
Improving Bug Localization with an Enhanced
Convolutional Neural Network

Yan Xiao, Jacky Keung, Qing Mi, Kwabena E. Bennin
Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong

Email: yanxiao6-c, Qing.Mi, kebennin2-c@my.cityu.edu.hk, Jacky.Keung@cityu.edu.hk

Abstract—Background: Localizing buggy files automatically
speeds up the process of bug fixing so as to improve the
efficiency and productivity of software quality teams. There
are other useful semantic information available in bug reports
and source code, but are mostly underutilized by existing bug
localization approaches. Aims: We propose DeepLocator, a novel
deep learning based model to improve the performance of bug
localization by making full use of semantic information. Method:
DeepLocator is composed of an enhanced CNN (Convolutional
Neural Network) proposed in this study considering bug-fixing
experience, together with a new rTF-IDuF method and pre-
trained word2vec technique. DeepLocator is then evaluated on
over 18,500 bug reports extracted from AspectJ, Eclipse, JDT,
SWT and Tomcat projects. Results: The experimental results
show that DeepLocator achieves 9.77% to 26.65% higher F-
measure than the conventional CNN and 3.8% higher MAP than
a state-of-the-art method HyLoc using less computation time.
Conclusion: DeepLocator is capable of automatically connecting
bug reports to the corresponding buggy files and successfully
achieves better performance based on a deep understanding of
semantics in bug reports and source code.

Index Terms—bug localization, convolutional neural network,
word2vec, TF-IDF, deep learning, semantic information

I. INTRODUCTION

Bug localization is a significant task during software main-

tenance process. To locate a newly reported bug, assigned

developers need to carefully analyze the bug report and review

a lot of source codes. The bug resolution activity requires

a considerable large amount of time and effort. To reduce

maintenance costs and substantially improve the efficiency and

productivity of the whole software team, several automated

bug localization approaches and tools have been proposed by

researchers to localize the potential buggy files for develop-

ers. These approaches extract essential information from bug

reports and source code.

The existing bug localization techniques can be categorized

into four main groups. The first group comprises approaches

which use traditional features related with program analysis

information [1], such as the passing or failing execution

information with test cases. Spectrum-based fault localization

techniques [2][3] are typical examples of these approaches.

These methods extract only static features from the source

code or execution information, which is time-consuming. The

second group comprises the IR (Information Retrieval)-based

approaches that search and rank buggy files for a given

bug report. These approaches measure the textual similarity

between bug reports and source code files (names of classes

or methods). This kind of similarity focuses more on the term

weights [4]. Also, ML (Machine Leaning)-based approaches

have been proposed. These approaches adopt machine learning

models that are trained to match the topics of bug reports with

those of source files [5] or classify the source files into multi-

class using former fixed files [6].
The approaches in the above two groups focus on the

term weights of natural language texts and do not consider

the semantics of the source code during the bug localization

process. Ye et al. [4] report that there are significant differences

between natural language texts used in bug reports and code

tokens in source code files. Generally, programs have well-

defined syntax and there is semantics hidden deeply in the

source code [7]. According to some previous researches, the

semantic information is important for code suggestion [8] and

code completion [9], which is also useful for bug localization.

To bridge the semantic gap, deep learning has been introduced

into the domain of bug localization for semantic parsing. Deep

learning is known to perform excellently in the area of NLP

(Natural Language Processing) and image processing [10][11].

However, the recently proposed deep learning based model for

bug localization combines deep neural networks (DNNs) and

IR techniques [12]. The final results are influenced by the

performance of IR to some extent. Most importantly, many

DNN models are used together, which makes it very complex

and difficult to accurately adjust the weights.
In order to extract the underlying semantic information from

the bug reports and source code, this paper proposes a CNN-

based model for bug localization, namely DeepLocator. CNN

is able to extract the local feature by convolving filters and has

good performance in semantic parsing related NLP problem

[13]. Besides semantic information, DeepLocator aims to cor-

relate the bug reports to the corresponding buggy files instead

of textual similarity used in IR-based approaches. Moreover,

DeepLocator is based on an enhanced CNN proposed in

this study, which enables deep learning to fully utilize and

demonstrate its natural characteristic.
The main contributions of this paper are listed as follows:

• We develop DeepLocator that consists of a new rTF-IDuF

method, word2vec and a proposed enhanced CNN. The

enhanced CNN makes use of the important bug-fixing

experience (bug-fixing recency and frequency) besides

the semantic information that can be extracted by con-

ventional CNN from bug reports and source files.

• A set of experiments is conducted to validate the fea-

2017 24th Asia-Pacific Software Engineering Conference

978-1-5386-3681-7/17 $31.00 © 2017 IEEE

DOI 10.1109/APSEC.2017.40

338

2017 24th Asia-Pacific Software Engineering Conference

978-1-5386-3681-7/17 $31.00 © 2017 IEEE

DOI 10.1109/APSEC.2017.40

338

2017 24th Asia-Pacific Software Engineering Conference

978-1-5386-3681-7/17 $31.00 © 2017 IEEE

DOI 10.1109/APSEC.2017.40

338

sibility and effectiveness of DeepLocator. We make our

dataset publicly available1 and provide the tool used to

construct the dataset.

The remainder of the paper is structured as follows. Section

II presents the related works. The preliminary knowledge

related to DeepLocator is reviewed in Section III. This is

followed in Section IV by a discussion of rTF-IDuF and an

enhanced CNN. Section V gives a detailed description of the

model design, followed by the presentation of experimental

results in Section VI and discussion in Section VII. We

conclude this paper in Section VIII.

II. RELATED WORK

A. Bug Localization

In the literature, a number of techniques have been proposed

to help localize bugs. The commonly used techniques are

either based on information retrieval (IR) methods or machine

learning (ML) methods.

IR: Wong et al. [14] proposed segmentation and stack-trace

analysis techniques on top of BugLocator [15] to boost fault

localization. Saha et al. [16] regarded summary and descrip-

tion of bug reports as two different query fields, combined

respectively with classes, methods, variables and comments

extracted from source files. However, these eight features were

considered as equally important. Moreover, their evaluation

used the fixed version of the project, which will lead to the

inconsistency when considering future bug-fixing information.

To bridge these gaps mentioned above, Ye et al. [4] devel-

oped an adaptive ranking model supported by a learning-to-

rank technique. Six features were used in this paper: surface

lexical similarity, API-enriched lexical similarity, collaborative

filtering score, class name similarity, bug-fixing recency and

bug-fixing frequency. In [17], bug reports and source code

were represented by word embeddings and the similarity be-

tween them were added as additional features. Then the weight

for each feature was trained by the learning-to-rank technique

based on the previously fixed bugs. However, this model used

a hill-climbing algorithm with the linear weighted sum of

features, which might ignore the nonlinear relationship. These

IR-based techniques rely on the textual similarity between bug

reports and source files, which cannot bridge the semantic gap.

ML: Kim et al. [6] applied Naive Bayes to build a two-

phase recommendation model. Phase 1 was used to decide

whether the bug was predictable or not. If not, there was no

further prediction behavior. If predictable, Phase 2 applied

Bayes model to recommend a set of files to fix. But they

mainly focused on the name of fixed files. So it was hard

for the model to recommend a file that had never been fixed

before. Markov logic was used in [18] by combining state-

ment coverage, static program structure information and prior

bug information. But this paper did not take the contextual

information (failure explanations) into account. BugSout, a

machine learning model proposed by Nguyen et al. [5], was

a topic-based model using an extended LDA (Latent Dirichlet

1https://github.com/yanxiao6/BugLocalization-dataset

Allocation) [19]. The bugs were related to their corresponding

buggy files by their shared topics. But a tuning process was

needed to find the right number of topics for different projects,

which made the model not automated.

B. Deep Learning in Software Engineering

In recent years, many deep learning techniques have been

introduced to software engineering research, such as code sug-

gestion, API suggestion, defect prediction, effort estimation,

program classification, bug localization and so on.

White et al. [7] proposed a deep architecture to model

software language specific for sequential data and suggested

many avenues for future work, especially for code suggestion.

Wang et al. [20] used deep belief network (DBN) to detect

features from tokens extracted from Abstract Syntax Tree

(AST) of source code to find defective files. But the way they

mapped the tokens to vectors was not reasonable.

Choetkiertikul et al. [21] proposed a deep learning based

prediction system for estimating story points based on Long

Short-Term Memory (to learn a vector representation for issue

reports) and Recurrent Highway Network (to build a deep

representation). DeepAPI was proposed by Gu et al. [22]

to find API usage sequences given an API-related natural

language query, which adopted the attention-based Recurrent

Neural Network (RNN) Encoder-Decoder model with consid-

ering the API importance by IDF-based weighting to train API

usage sequences and their corresponding annotations. But the

training time of this model was very long, which is also the

drawback of RNN.

In the area of software engineering, many files are written

in natural languages, such as bug reports, API descriptions

and annotations. Even codes themselves are also similar with

natural language to some extent. That’s why many mature

techniques used in Natural Language Processing (NLP) can

also be applied to some issues in software engineering to

extract semantic information.

C. Deep Learning Related Bug Localization

Previous studies have proposed a number of features to

represent the program source code. However, few methods

try to extract the semantic information from source code.

Deep learning can help to bridge this gap. Deep learning is

a relatively new concept and there is little prior work about

deep learning based bug localization. Huo et al. [23] proposed

a convolutional neural network based model to extract pro-

gram structure information and learn unified features from

natural and programming languages leveraging both lexicon

and program structure. Lam et al. [12] built a model named

HyLoc that combined deep learning with information retrieval

(IR) technique. There were about six deep neural networks

(DNNs) used in this model, two for feature extraction, two

for projection, one for relevancy estimation and one for feature

combination. However, so many kinds of DNNs posed a risk

of complex adjustment of weights and high cost for training

and learning. Their experiments showed that only using DNN

339339339

achieved poor performance and most improvements still ben-

efited from IR techniques, which implied that DNN in their

model was a subsidiary. Different from their work, we regard

the problem of bug localization as a classification problem

instead of IR problem.

III. PRELIMINARIES

A. Term Frequency-Inverse Document Frequency (TF-IDF)

The TF-IDF technique is widely used in the area of text

mining and information retrieval (IR). TF represents the fre-

quency of a term appearing in a document and IDF denotes an

inverse of the number of documents where the term appears

in the entire corpus. TF-IDF can filter some common terms

in the documents of the repositories. The formulas of TF-IDF

are as follows [4]:

tft,d = ft,d idft,d = log(
N

dft
)

wtf−idf = tft,d × idft,d (1)

where ft,d is the frequency of the term t appears in the

document d, N refers to the number of total documents

in the document collections and dft reflects the number of

documents in the corpus containing the term t. However, this

kind of general corpus is not always available in the areas of

research or practice. And they represent general behaviors so

that ignoring some important personal information.

In order to address the aforementioned problems, Beel et al.

[24] presented TF-IDuF (term frequency-user focused inverse

document frequency) using personal document repositories

instead of the general corpus with a simple proof. TF-IDuF is

defined as [24]:

tft,d = ft,d idft,d = log(
Nu

nt,u
)

wtf−idf = tft,d × idft,d (2)

where Nu refers to the number of total documents in the user

collections and nt,u reflects the number of documents in the

collections that incorporate the term t.
But Equation (1) and (2) are general equations for term

weights. If there are large differences in frequencies, the

term weights computed by (1) and (2) don’t achieve good

performance in practice [25].

B. Convolutional Neural Network (CNN)

CNN, inspired by biological processes and multilayer per-

ceptron, is the first learning algorithm based on neocognitron

[26] and receptive field [27]. CNN is a promotion of neocog-

nitron, and neocognitron is a special case of CNN. CNN

contains several convolutional layers that are often combined

with pooling steps and then followed by a fully-connected

layer similar with a standard neural network with multi-layers

[28].

The process of convolution and pooling (subsampling) [29]

is shown in Figure 1. In the process of convolution C, the input

is convoluted with a trainable filter W and then added a offset

b. Later, a non-linear function is used to get a reduced feature

map ci. Next is the subsampling procedure S. Mean-over-time

polling or max-over-time pooling operation [10] is frequently

used in this layer, which takes the mean (c = mean(ci)) or

maximum value (c = max(ci)) as the feature corresponding

to this particular filter. The convolutional layer is used to

detect features. Then in pooling layer, original features are

subsampled to reduce the number of parameters, which can

also alleviate the over-fitting problem [29].

f()

Fig. 1. The Process of Convolution and Subsampling of CNN.

Fig. 2. The Net Structure of CNN.

The basic structure of CNN [11] is shown in Figure 2. C
layer and S layer are based on the aforementioned convolu-

tional and pooling procedure respectively. The C layer is used

to capture features. The input of every neuron in C layer is

linked with the local receptive field of former layer and then

extract the local feature by convolutional operations. As soon

as the local feature is extracted, its positional relationship with

other features will also be known. The S layer is a feature

mapping layer. Each computational layer has several feature

maps and every feature map is a 2-dimension surface. The

weight of each neuron in this surface is the same. The final

softmax function operates the classification.

IV. ENHANCED MODEL FOR BUG LOCALIZATION

As mentioned in III-A, the performance of general TF-IDuF

(term frequency-user focused inverse document frequency)

is not satisfactory in practice. In addition, even though the

conventional convolutional neural network (CNN) has good

performance in semantic parsing related Natural Language

Processing (NLP) problems [13], it cannot learn the bug-fixing

experience by itself. Therefore, we will enhance TF-IDuF and

conventional CNN for the task of bug localization in this

section.

340340340

A. revised TF-IDuF (rTF-IDuF)

It is known that the logarithm variant of TF could improve

the performance of TF-IDF in practice given in Croft’s ex-

periments [25]. Specifically it can dampen effects of large

differences in frequencies:

tft,d = log(ft,d) + 1 (3)

Inspired by Croft’s work [25], we propose a rTF-IDuF to

further improve the model performance:

wtf−idf = (log(ft,d) + 1)× log(
Nu

nt,u
) (4)

where ft,d is the frequency of the term t appears in the

document d, Nu refers to the number of total documents and

nt,u reflects the number of documents in user collections that

contain the term t.

In reality, the complete corpus is not always available. Also,

the bug reports for different projects are usually different in

terms of writing style and contents. Therefore, it is convenient

and reasonable to apply rTF-IDuF that focuses on personal

collections.

B. Enhanced CNN

This section proposes a novel technique to enhance CNN

for bug localization. Besides the semantic information, con-

ventional CNN model contains no other important information

related to bug localization, especially the fixing history of

some source files. Furthermore, the bug-fixing recency and

frequency are verified to be useful for bug localization by [12]

and [4].

The change history of source files for bugs contains useful

information to find fault-prone files [30]. This implies specifi-

cally that those source files fixed recently are more likely to be

buggy files than those fixed long time ago (bug-fixing recency)

and those source files that have been fixed many times prone

to still contain bugs than those seldom fixed or even never

fixed (bug-fixing frequency).

In order to improve the performance of bug localization, we

enhance the conventional CNN by adding bug-fixing recency

and frequency in the fully connected layer as two penalty terms

to the cost function.

The conventional CNN is trained to minimize the following

mean cross-entropy error function [22]:

L(θ) =
1

N

N∑
i=1

costi

costi = −
T∑

j=1

tij log(yij)

(5)

where N is the size of a batch of multiple samples and T is

the number of classes. costi is the cost function of sample i.
tij is the true value of class j of sample i and yij is the output

probability of class j of sample i.

Then we propose a new cost function by considering bug-

fixing recency (ri) and bug-fixing frequency (fi), which is

defined in the following:

costi = −
T∑

j=1

tij log(yij)− ω1ri − ω2fi (6)

where ω1 and ω2 are initialized by random values from a

truncated normal distribution and tuned in the training phase

similar with other weights. ri and fi are the scaled values of

the bug-fixing recency and frequency respectively.

We use similar equations as given in Ye’s work [4] to

implement the bug-fixing recency and frequency of a source

file. For a sample i with source file s and a new bug report r,

the bug-fixing recency is defined as:

Ri =
1

r.month− s.month+ 1
(7)

where r.month represents the month in which bug report

r was generated and s.month denotes the month when the

source file s was fixed lastly before bug report r was created.

r.month and s.month take the year into account. For exam-

ple, if r.month is Jan. this year and s.month is Dec. last year,

Ri is 0.5. Therefore, the bug-fixing recency Ri is the inverse

of time interval between the time of creating the bug report

and the last fixing time of the source file.

The bug-fixing frequency Fi is expressed by the number

of fixing times of the source file s before the bug report r is

submitted.

Ri and Fi may have wide value ranges that makes them

incomparable with each other, which may result in detrimental

effects. Ri and Fi both in training and testing set are scaled

as follows:

ri =

⎧⎪⎨
⎪⎩

0
Ri−Rmin

Rmax−Rmin

1

if Ri < Rmin

if Rmin ≤ Ri ≤ Rmax

if Ri > Rmax

fi =

⎧⎪⎨
⎪⎩

0
Fi−Fmin

Fmax−Fmin

1

if Fi < Fmin

if Fmin ≤ Fi ≤ Fmax

if Fi > Fmax

(8)

where Rmin (Fmin) and Rmax (Fmax) are the minimum and

maximum values of Ri (Fi) in the training set. When testing,

Ri (Fi) may be larger than Rmax (Fmax) or less than Rmin

(Fmin) that are obtained in the training phase. So the first and

last judgments are necessary.

The scaled bug-fixing recency (ri) and frequency (fi) are

then used in Equation (6) to obtain the enhanced CNN.

V. DEEPLOCATOR

In this section, we describe DeepLocator, a deep learning

based model that localizes the buggy files for bug reports au-

tomatically. DeepLocator adapts an enhanced CNN proposed

in IV-B for the task of bug localization. Figure 3 provides the

overall workflow of DeepLocator. In the training phase, bug

reports and source files are firstly pre-treated by rTF-IDuF as

discussed in IV-A and Abstract Syntax Tree (AST) detection

341341341

Fig. 3. The Overall Workflow of DeepLocator.

respectively. Word embedding is then applied to transform the

words into vectors. The mappings between bug reports and

source files, as well as corresponding labels (buggy or not

buggy), are obtained to train the enhanced CNN. The training

stage can be done offline. When we receive new bug reports,

the already-trained enhanced CNN will efficiently utilize the

bug reports to obtain the location of buggy files. The details

of DeepLocator are discussed in the following sections.

A. Data Preprocessing

Typically, there are summaries and descriptions for each bug

in the bug reports. Because most of the summaries are very

short or sometimes even vacant, we first combine the summary

and description of each bug into one document. Next, we apply

proposed rTF-IDuF to filter some common words (such as

I, the, to) to shorten the length of each sentence, which is

a standard data preprocessing to eliminate redundant words

[4][15][6].

The well-defined programming syntax can be represented

by AST [9] that has been successfully used to extract the

programming patterns of source code [31]. The two main AST

nodes we extract from the source code are [20]: a) nodes of

method invocations and class instance creations, e.g., method

names. b) declaration nodes, e.g., method declarations.

All words are further preprocessed because developers most

often combine words to create a new “word” when defining the

classes or methods in the source code, which is also possible

to be mentioned in bug reports. According to CamelCase

Naming Convention [32], combined words can be split into

separated real words based on capital letters. For example,

“WorkbenchActionBuilder” is split into “Workbench”, “Ac-

tion” and “Builder”. Besides, we pay attention to some special

capital words, such as URI, IDE and so on, which should not

be separated. Lastly, we change all the capital letters into lower

cases to meet the rules of word embedding.

B. Word Embedding-word2vec

Words themselves cannot be the input of CNN directly. Thus

the pre-treated words should be embedded into vectors. We

first find the maximum sentence lengths from bug reports and

preprocessed AST nodes respectively. Then they are padded

by <PAD> tokens to be separately same with their maximum

sentence lengths. In this paper, word2vec with Skip-gram

model [33] is applied to transform the preprocessed bug

reports and AST nodes into vectors. There may be some

words absent in the set of pre-trained words of word2vec.

These words are initialized randomly and fine-tuned during

training [13]. Ye et al. [17] verified that word embeddings

trained on Wiki corpus and project (Eclipse and Java) specific

corpus had similar performance. But Wiki corpus has a larger

size of vocabulary and words (96 times and 548 times the

size of project specific corpus respectively). So the pre-trained

word2vec used in our model is based on Wiki corpus.

C. Enhanced CNN Training and Prediction

Now we begin building the enhanced CNN. Firstly, we

construct the training dataset. Besides the real corresponding

buggy files, we only select the files that were ever buggy files

as the negative samples due to the imbalanced dataset. We

consider them as potential buggy files.

As we discussed in Section IV-B, an enhanced CNN is

adopted for the main training part, which contains one convo-

lutional layer followed by a max pooling layer. We also add a

dropout layer that is frequently used to regularize CNN. The

dropout layer only enables a fraction of the neurons randomly,

which prevents neurons from co-adapting and at the same

time forces neurons to learn useful features individually. The

following Figure 4 is the structure of CNN used in this paper.

The sentence contains pre-treated bug reports and AST nodes

of source code.

This model is trained by gradient descent algorithm together

with Adam (Adaptive Moment Estimation) optimizer, which

uses an adaptive learning algorithm. Compared to Adadelta

342342342

n

k

Fig. 4. The Architecture of CNN for a Sentence. n is the number of words
in the sentence and k is the vector dimension of each word that is tuned
experimentally (details are shown in Figure 5).

[34] that keeps an exponentially decaying average of past

squared gradients, Adam can also store the exponentially

decaying average of past gradients. What’s more, Adam has

shown better performance than other algorithms that automat-

ically adjust learning rates [35].

After the trained CNN is available, the bug reports have

been related to buggy files instead of matching them by textual

similarity. When a new bug report comes, it is paired with each

source file and then input into the trained CNN to classify

buggy files. The probability of being the buggy file is used to

give priority to more buggy-prone files.

VI. EXPERIMENTS

Several experiments are conducted to evaluate the perfor-

mance of DeepLocator. We describe the datasets used, the

experimental setup and performance metrics in VI-A. The

research questions are listed in VI-B, followed by the results

in VI-C.

A. Experimental Settings and Evaluation Metrics

As some source files may be modified or even deleted,

for an old bug, we may fail to find the original mapped

source files without before-fix versions. So we collect dataset

(Table I) with before-fix versions and relate them to each

bug based on the publicly available mappings of bug reports

and the corresponding commit history provided by [4]. More

statistical descriptives about the dataset are left out due to

space limitation. We use tensorflow to construct the model

and all experiments are run on a server with CPU Intel Xeon

CPU E5-4620 2.20GHz (32 cores), 128 GB RAM.

The chronologically sorted bug reports of each project are

split into 70% as the training set (older bugs) and 30% as

the testing set (newer bugs). This splitting strategy is adopted

by many previous studies [6][36] and we further validate

the effect of different training sizes on performance in RQ4.

TABLE I
SUBJECT PROJECTS.

Project
Time # of Bug # of Fixed avg. # of Buggy
Range Reports Buggy Files Files per Bug

AspectJ
03/2002-

593 1,151 4.0
01/2014

Eclipse UI
10/2001-

6,495 6,228 2.7
01/2014

JDT
10/2001-

6,274 5,002 2.6
01/2014

SWT
02/2002-

4,151 1,415 2.1
01/2014

Tomcat
07/2002-

1,056 1,038 2.4
01/2014

In order to evaluate the performance of DeepLocator, three

metrics are adopted: Precision rate (P), Recall rate (R) and

F-measure (F), which are widely used in classification tasks

[6]. Their definitions are expressed as follows.

P =
true positive

true positive+ false positive
(9)

R =
true positive

true positive+ false negative
(10)

F =
2 ∗ Precision ∗Recall

Precision+Recall
(11)

where true positive represents the number of predicted buggy

files that are truly buggy files, while true negative denotes the

number of predicted non-buggy files that are truly buggy-free

files. False positive represents the number of predicted buggy

files that are actually non-buggy files, while false negative

denotes the number of predicted buggy-free files that are

actually buggy files. A good classification model desires to

obtain higher P and R. As a comprehensive measurement, F

is a trade-off between P and R.

The above three metrics are used to evaluate the effec-

tiveness of DeepLocator. We also use another metric, Mean

Average Precision (MAP) that is widely used in existing bug

localization approaches [12][4][17], to compare DeepLocator

with the state-of-the-art IR-based techniques.

B. Research Questions

Specifically, we aim to answer the following questions:

RQ1: What is the effect of pre-trained word2vec on
DeepLocator? Iyyer et al. [37] reported that word vectors

initialized by unsupervised neural language models had better

performance than those randomly initialized in Natural Lan-

guage Processing (NLP). In order to validate the effective-

ness of pre-trained word2vec in our model, we compare the

accuracy of word vectors obtained by pre-trained word2vec

and random initialization respectively. We also analyze the

influence of the dimension of word embedding on accuracy.

RQ2: What is the effect of model settings on DeepLo-
cator? Before building DeepLocator, we need to analyze

two main settings: the size of filters and the number of

convolutional layers.

RQ3: What is the performance of DeepLocator? Our

evaluation can be divided into four steps. First, we compare

343343343

the conventional CNN with two classification models (i.e.,

SVM classifier [38] and Naive Bayes classifier [6]). Then,

we evaluate whether the enhanced CNN improves the ac-

curacy of DeepLocator against the conventional CNN. The

only difference between the two CNNs is that the enhanced

CNN considers bug-fixing recency and frequency but the

conventional CNN does not. Further, we aim to examine the

training time and prediction time overhead of DeepLocator.

Lastly, since Lam et al. [12] has validated that HyLoc has com-

parable or even better performance than existing approaches

[4][5][17][15], we use HyLoc as our competitor and analyze

the results. The same input and output are used for the models.

RQ4: What is the effect of larger dataset on accuracy
of DeepLocator? Some related works of bug localization,

such as [12] and [4], split the datasets into 10 folders. Ye

et al. [4] claimed that the increase of training datasets had

little effect on the accuracy. But most deep learning models

require more data to obtain the features hidden deeply in the

datasets. In order to evaluate the impact of different sizes of

training dataset on DeepLocator, the chronologically sorted

bug reports of the large projects (Eclipse UI and JDT) are

split into 10 folders. fold1 consists of oldest bug reports and

fold10 contains newest bug reports. We keep fold10 as the

unchanged testing dataset. The 9 training datasets are used

incrementally. To begin, only one folder (fold9) is used as

training dataset and then two folders (fold9 ∪ fold8), and so

forth, until all 9 folders (fold9 ∪ fold8 ∪ ...∪ fold2 ∪ fold1
) are used as training datasets.

C. Results and Analyses

RQ1: Impacts of Pre-trained Word2vec on Accuracy.
We only show the results of Project AspectJ. Note we also

experiment with other projects; the results are qualitatively

similar and omitted due to space limitation. As shown in

Figure 5, the accuracy by using pre-trained word2vec is always

higher than using random initialization, which indicates that

word vectors initialized by the unsupervised neural language

model (word2vec) perform better than those initialized ran-

domly in bug localization.

Fig. 5. Performance of Word2vec and Random Initialization along the
Dimension of Word Embedding (k).

Moreover, according to Figure 5, the word embedding

dimension of woed2vec has little effect on the accuracy, while

the increasing dimension of word vectors randomly initialized

can improve the accuracy at the beginning. Compared to

word2vec, word vectors randomly initialized contain fewer

characteristics. So more vectors are needed to represent and

distinguish words. But if more dimensions of word vectors

are used, the dimension of input will increase dramatically,

which augments the training and predicting time. Therefore,

the word vector dimension in our experiments is set as 100.

RQ2: Accuracy Under Different Model Settings.
We first evaluate how to choose the size of filters. According

to [39], when the size of n-gram is from 4 to 8, there are

more possibilities to improve the performance of expression.

To make the figure distinct, the accuracy of three projects

(AspectJ, SWT and Tomcat) along different filter sizes are

showed in Figure 6. Although the accuracies of these three

projects fluctuate when the filter size is between 4 and 8, they

are still higher than the accuracy when the filter size is from 1

to 3 and from 9 to 12. If the filter size is very small, e.g. 1-3,

the model fails to extract the semantic features because each

sentence is split into one or two words that have less semantic

information. On the other hand, if larger filter size is used, in

other words, more words are in a group, it is harder for the

model to extract semantic features from a large group. So in

our experiments, the filter size is chosen from 4 to 6 whose

accuracies are relatively high.

Fig. 6. Performance of Different Filter Sizes.

TABLE II
ACCURACY AND TIME CONSUMPTION ON DIFFERENT NUMBER OF

LAYERS.

Project
One-layer Two-layer

F (%) Time (s) F (%) Time (s)
AspectJ 79.92 8.69 81.16 692.26

Eclipse UI 84.13 8.83 85.58 689.83
JDT 82.28 8.78 83.21 702.18
SWT 83.61 7.93 84.71 682.61

Tomcat 85.04 7.69 85.73 696.67

Next, we compare the average F and the average time con-

sumption for each batch of CNN by using one convolutional

layer and two convolutional layers. When using a two-layer

CNN, the features between words are convolved again. So a

344344344

TABLE III
ACCURACY OF TWO MODELS.

Project Model P (%) R (%) F (%) F_max (%) F_min (%)
AspectJ DeepLocator 77.37 80.23 79.92 81.21 77.94

CNN 57.83 53.49 55.57 60.42 52.79
Eclipse UI DeepLocator 82.37 84.58 84.13 85.96 79.19

CNN 55.35 61.62 59.29 67.17 49.22
JDT DeepLocator 83.43 79.92 82.28 85.41 78.48

CNN 58.79 61.46 60.85 65.49 54.23
SWT DeepLocator 82.33 84.98 83.61 84.92 79.95

CNN 73.37 75.49 73.84 76.39 69.98
Tomcat DeepLocator 83.35 87.21 85.04 86.29 83.13

CNN 58.01 58.62 58.39 63.59 52.81

deeper semantic information is extracted. In Table II, it can

be observed that the performance of the two-layer CNN is a

bit better than the one-layer CNN, yet the cost time is much

higher. So DeepLocator uses a one-layer CNN.

RQ3: Performance of DeepLocator.
Firstly, we compare conventional CNN with other tech-

niques. Due to space limitation, we report the highest F of

the two classifiers (SVM and Naive Bayes) that are 46.71%

and 53.57% respectively, which is lower than the average F of

CNN (66.61%). Then table III reports the average values of

Precision, Recall, and F-measure for each bug paired with all

source files, maximum F and minimum F of DeepLocator and

CNN. We find that the P, R and F of DeepLocator are all higher

than CNN. In comparison with CNN, DeepLocator achieves

from 9.77% to 26.65% higher average F. Because CNN does

not have the long-term memory, it cannot learn the features

about bug-fixing recency and frequency, which are included

in DeepLocator. Furthermore, the relative interval between

F_max and F_min of CNN is larger than DeepLocator, which

shows the standard deviation of CNN’s accuracy is larger than

DeepLocator. Based on the above results, DeepLocator is more

robust and performs better.

TABLE IV
PREDICTION TIME (SECONDS) PER BUG REPORT OF THREE MODELS.

Prediction Time AspectJ Eclipse UI JDT SWT Tomcat
DeepLocator 25.7 29.9 45.1 9.1 7.9

CNN 26.4 28.3 43.6 9.2 7.7
HyLoc 144.0 126.0 198.0 108.0 60.0

Then we report the time overhead of DeepLocator. Be-

cause more weights in DeepLocator need to be adjusted in

training phase than CNN, the average time consumption of

DeepLocator per batch in training is a bit higher (about

0.03 seconds) than CNN. Due to space limitation, Table IV

presents the average prediction time for one bug report of

DeepLocator, conventional CNN and the existing deep learn-

ing related model (HyLoc) [12]. It is observed that the average

prediction time of DeepLocator and conventional CNN are

very similar. Especially the prediction time for one bug report

of DeepLocator is much lower than HyLoc, which indicates

that DeepLocator is more suitable in practice.

Finally, we analyze the comparison between DeepLocator

and HyLoc. In Table V, the average MAP of DeepLocator

TABLE V
MAP OF DEEPLOCATOR AND HYLOC ON FIVE PROJECTS.

MAP AspectJ Eclipse UI JDT SWT Tomcat
DeepLocator 0.34 0.42 0.45 0.40 0.54

HyLoc 0.32 0.41 0.34 0.37 0.52

is 3.8% higher than the average MAP of HyLoc. If we

analyze the results, we observe that some buggy files given

low scores by HyLoc can be predicted by DeepLocator.

For example, HyLoc gives one buggy file of Bug 54450 in

Project Tomcat Rank 50, which is a relatively low score.

However, DeepLocator predicts it as a buggy file because

"resource" in bug reports is paired with "context" related

words (getContext, configureContext, processContextConfig)

in source files many times. Another example is Bug 399401

in Project Eclipse UI. The rank of its buggy file is 38.

However, "perspective" is paired with "view" and "visible"

related words (getViewLayout, isPartVisible), so DeepLocator

can relate them by training on older bug reports if these pairs

have ever appeared. Therefore, even tokens in source files are

mismatched with words used in bug reports, DeepLocator can

also relate them, which indicates that DeepLocator can learn

correlations between them if they appear frequently as pairs.

RQ4: Impact of the Size of Training Dataset on Accu-
racy.

Figure 7 shows the average F of both projects (Project

Eclipse UI and JDT) by using different training sets. We

observe that initially adding more training data improves the

F values. But when more data is involved, especially when

more older bug reports are used, the accuracy decreases. This

is because older bugs introduce more interference to the model,

which also confirms the necessity of using bug-fixing recency

as important features.

VII. DISCUSSION

A. Effectiveness of rTF-IDuF

In this section, we analyze the difference between TF-

IDF and rTF-IDuF. Some common words may have special

meanings in different collections. And bug reports for different

projects are usually different in terms of writing style and

content. It is therefore not appropriate to consider them in the

same perspective. For example, "aspect" exists in both Project

AspectJ and Eclipse UI. There are many "aspect" in AspectJ

345345345

Fig. 7. Performance of Different Training Set Sizes.

and most of them represent the name of this project. But

there are few "aspect" in Eclipse UI and they denote important

information just as shown on the right of Figure 8. In other

words, "aspect" in Bug 201616 of Project Eclipse UI should be

more important than in Bug 415266 of Project AspectJ, which

implies the term weight of "aspect" in Bug 201616 should be

larger than in Bug 415266.

Fig. 8. Bug Reports that Contain "aspect" in Project AspectJ and Project
Eclipse UI.

We calculate the term weights of "aspect" using TF-IDF

and rTF-IDuF. TF-IDF uses the whole corpus of available

bug reports, while rTF-IDuF just considers the bug reports

from the same project. The term weights of "aspect" computed

by TF-IDF is 7.36 and 3.09 respectively for Bug 415266 in

AspectJ and Bug 201616 in Eclipse UI, while rTF-IDuF is

1.48 and 6.99 respectively. They are different, which validates

that the word "aspect" has different importance in different

projects. When considering the whole corpus using TF-IDF,

the term weight of "aspect" in Bug 201616 (3.09) is less than

in Bug 415266 (7.36), which is not consistent with above

observations. Actually, there are many words like "aspect" that

have different meanings in different collections. Therefore,

rTF-IDuF which considers the "user" collection and not the

entire corpus is appropriate, practically feasible and effective.

B. Why does DeepLocator work?

The major challenge of bug localization is the semantic gap

between bug reports and source code files. Textual similarity

used in most existing techniques [4][12][15][6] is based on

the term frequency rather than semantic information of words

and phrases. Unlike textual similarity, DeepLocator correlates

bug reports to the corresponding buggy files based on a deep

understanding of semantics.

Abstract Syntax Tree (AST) is applied to represent syntax

and extract programming patterns of source code, which makes

the best of the information in source code. Then DeepLocator

uses word embedding to map words into semantic vector space

where similar words are close to each other. So embedded

word vectors containing the information of semantic simi-

larities benefit DeepLocator a lot. What’s more, unlike the

studies in [4][17] using a linear weighted sum of features,

DeepLocator uses an enhanced CNN proposed in this study

to correlate bug reports to buggy files including both linear and

nonlinear relationships. Besides, CNN model performs well in

the semantic parsing field because of the convolving filters

[13], which helps DeepLocator to extract hidden semantic

information between bug reports and source files.

C. Threats to Validity

The experimental results demonstrate the feasibility of

DeepLocator, however, we do acknowledge there are still some

potential threats to validity of our approach and experiments.

Firstly, the proposed approach could be affected by stemming

and removal of stop words process, which will be investigated

in future. Secondly, the analysis on the choice of filter size

(RQ1) is related to the writing style of developers. For

example, if developers in a project team prefer to use very

long phrases to express bug reports, the filter size should also

be longer. We analyze the results of the dataset and provide

a general conclusion. This conclusion may be inadequate.

Thirdly, we implement HyLoc according to the algorithm

provided by [12] and obtain similar results. But the results are

not perfectly the same. Therefore, we choose the best ranked

results to compare with our results during the results analysis.

Finally, all dataset used are obtained from Java projects. The

results may not generalize to other projects written in other

languages. In the future, we intend to improve the model and

use this model in other projects written in different languages.

VIII. CONCLUSIONS AND FUTURE WORK

DeepLocator, a deep learning based model that consist-

ed of an enhanced CNN proposed in this study, together

with a new rTF-IDuF method and the pre-trained word2vec

technique, is proposed to improve the performance of bug

localization. The experimental results show that DeepLocator

performs better (36.29% and 29.43% improvements) than

existing classification models and outperforms HyLoc with

less computation time. DeepLocator bridges the semantic gap

by using Abstract Syntax Tree to parse the syntax of source

code, word embedding to obtain semantic similarities and the

enhanced CNN to learn the correlations between bug reports

and source code.

We intend to enhance DeepLocator to be more sensitive to

buggy file orders and comparable with more bug localization

346346346

techniques [23]. In future, we will also investigate the perfor-

mance of DeepLocator using other TF-IDF weight schemes

[4][40].

IX. ACKNOWLEDGEMENT

This work is supported in part by the General Research Fund

of the Research Grants Council of Hong Kong (No. 11208017

and 11214116), and the research funds of City University of

Hong Kong (No. 7004683).

REFERENCES

[1] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineer-
ing. ACM, 2005, pp. 273–282.

[2] C. Liu, L. Fei, X. Yan, J. Han, and S. P. Midkiff, “Statistical debugging:
A hypothesis testing-based approach,” IEEE Transactions on Software
Engineering, vol. 32, no. 10, pp. 831–848, 2006.

[3] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. Van Gemund, “A practical
evaluation of spectrum-based fault localization,” Journal of Systems and
Software, vol. 82, no. 11, pp. 1780–1792, 2009.

[4] X. Ye, R. Bunescu, and C. Liu, “Learning to rank relevant files for
bug reports using domain knowledge,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 2014, pp. 689–699.

[5] A. T. Nguyen, T. T. Nguyen, J. Al-Kofahi, H. V. Nguyen, and T. N.
Nguyen, “A topic-based approach for narrowing the search space of
buggy files from a bug report,” in Automated Software Engineering
(ASE), 2011 26th IEEE/ACM International Conference on. IEEE, 2011,
pp. 263–272.

[6] D. Kim, Y. Tao, S. Kim, and A. Zeller, “Where should we fix this bug?
a two-phase recommendation model,” IEEE Transactions on Software
Engineering, vol. 39, no. 11, pp. 1597–1610, 2013.

[7] M. White, C. Vendome, M. Linares-Vásquez, and D. Poshyvanyk,
“Toward deep learning software repositories,” in Mining Software Repos-
itories (MSR), 2015 IEEE/ACM 12th Working Conference on. IEEE,
2015, pp. 334–345.

[8] A. T. Nguyen and T. N. Nguyen, “Graph-based statistical language
model for code,” in Software Engineering (ICSE), 2015 IEEE/ACM 37th
IEEE International Conference on, vol. 1. IEEE, 2015, pp. 858–868.

[9] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” in Software Engineering (ICSE), 2012 34th
International Conference on. IEEE, 2012, pp. 837–847.

[10] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” Journal
of Machine Learning Research, vol. 12, no. Aug, pp. 2493–2537, 2011.

[11] B. Kwolek, “Face detection using convolutional neural networks and ga-
bor filters,” Artificial Neural Networks: Biological Inspirations–ICANN
2005, pp. 551–556, 2005.

[12] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Combining
deep learning with information retrieval to localize buggy files for
bug reports (n),” in Automated Software Engineering (ASE), 2015 30th
IEEE/ACM International Conference on. IEEE, 2015, pp. 476–481.

[13] Y. Kim, “Convolutional neural networks for sentence classification,”
arXiv preprint arXiv:1408.5882, 2014.

[14] C.-P. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, and H. Mei,
“Boosting bug-report-oriented fault localization with segmentation and
stack-trace analysis,” in Software Maintenance and Evolution (ICSME),
2014 IEEE International Conference on. IEEE, 2014, pp. 181–190.

[15] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?-
more accurate information retrieval-based bug localization based on
bug reports,” in Proceedings of the 34th International Conference on
Software Engineering. IEEE Press, 2012, pp. 14–24.

[16] R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry, “Improving bug lo-
calization using structured information retrieval,” in Automated Software
Engineering (ASE), 2013 IEEE/ACM 28th International Conference on.
IEEE, 2013, pp. 345–355.

[17] X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu, “From word embeddings
to document similarities for improved information retrieval in software
engineering,” in Proceedings of the 38th International Conference on
Software Engineering. ACM, 2016, pp. 404–415.

[18] S. Zhang and C. Zhang, “Software bug localization with markov logic,”
in Companion Proceedings of the 36th International Conference on
Software Engineering. ACM, 2014, pp. 424–427.

[19] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of Machine Learning Research, vol. 3, no. Jan, pp. 993–1022,
2003.

[20] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic features
for defect prediction,” in Proceedings of the 38th International Confer-
ence on Software Engineering. ACM, 2016, pp. 297–308.

[21] M. Choetkiertikul, H. K. Dam, T. Tran, T. Pham, A. Ghose, and
T. Menzies, “A deep learning model for estimating story points,” arXiv
preprint arXiv:1609.00489, 2016.

[22] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep api learning,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM, 2016, pp. 631–642.

[23] X. Huo, M. Li, and Z.-H. Zhou, “Learning unified features from
natural and programming languages for locating buggy source code.” in
International Joint Conference on Artificial Intelligence (IJCAI), 2016,
pp. 1606–1612.

[24] J. Beel, S. Langer, and B. Gipp, “TF-IDuF: a novel term-weighting
sheme for user modeling based on users’ personal document collections,”
in Proceedings of the iConference 2017, Wuhan, China, Mar. 22-25
2017. [Online]. Available: http://ischools.org/the-iconference/

[25] W. B. Croft, D. Metzler, and T. Strohman, Search engines: Information
retrieval in practice. Addison-Wesley Reading, 2010, vol. 283.

[26] K. Fukushima and S. Miyake, “Neocognitron: A self-organizing neural
network model for a mechanism of visual pattern recognition,” in
Competition and Cooperation in Neural Nets. Springer, 1982, pp. 267–
285.

[27] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex,” The Journal of
Physiology, vol. 160, no. 1, pp. 106–154, 1962.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems, 2012, pp. 1097–1105.

[29] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in Pro-
ceedings of the 25th International Conference on Machine Learning.
ACM, 2008, pp. 1096–1103.

[30] F. Rahman and P. Devanbu, “How, and why, process metrics are
better,” in Proceedings of the 2013 International Conference on Software
Engineering. IEEE Press, 2013, pp. 432–441.

[31] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and
T. N. Nguyen, “Graph-based mining of multiple object usage patterns,”
in Proceedings of the 7th joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering. ACM, 2009, pp. 383–392.

[32] D. Binkley, M. Davis, D. Lawrie, and C. Morrell, “To camelcase or
under_score,” in Program Comprehension, 2009. ICPC’09. IEEE 17th
International Conference on. IEEE, 2009, pp. 158–167.

[33] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[34] M. D. Zeiler, “Adadelta: An adaptive learning rate method,” arXiv
preprint arXiv:1212.5701, 2012.

[35] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[36] M. Allamanis, H. Peng, and C. Sutton, “A convolutional attention
network for extreme summarization of source code,” in International
Conference on Machine Learning, 2016, pp. 2091–2100.

[37] M. Iyyer, P. Enns, J. Boyd-Graber, and P. Resnik, “Political ideology
detection using recursive neural networks,” in Proceedings of the Asso-
ciation for Computational Linguistics, 2014, pp. 1113–1122.

[38] S. Shivaji, J. E. J. Whitehead, R. Akella, and S. Kim, “Reducing features
to improve bug prediction,” in Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering. IEEE
Computer Society, 2009, pp. 600–604.

[39] V. Kešelj, F. Peng, N. Cercone, and C. Thomas, “N-gram-based author
profiles for authorship attribution,” in Proceedings of the Conference
Pacific Association for Computational Linguistics, PACLING, vol. 3,
2003, pp. 255–264.

[40] C. D. Manning, P. Raghavan, and H. Schütze, “Scoring, term weighting
and the vector space model,” Introduction to Information Retrieval, vol.
100, pp. 2–4, 2008.

347347347

