, and ∗ indicates both
matrix multiplication and element-wise product. We employed a
bidirectional LSTM (BiLSTM) model to obtain both past and fu-
ture bidirectional information of sequences, where the sequence
features fed into the BiLSTM model are multidimensional. Since
the traditional LSTM model does not evaluate the contribution
of different sequence features to the final result and weights them
equally, we further introduced an attention mechanism to assign
different weights to the features based on their contributions

ft = σ(Wf · [ht−1, xt] + bf ) (1)

it = σ(Wi · [ht−1, xt] + bi) (2)

C̃t = tanh(WC · [ht−1, xt] + bC) (3)

Ct = ft ∗ Ct−1 + it ∗ C̃t (4)

ot = σ(Wo · [ht−1, xt] + bo) (5)

ht = ot ∗ tanh(Ct) (6)

st = tanh(W�ht + b) (7)

at = softmax(st) =
Exp(st)∑
t Exp(st)

(8)

T =

n∑

t=1

at ∗ ht (9)

where (7) is the formula for calculating the score of each feature
vector. After capturing the score of each feature vector, (8)
obtains the normalized weights for the attention mechanism by
performing a normalization operation using the softmax function
and T indicates the final output.

3) Training and Prediction: In this article, we integrate two
features containing vulnerability information. One is the pro-
gram slicing feature of vulnerabilities, and the other is the
structural feature of serialized AST converted by a vulnerability
fragment. Therefore, in the training of our model, the word
vectors from the two types of information described in Sections
III-D and III-E are concatenated to form a new vector. This
vector represents a combined code representation of the feature
information. Unlike more complex feature fusion approaches
that involve assigning specific weights to each feature set, our
method leverages the complementary nature of program slicing
and AST features, as program slicing captures control and data
flow relationships while AST captures hierarchical structure.
Ultimately, this vector is used as the input to train a deep-
learning model for detection. We construct a BiLSTM+ATT
model. The BiLSTM employs a bi-directional LSTM model to
obtain sequence information in both directions, which can better
handle long sequences. The addition of an attention mechanism
can highlight important features. These models take vectors
as input, followed by a standard training process. We conduct
experimental analysis in the next section.

For model prediction, given source code of target smart con-
tracts, it will be handled by aforementioned steps (i.e., target
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Fig. 10. Dataset distribution.

function extractor, program slicing extractor, AST Structured
Information Extractor, and normalization and embedding). The
trained models will take these embedded vectors as input to
identify whether the target contract contains vulnerabilities.

IV. EXPERIMENT AND EVALUATION

A. Dataset and Research Questions

We manually collected and constructed a dataset containing
tens of thousands of smart contracts and performed manual
validation. The dataset contains 109 834 smart contracts with
about 3 236 421 functions. Through manual analysis and re-
view, 4313 smart contracts containing Reentrancy, Timestamp
Dependence, Tx.origin, Integer Overflow, and Underflow and
Unprotected Self-Destruct Instruction vulnerabilities are se-
lected. We used this dataset to evaluate the proposed method.
Filtered 1229 smart contracts containing Reentrancy functions,
of which 324 required manual verification. A total of 651 smart
contracts with Timestamp Dependency function, of which 291
require manual verification. A total of 804 smart contracts with
Tx.origin features, including 303 smart contracts that require
manual verification. A total of 1097 smart contracts with Integer
Overflow and Underflow feature, of which 264 smart contracts
require manual verification. A total of 532 smart contracts with
Unprotected Self-Destruct Instruction feature, of which 185
require manual verification. As shown in Fig. 10, the program
slicing and model training part were implemented in python, and
the AST structured information extraction part was implemented
in Java. We randomly divided 80% of the dataset into a training
set and the remaining 20% into a test set. We repeated each
experiment ten times and calculated the average values to obtain
the final experimental results.

We have attempted to respond to the following four research
questions:

1) RQ1: Is DeepFusion applicable to these five vulnerability
types? How is its performance?

2) RQ2: Can fusion of vulnerability feature fragments and
structured information improve the detection perfor-
mance?

3) RQ3: How is the performance of DeepFusion compared
to the existing methods and detection tools?

4) RQ4: How efficient is DeepFusion?

B. Evaluation Metrics

We evaluate the performance of DeepFusion in term of four
widely used indicators, i.e., accuracy, recall, precision, and F1
score, where TP indicates that a vulnerable sample is success-
fully predicted as a vulnerable sample by the model; FP indicates
that a nonvulnerable sample is predicted as a vulnerable sample
by the model; TN represents that a nonvulnerable sample is
successfully predicted as a nonvulnerable sample by the model;
and FN represents that a vulnerable sample is predicted as a
nonvulnerable sample by the model. The specific calculation
formulas are as follows.

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

Recall =
TP

TP + FN
(11)

Precision =
TP

TP + FP
(12)

F1 =
2 ∗ precision ∗ recall
precision+ recall

(13)

C. Performance

DeepFusion uses BiLSTM+ATT for model training and de-
tection. To answer RQ1, we conduct comparative experiments to
detect five types of vulnerabilities by replacing BiLSTM+ATT
with LSTM, GRU, DNN, BiLSTM, and RNN to show the effec-
tiveness of the method. First, by comparing among models, the
most suitable model for smart contract vulnerability detection
is obtained. After selecting the best neural network model, we
conduct comparative experiments with different experimental
parameters to select the most appropriate hyperparameters. To
ensure the fairness of the experiments, each method adopts the
same data processing and feature extraction methods, and detects
the same vulnerability types.

The range of learning rate is set as [0.0001, 0.0002, 0.0005,
0.001, 0.002, 0.005, 0.01], the range of dropout rate is set as
[0.1, 0.2, 0.3, 0.4, 0.5], the range of batch size is set as [32, 64,
128], and the range of the dimension of each token vector is set
to [50, 100, 150, 200].

We comprehensively evaluate the performance of the models
in terms of accuracy, recall, precision, and F1 score, the results
of which are shown in Table II. In terms of processing long
sequence data, the performance of the LSTM and DNN model
are better than that of the traditional RNN and GRU model.
Therefore, LSTM and DNN are more suitable than RNN and
GRU for processing smart contract data. BiLSTM can simul-
taneously capture bidirectional (i.e., forward and backward)
long-term and short-term dependencies, which shows better per-
formance than LSTM and DNN. Further, attention mechanism
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TABLE II
PERFORMANCE EVALUATION OF THE MODELS ON REENTRANCY, TIMESTAMP DEPENDENCE, TX.ORIGIN, INTEGER OVERFLOW, AND UNDERFLOW AND UNPROTECTED

SELF-DESTRUCT INSTRUCTION

TABLE III
PERFORMANCE EVALUATION BETWEEN SINGLE FEATURES AND FUSED FEATURES

can highlight key features and greatly improve the performance
of the BiLSTM model. As a result, BiLSTM+ATT achieves the
best performance on most of the metrics.

Answer to RQ1:DeepFusion is applicable and effective to
the five types of vulnerabilities, and it achieves the best
performance on BiLSTM+ATT. DeepFusion achieves an
average accuracy, recall, precision and F1 score of 90.74%,
91.03%, 90.63%, and 90.66% for the five vulnerabilities.

D. Ablation Study

In order to demonstrate the effectiveness of this code embed-
ding method, we visualized the effect of token embedding using
the T-distribution stochastic neighbour embedding (TSNE)
algorithm [39]. Dimensions in the range of a few hundreds
have been used in the literature with reasonably promising
effectiveness [9], [39], [40].

We explore how BiLSTM+ATT performs on single features
and which feature poses greater impact on the performance of
the method. Therefore, to answer RQ2, we carried out ablation
experiments to evaluate the performance of the model in single
representation and fused representations in terms of Accuracy,
Recall, Precision, and F1-score.

Result: As shown in Fig. 11, tokens with similar semantic
characteristics—such as data types (e.g., unit256, unit, bytes32),
operators (e.g., ==, >, >=, +, +=), sensitive keywords

Fig. 11. Visualization of code embedding results.

(e.g., call, value, msg, sender), and separators (e.g., {, })—are
clustered together. This visualization effectively demonstrates
the validity of the word embedding representation in capturing
meaningful semantic relationships between tokens. In this ar-
ticle, we mainly focus on fusing program slicing feature and
AST structure feature of vulnerability code. Table III shows
the performance of different code representations (i.e., program
slice, AST structure, and their fusion) on the BiLSTM+ATT
model. We find that the performance of the fused representa-
tion is always better than that of single code representations.
The expressive power of the model based on program slicing
representation is slightly stronger than that based on the AST
structured representation. Therefore, it can be concluded that
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TABLE IV
PERFORMANCE COMPARISON OF WITH THE EXISTING TOOLS/METHODS ON REENTRANCY, TIMESTAMP DEPENDENCE, INTEGER OVERFLOW AND UNDERFLOW,

TX.ORIGIN AND UNPROTECTED SELF-DESTRUCT INSTRUCTION

the program slicing feature plays a more important role in the
performance of DeepFusion.

Analysis: The reason why fused representations show better
performance than single representation is that the former extract
both structure-based and program-based feature information,
highlighting vulnerability features while retaining structured
information, allowing the model to learn more contractual in-
formation at the same time. Next, we analyze the rationality of
the better performance of program slice in single representations.
The program slice information is extracted in a more fine-grained
way. In other words, based on the analysis of smart contract data
flow and control flow, DeepFusion takes a single variable or
statement as the benchmark, extracts the statements affected by
the variable or statement, or the statements affecting the variable
or statement, and forms code slices. In contrast, due to the
peculiarity of the syntax parser, AST structure is extracted from
functions. Inside a single function, there may be many variables
or statements irrelevant to the vulnerability, which may affect
the performance of DeepFusion on BiLSTM+ATT and reduce
its performance.

Answer to RQ2: Fusion of vulnerability feature fragments
and structured information can improve the detection per-
formance of the model. DeepFusion improves the accuracy,
recall, precision, and F1 score of the one without feature
fusion by an average of 3.71%, 3.44%, 5.42%, and 6.30% on
the five vulnerabilities.

E. Comparison

To answer RQ3, experiments are conducted by comparing the
proposed method with nine state-of-the-art smart contract vul-
nerability detection tools (i.e. SmartCheck, Conkas, Honeybad-
ger, Mythril, Osiris, Oyente, Securify, Slither, and Maian [25],
[32], [41]) and four deep learning based methods (i.e. CEG [13],

AME [42], TMP, and DR-GCN [21]) based on accuracy, recall,
precision, and F1-score.

The state-of-the-art smart contract analysis tools are collected
via two channels: 1) analysis tools/methods that have been
covered by the latest empirical review papers, i.e., [6], [43];
and 2) analysis tools/methods that are available on GitHub. We
used the keywords smart contract security and smart contract
analysis tools to search in Github and select the 20 tools with
the highest numbers of stars from the search results. Next, we
selected the nine tools and four methods based on the following
criteria:

1) Criterion 1: Its input is Solidity source code.
2) Criterion 2: It supports command-line interface so that we

can apply it to buggy contracts automatically.
3) Criterion 3: It is widely used in current research and

supports the detection of some of the five targeted vul-
nerability types.

1) Comparison With Traditional tools/method. Result: Ta-
ble IV shows the experimental results of the state-of-the-art
vulnerability detection tools and methods, where N/A represents
that the analysis tool/method is not designed to detect a certain
type of vulnerability. Our method shows better performance
than all the baselines in terms of all the performance metrics.

For most of the vulnerability types, the proposed method
shows significant improvement in all the performance metrics
compared with the state-of-the-art vulnerability detection tools
and methods. The accuracy of DeepFusion in detecting the vul-
nerabilities of reentrancy, timestamp dependence, integer over-
flow and underflow, Use tx.origin for authentication, and Unpro-
tected Self-Destruct Instruction is improved by 4.97%, 2.92%,
16.5%, 21.29%, and 25.05%, respectively. DeepFusion achieves
an average accuracy, recall, precision, and F1 score of 90.74%,
91.03%, 90.63%, and 90.66% for the five vulnerabilities.

Analysis: The existing tools show the following prob-
lems in detecting smart contract vulnerabilities: 1) The types
of vulnerabilities covered by those detection tools are not
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comprehensive enough. Among the nine commonly used de-
tection tools selected, only Slither covers the five vulnerability
types. 2) The performance of most of these tools is unsatisfac-
tory. Generally speaking, the performance of the analysis tools
based on pattern matching or feature capture (represented by
Slither and SmartCheck), is higher than that of the tools based
on dynamic analysis (represented by Mythril). When we use the
analysis tools to detect the contracts, we find that the average
detection time of the dynamic analysis is too long due to the
path reachability problem, which may generate an unpleasant
user experience in actual applications.

2) Comparison With Deep Learning Methods: Here we con-
duct an in-depth analysis on the deep learning-based methods.
DR-GCN and TMP [21] are based on graph neural networks
to detect reentrancy and timestamp dependence vulnerabilities.
They construct contract graphs by extracting control and data
flow information from the smart contract code, identifying key
function calls or variables as nodes, mapping relationships be-
tween functions as edges, and normalizing the resulting graphs.
The normalized graphs are finally fed into a graph neural net-
work model for training. Their major difference is that TMP
takes into account temporal order information when constructing
the contract graph while DR-GCN does not. CGE [13] and
AME [42] detect reentrancy and timestamp dependence vulnera-
bilities based on graph neural networks with added expert rules.
They first extract vulnerability features according to expert rules,
then use contract graphs to represent the semantic information
of source code control flow and data flow, and finally feed the
normalized contract graphs into the graph neural network model
for training. The main difference between them is that AME
considers the weight information of different features during
model training, while CGE does not.

Result: From Table IV, we can see that, although the deep
learning methods outperform the existing detection tools, the
performance of the former is still worse than our method on
most of the metrics.

Analysis: It is found that, although the deep learning methods
can use program slicing techniques to retain feature information
about vulnerabilities, some valuable information may be lost
in the learning process. The reason why DR-GCN performs
worse than TMP is that DR-GCN can only use control flow
and data flow information to construct the contract graph, while
TMP also considers time series in addition to the information
when constructing the contract graph. The latter connects the
nodes in chronological order using directed edges with tem-
poral order, and thus generates a contract graph that contains
more feature information. However, TMP does not consider
the overall structured information. The reason why TMP is
not as promising as CGE and AME is that TMP only uses
program slicing for vulnerability feature extraction, while CGE
and AME use expert rules to extract vulnerability features. These
two methods also use directed edges with time sequence to
generate contract graphs containing feature information. The
reason why CGE does not perform as well as AME is that CGE
can only extract vulnerability feature information using expert
rules, while AME also considers using weight information to
highlight the importance of different features. However, none

of these methods consider the overall structured information.
The coverage of vulnerability types detected by these methods
is also not as broad as our approach. While these methods
improve performance compared to traditional detection tools,
they only use a single representation of information, highlighting
vulnerability features while discarding some of the information
(e.g., structured information about the contract). Our approach
considers both vulnerability features and structured information
about the contract, and incorporates an attention mechanism
to highlight key features, improving both the coverage and
detection accuracy.

Answer to RQ3: DeepFusion performs better than the exist-
ing methods and detection tools in terms of Accuracy, Recall,
Precision, and F1. Our method improves accuracy, recall,
precision, and F1 score by an average of 14.15%, 17.30%,
14.14%, and 23.89% compared to the best method across the
five vulnerabilities.

F. Efficiency

To answer RQ4, we analyze the detection time required by
the aforementioned tools/methods.

Result: Table V shows the time used by each tool/method
for different vulnerability types, where N/A represents that the
analysis tool/method is not designed to detect a certain type of
vulnerability. It shows that the time spent by the deep learning-
based methods is significantly less than that of the existing
detection tools, and the time difference among these detection
tools is also remarkable. Deep learning-based methods perform
feature extraction through means such as program slicing, in
which data preprocessing makes the data more streamlined to
highlight vulnerability feature information. As a result, deep
learning-based methods are much faster than traditional tools.
Among the existing detection tools, Slither is the fastest, fol-
lowed by SmartCheck. The remaining seven tools are about the
same level.

Analysis: The main reasons for the large differences in the
time consumed by these existing detection tools are:

1) The reason why the detection speed of Slither and
Smarkcheck tools is faster is that these two tools are static
detection tools so that there is no need to compile and
execute smart contracts.

2) The remaining detection tools analyze vulnerabilities at
the EVM bytecode level. Therefore, they need to compile
smart contracts in advance, resulting in low detection
efficiency. Among them, the detection speed of Mythril
is faster than that of the other EVM bytecode detection
tools. Maian needs to perform vulnerability detection by
deploying smart contracts on private chains and sending
transactions, which is relatively time consuming. Honey-
badger and Conkas’s speed is unsatisfactory since their
detection mechanisms need to consider the internal infor-
mation of a contract.

The reason why the training and testing time of DeepFusion is
longer than that of the other four methods is that DeepFusion is
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TABLE V
EXECUTION TIME (UNIT: SECONDS) OF DIFFERENT TOOLS FOR THE FIVE VULNERABILITY TYPES

trained and tested on fused data representations, which is more
time-consuming for data processing in comparison to the two
existing methods based on single data representations. TMP
and DR-GCN consume less time than CEG and AME, since
the former is relatively simple. In contrast, CEG and AME
consider using expert rules for more fine-grained feature ex-
traction, so they take relatively more time. All of these methods
focus on feature extraction at the source code level, and none
of them consider the overall structured information of smart
contracts. However, the time differences are relatively minor
and the overall performance of DeepFusion is still far better
than that of the other four deep learning methods. Compared
with the nine detection tools, the proposed detection method
based on deep learning is more conducive to the detection of
smart contract vulnerabilities. In addition to improved detection
time and performance, the proposed method does not rely on
manual detection rules, which can better adapt to the evolution
and diversification of smart contract vulnerabilities.

Answer to RQ4: Although the efficiency of DeepFusion is
not as high as the detection method of single representation
information, the gap is not very large, and the efficiency is
significantly better than that of traditional detection tools.
DeepFusion consumes much less time (average 172.56 s
compared to the fastest traditional tools (average 660 s).

G. Threats to Validity

We recognize the following threats to the validity of our
research.

Internal validity: The potential threats to internal validity
originate from the following three aspects:

1) Restricted Extensibility: So far we can employ DeepFu-
sion to detect five types of smart contract vulnerabilities.
The implementation of DeepFusion relies on researchers’
in-depth understanding of the smart contract vulnerabil-
ities. When constructing and labeling datasets, we use
manual verification to judge whether a contract to be tested
contains some types of vulnerabilities. Such a process may
be inaccurate due to subjectivity. To alleviate this threat,
we use a combination of tool-based detection and manual
verification (detailed in Section III-B). The ground truth of
the dataset is obtained by achieving the consensus between
two authors who conducted independent labeling. In
addition, we publicize some datasets for other researchers
and developers to conduct verification and reviews.

2) Limited Types of Detection Vulnerabilities: DeepFusion is
only able to detect five types of vulnerabilities. According
to the study, as the number of Ethereum smart contracts
grows and the deployment environment changes, over
five types of vulnerabilities have emerged [28]. However,
most vulnerability types lack a fair and open dataset
for performing the research in this area. Therefore, we
constructed a dataset containing the five types of vul-
nerabilities. In selecting these types of vulnerabilities,
we analyzed reported security incidents and conducted
a literature review to ensure our dataset focuses on the
most harmful and frequent vulnerabilities. This approach
not only enhances the relevance of our research findings
but also lays the foundation for comprehensively covering
major threats in this field. We will expand the scope of
vulnerability detection to other types in future research
work.

3) The Types of Contracts are Limited: DeepFusion is de-
signed for vulnerability detection in smart contracts writ-
ten in Solidity, which does not encompass all program-
ming languages used for smart contracts. However, since
Solidity is the preferred language of Ethereum developers
and the majority of smart contracts are developed using
Solidity, this significantly mitigates the limitation of the
contract types covered.

External Validity: The potential threat to external validity
results from the tools that DeepFusion relies on. DeepFusion
relies on three open-source tools (i.e., solc, Slither, and ANTLR)
to construct a contract’s control and data flows. The performance
and reliability of these tools directly influence the validity of
DeepFusion’s results. To mitigate this threat, it is important
to note that solc, Slither, and ANTLR are established tools
in the domain of smart contract analysis and parsing. These
tools are maintained by dedicated organizations and developers,
ensuring regular updates and improvements. Their widespread
adoption in the industry further validates their reliability and
effectiveness, thereby reducing the impact of this threat.

V. RELATED WORK

According to the underlying technique, smart contract vulner-
ability detection can be classified into the following categories:
traditional methods and deep learning-based methods.

A. Traditional Methods

Traditional tools for detecting smart contract vulnerabilities
are categorized into three types: abstract interpretation, symbolic
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execution, and fuzzing. Feist [35] proposed Slither based on
symbolic execution. Slither initially transforms Solidity code
into an intermediate representation named SlithIR, and then
utilizes the preserved semantic information for vulnerability
detection. Tsankov et al. [44] proposed Securify based on ab-
stract interpretation, compared with the vulnerability standards
of SWC and Slither, it defines contracts and violation patterns
by analyzing the dependence graph of the program, so as to
extract the semantic information of vulnerabilities. Tikhomirov
et al. [32] proposed SmartCheck, which finds contract vulnera-
bilities by converting Solidity source code into an XML-based
intermediate representation and comparing it to a predefined
XPath path. Luu et al. [45] proposed Oyente, which constructs
a contract control flow graph at the bytecode level. Torres
et al. [46] proposed Osiris, which generates basic blocks of
contracts containing integer overflow errors by analyzing CFGs
constructed at the bytecode level. Consensys [47] proposed
Mythril, which simulates contract invocations through multiple
symbolic executions for vulnerability detection. Fu et al. [48]
proposed EVMFuzzer to discover vulnerabilities in EVMs. Seed
contracts are generated and respectively sent to the target EVM
and the benchmark EVM. The discrepancies between their exe-
cution results are eventually analyzed. Kalra et al. [49] proposed
a framework, ZEUS, to test the validity of smart contracts. ZEUS
analyzes the security of contracts through symbolic execution
and abstract interpretation. Mossberg et al. [50] proposed Man-
ticore, a framework for dynamic symbolic execution through
analysis of binaries and smart contracts. Cook et al. [51] pro-
posed a smart contract attack analysis tool called DappGuard
that identifies attacks by analyzing transaction logs. So et al. [52]
proposed a security analyzer called VeriSmart to verify Ethernet
smart contracts that can be used to detect integer overflow
and underflow vulnerabilities. Later, So et al. [53] devised a
symbolic execution technique called SmarTest to find vulnerable
transaction sequences in smart contracts.

To sum up, the traditional smart contract vulnerability detec-
tion mainly relies on human experts to define detection rules. and
have the following disadvantages: poor scalability, low accuracy,
and high cost.

B. Deep Learning-Based Methods

Smart contract vulnerability detection based on deep learning
mainly uses deep learning to analyze the lexical, syntax, control
flow, data flow, and other information of the code. Related
research [18] shows that it has higher accuracy and completeness
than traditional detection. Qian et al. [54] proposed Rechecker,
the first model to use deep learning for automated smart contract
Reentrancy vulnerability detection. Zhuang et al. [21] proposed
TMP and DR-GCN, which no longer perform feature “squash-
ing” but instead use graph neural networks for vulnerability
feature learning by constructing graphs in the form of nodes and
edges, supporting three vulnerabilities. Liu et al. [13] proposed
CGE that combines graph neural networks and traditional expert
mode to extract contract vulnerability features. It supports three
vulnerabilities. Liu et al. [42] designed AME to incorporate
expert rules into graph neural networks. The difference from
CEG is that AME can obtain the distribution map for each

feature weight. This method supports the detection of three
types of smart contract vulnerabilities. Wang et al. [4] devel-
oped Contractward, a machine learning-based model capable of
detecting six types of smart contract vulnerabilities. Jie et al. [55]
developed a method for smart contract vulnerability detection.
By combining the static feature information of the extracted
source code layer and the bytecode layer, and feeding it into
a neural network model for training, this method can only
detect if a test contract is vulnerable other than identifying
specific types of vulnerabilities. Cai et al. [56] introduced a novel
approach that enhances smart contract detection capabilities by
integrating slicing union graphs with graph neural networks.
Jiang et al. [57] developed VDDL, a deep learning-based smart
contract vulnerability detection model that integrates various
deep learning strategies to understand and predict potential secu-
rity vulnerabilities in smart contracts. Zeng et al. [58] introduced
SolGPT, a static vulnerability detection model leveraging the
GPT architecture, to improve the security of smart contracts.
However, it does not provide the classification detection func-
tion. Mi et al. [59] introduced VSCL, a method that decompiles
bytecode into operational sequence code. Using control flow
graphs and depth-first search algorithms, it generates a new
sequence and employs deep neural networks for the analysis
and detection of vulnerabilities. Meanwhile, Huang et al. [60]
presented a multitask learning-based model for detecting vulner-
abilities in smart contracts. This model relies on a multiheaded
attention mechanism network to learn and extract feature vectors
from contracts, and then uses convolutional neural networks to
detect and identify vulnerabilities. It supports the detection of
arithmetic vulnerability, reentrancy vulnerability and contract
contains unknown address vulnerability.

This type of methods suffers from the following limitations:
although the existing deep learning detection methods are better
than traditional tools in performance, the single representation
information will prevent the model from learning complete
feature information, and the coverage of existing vulnerability
types needs to be improved.

VI. CONCLUSION AND FUTURE WORK

In this article, we attempt to explore smart contract vulnera-
bility detection methods that fuse program slicing information
with AST structured information and feed it into a deep learning
model for training. We obtained positive findings that the fused
data improves the interpretability of the data while preserving the
smart contract vulnerability features. Extensive experimental re-
sults show that DeepFusion significantly outperforms traditional
vulnerability detection tools and state-of-the-art deep learning
methods. We believe that DeepFusion is an important step
forward in the interpretability and accuracy of smart contract
data based on deep learning.

In future work, we will collect more real-world smart con-
tracts and build datasets covering a wider range of vulnerability
detection. In addition, we will improve the existing BiLSTM
model to enhance its performance. We will also explore the
possibility of incorporating other fine-grained information into
DeepFusion. Furthermore, we consider extending the types of
smart contracts from additional platforms into DeepFusion.
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[41] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding the
greedy, prodigal, and suicidal contracts at scale,” in Proc. 34th Annu.
Comput. Secur. Appl. Conf., 2018, pp. 653–663.

[42] Z. Liu, P. Qian, X. Wang, L. Zhu, Q. He, and S. Ji, “Smart contract
vulnerability detection: From pure neural network to interpretable graph
feature and expert pattern fusion,” in Proc. 30th Int. Joint Conf. Artif.
Intell., Montreal, Canada, Aug. 2021, pp. 2751–2759.

[43] R. M. Parizi, A. Dehghantanha, K.-K. R. Choo, and A. Singh, “Empirical
vulnerability analysis of automated smart contracts security testing on
blockchains,” in Proc. 28th Annu. Int. Conf. Comput. Sci. Softw. Eng.
(CASCON), Markham, ON, Canada, Oct. 2018, pp. 103–113.

[44] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli,
and M. Vechev, “Securify: Practical security analysis of smart con-
tracts,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2018,
pp. 67–82.

[45] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
2016, pp. 254–269.

[46] C. F. Torres, J. Schütte, and R. State, “Osiris: Hunting for integer bugs
in Ethereum smart contracts,” in Proc. 34th Annu. Comput. Secur. Appl.
Conf., 2018, pp. 664–676.

[47] B. Mueller, “Smashing ethereum smart contracts for fun and real profit,”
HITB SECCONF Amsterdam, vol. 9, 2018, Art. no. 54.

[48] Y. Fu et al., “EVMFuzzer: Detect EVM vulnerabilities via fuzz testing,” in
Proc. 27th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw.
Eng., 2019, pp. 1110–1114.

[49] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety of
smart contracts,” in Proc. Ndss, 2018, pp. 1–12.

[50] M. Mossberg et al., “Manticore: A user-friendly symbolic execution
framework for binaries and smart contracts,” in Proc. 34th IEEE/ACM
Int. Conf. Autom. Softw. Eng., 2019, pp. 1186–1189.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 05,2025 at 11:12:45 UTC from IEEE Xplore.  Restrictions apply. 



CHU et al.: DEEPFUSION: SMART CONTRACT VULNERABILITY DETECTION VIA DEEP LEARNING AND DATA FUSION 15

[51] T. Cook, A. Latham, and J. H. Lee, “Dappguard: Active monitoring
and defense for solidity smart contracts,” Retrieved Jul., vol. 18, 2017,
Art. no. 2018.

[52] S. So, M. Lee, J. Park, H. Lee, and H. Oh, “Verismart: A highly precise
safety verifier for ethereum smart contracts,” in Proc. IEEE Symp. Secur.
Privacy, 2020, pp. 1678–1694.

[53] S. So, S. Hong, and H. Oh, “{SmarTest}: Effectively hunting vulnera-
ble transaction sequences in smart contracts through language {Model-
Guided} symbolic execution,” in Proc. 30th USENIX Secur. Symp.
(USENIX Secur. 21), 2021, pp. 1361–1378.

[54] P. Qian, Z. Liu, Q. He, R. Zimmermann, and X. Wang, “Towards automated
reentrancy detection for smart contracts based on sequential models,” IEEE
Access, vol. 8, pp. 19685–19695, 2020.

[55] W. Jie, A. S. V. Koe, P. Huang, and S. Zhang, “Full-stack hierarchical
fusion of static features for smart contracts vulnerability detection,” in
Proc. IEEE Int. Conf. Blockchain (Blockchain), 2021, pp. 95–102.

[56] J. Cai, B. Li, J. Zhang, X. Sun, and B. Chen, “Combine sliced joint graph
with graph neural networks for smart contract vulnerability detection,” J.
Syst. Softw., vol. 195, 2023, Art. no. 111550.

[57] F. Jiang et al., “VDDL: A deep learning-based vulnerability detection
model for smart contracts,” in Proc. Int. Conf. Mach. Learn. Cyber Secur.,
Springer, 2022, pp. 72–86.

[58] S. Zeng, H. Zhang, J. Wang, and K. Shi, “SOLGPT: A GPT-based static
vulnerability detection model for enhancing smart contract security,” in
Proc. Int. Conf. Algorithms Architectures Parallel Process., Springer,
2023, pp. 42–62.

[59] F. Mi, Z. Wang, C. Zhao, J. Guo, F. Ahmed, and L. Khan, “VSCL:
Automating vulnerability detection in smart contracts with deep learning,”
in Proc. IEEE Int. Conf. Blockchain Cryptocurrency, 2021, pp. 1–9.

[60] J. Huang, K. Zhou, A. Xiong, and D. Li, “Smart contract vulnerability
detection model based on multi-task learning,” Sensors, vol. 22, no. 5,
2022, Art. no. 1829.

Hanting Chu received the M.S. degree in Internet of
Things engineering from Bohai University, Jinzhou,
China, in 2020. She is currently working toward the
Ph.D. degree in computer science and technology
with the College of Computer and Information, Hohai
University, Nanjing, China.

Her current research interests include smart con-
tract security and software engineering.

Pengcheng Zhang (Member, IEEE) received the
Ph.D. degree in computer science from Southeast
University, Nanjing, China, in 2010.

He is currently a Full Professor with the College of
Computer and Information, Hohai University, Nan-
jing, China, and was a Visiting Scholar with San Jose
State University, USA. His research interests include
software engineering, service computing and data
science. He has published research papers in premiere
or famous computer science journals, such as IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING, IEEE

TRANSACTIONS ON SERVICES COMPUTING, IEEE TRANSACTIONS ON KNOWL-
EDGE AND DATA ENGINEERING, IEEE TRANSACTIONS ON BIG DATA, IEEE
TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, IEEE TRANSACTIONS

ON CLOUD COMPUTING and IEEE TRANSACTIONS ON RELIABILITY. He was the
Co-chair of IEEE AI Testing 2019 conference. He served as a technical program
committee member on various international conferences.

Hai Dong (Senior Member, IEEE) received the Ph.D.
degree in computer science from Curtin University,
Perth, Australia.

He is currently a Senior Lecturer with the
School of Computing Technologies, RMIT Univer-
sity, Melbourne, Australia. He was previously a Vice-
Chancellor’s Research Fellow in RMIT University
and a Curtin Research Fellow in Curtin Univer-
sity. His primary research interests include: services
computing, edge computing, blockchain, cyber se-
curity, machine learning and data science. His pub-

lications appear in ACM Computing Surveys, IEEE TRANSACTIONS ON INDUS-
TRIAL ELECTRONICS, IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, IEEE
TRANSACTIONS ON SERVICES COMPUTING, IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, etc.

Yan Xiao received the Ph.D. degree in computer
science from the City University of Hong Kong, Hong
Kong, in 2019.

She is a Research Fellow with the School of Com-
puting at National University of Singapore. Her re-
search focuses on trustworthiness of deep learning
system and AI applications in software engineering.

Shunhui Ji received the B.S. degree in computer
science and technology and the Ph.D. degree in com-
puter software and theory from Southeast University,
Nanjing, China, in 2008 and 2015, respectively.

She is currently an Associate Professor with the
College of Computer and Information, Hohai Uni-
versity, Nanjing, China. Her research interests in-
clude service computing, cloud computing, software
modeling, analysis, testing, and verification. She is
a Reviewer of some international conferences and
journals.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 05,2025 at 11:12:45 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


