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A B S T R A C T

Context: Previous studies proposed different kinds of approaches for class integration test order generation,
and corresponding systems can be implemented based on these approaches. Such class integration test order
generation systems can facilitate the process of software integration testing if they are implemented correctly.
Objective: However, a test oracle problem exists in the class integration test order generation systems. Since
these approaches for class integration test order generation normally deliver a local optimum rather than a
global optimum, there are no practically feasible ways to validate their generated class integration test orders,
that is, these implementation systems are untestable.
Method: To address the test oracle problem, we apply Metamorphic Testing (MT) to validate class integration
test order generation systems. Metamorphic Relations (MRs), which are the key components of MT, reason
about relations between test outputs of a system. Five effective MRs are developed to ensure the quality of
the class integration test order generation systems. In these proposed MRs, follow-up test inputs are generated
by modifying classes or class dependencies in the source test inputs while some characteristics of the source
test outputs are preserved, for example, the same class integration test order or the equal stubbing cost. Faults
can be detected in systems if an individual MR is violated for certain tests.
Results: Failure detection of MT has been successfully demonstrated in empirical experiments on three
systems implementing different typical class integration test order generation approaches. More than 84%
of faulty programs can be detected by all MRs, for three class integration test order generation systems under
investigation.
Conclusion: The experimental results show that the proposed MRs are able to systematically and effectively
detect faults in class integration test order generation systems. This study explores a new application domain
in MT and further extends its applications in Software Engineering.
. Introduction

Software integration testing is an essential process to guarantee the
uality of software being produced. An important problem in software
ntegration testing is to determine the order in which classes are
ntegrated and tested, because classes in a software system are usually
ndependently developed and tested. Test stubs are constructed for a
lass 𝐴 when classes on which class 𝐴 depends are unavailable. Because
ycles among class dependencies are common in programs [1], test
tubs are inevitable.

Different class integration test orders (CITOs) need various test
tubs, and correspondingly, require different efforts to construct such
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test stubs, which has been proved by Kung et al. [2]. In their exper-
iment, students were asked to prepare test stubs for some member
functions for a program, and one simple test stub is required about
0.79 person-hours to prepare. For a case study system called InterViews
which contains 122 classes, a random CITO requires 191 test stubs
that could be written in about 152 person-hours, while the optimal
CITO requires only 8 test stubs that can be constructed in around 7
person-hours. Therefore, for an ideal CITO, few or no efforts required
to construct test stubs for the integration testing are desirable.

Finding the optimal CITO is basically equivalent to the traveling
salesman problem [3], which is well-known as a factorial ordered
problem. Searching for the globally optimal CITO is impractical for a
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real-life application even with a moderately large number of classes,
and hence heuristics are extensively adopted to search for the locally
optimal CITO instead.

Previous studies focus on the improvement of the performance for
different kinds of class integration test order generation approaches.
Systems can be implemented based on these proposed approaches to
generate class integration test orders for a given Object-Oriented pro-
gram. Systems implemented based on such approaches can facilitate the
process of software integration testing. However, no matter how good
the approach for class integration test order generation is, an incorrect
implementation would not benefit from its capability. Therefore, it
is important to validate such class integration test order generation
systems.

However, testing such a system is difficult if not impossible, because
except for trivial inputs, no practically feasible ways exist to validate its
generated class integration test order. Approaches for class integration
test order generation would be more likely to deliver a locally optimal
solution than a globally optimal solution. Given a real-life system of
even moderate complexity, we are not able to validate whether a
generated class test order for this real-life system is the actual output
that should be computed by the approach, as we are unable to give an
exact definition for the concept of local optimum. Overall, such class
test order generation systems are referred to as untestable systems or
systems with the test oracle problem.

Fortunately, the technique of metamorphic testing (MT) [4] could
help to alleviate the test oracle problem. MT differs from conventional
testing approaches which focus on the verification of each individual
output of the software under testing, instead MT verifies relations
among the inputs and outputs of multiple executions of the software.
Such relations are referred to as metamorphic relations or MRs for
short. If an individual MR is violated for certain tests, it implies that the
implementation is faulty because MRs are the necessary properties of
the implemented algorithm. In this case, the test oracle is not required,
which is suitable for our untestable systems.

We propose to use MT as a framework for validating the class inte-
gration test order generation systems. MT has never been applied in the
area of class integration test order generation, since no references to the
applicable MRs which are the key components in MT can be obtained.
A challenging problem is to develop effective MRs for validating these
systems, which is one of the major contributions delivered by this
paper.

In this paper, we propose five kinds of MRs to validate different
CITO generation systems. These MRs modify class dependencies with
the aim of preserving a part of or the entire original test order. We
validate three systems implementing different typical CITO generation
approaches using the test suites generated based on the proposed MRs.
The results show that no faults can be detected by the five proposed
MRs in three CITO generation systems, which increases the likelihood
of being valid for our systems. We also conduct mutation analysis
to evaluate the effectiveness of the proposed MRs. The experimental
results show that more than 84% of faulty programs can be detected
by all MRs for three class integration test order generation systems.
The contributions of this paper are as follows:

• We validate three systems implementing different class integra-
tion test order generation approaches based on MT. To our best
knowledge, this is the first time to introduce MT in class integra-
tion test order generation.

• Five kinds of MRs are proposed to test the class integration test
order generation systems effectively, which can be extended into
all systems to generate class integration test orders.

• Experiments are conducted on three systems to demonstrate the
failure detection capability of MT.

The remainder of this paper is organized as follows. Section 2 intro-
uces the background, including class integration test order generation
ssues and MT. We present our validation framework and the proposed
Rs in Section 3. The experiments follow in Section 4. Section 5
2

oncludes this work. w
2. Background

This section will briefly introduce the class integration test or-
der generation problem, the existing approaches, and the preliminary
knowledge of MT.

2.1. Class integration test order generation issue

Given a class integration test order, test stubs are constructed for
a class to provide services from the classes on which it depends by
emulating the behaviors of these classes. Suppose that class 𝐶𝑖 depends
on class 𝐶𝑗 , if class 𝐶𝑖 is integrated and tested prior to class 𝐶𝑗 based
on the generated test order, a test stub is created for class 𝐶𝑖 to provide
services from class 𝐶𝑗 . To estimate the cost to construct such a test stub
𝑆𝑡𝑢𝑏(𝐶𝑖, 𝐶𝑗), Briand et al. [3] proposed a metric, stubbing complexity
(SCplx), which is calculated as follows:

𝑆𝐶𝑝𝑙𝑥(𝑖, 𝑗) = [𝑊𝐴 ⋅ 𝐴(𝑖, 𝑗)
2
+𝑊𝑀 ⋅𝑀(𝑖, 𝑗)

2
]1∕2 (1)

In this equation, attributing complexity 𝐴(𝑖, 𝑗) and method complex-
ty 𝑀(𝑖, 𝑗) counts the number of attribute assess and method invocation
rom class 𝐶𝑖 to class 𝐶𝑗 , respectively. These two kinds of complexity
re equally important in affecting the cost to construct such a test
tub, therefore, two weights for two kinds of complexity are equal,
.e., 𝑊𝐴 = 𝑊𝑀 = 0.5. Correspondingly, to estimate the cost to construct
ll test stubs based on a given class test order 𝑂, a metric, overall
tubbing complexity (OCplx) is proposed in [3]. It is calculated as the
um of SCplx of all test stubs, which is shown as (2).

𝐶𝑝𝑙𝑥(𝑂) =
∑

(𝑖,𝑗)∈𝑆𝑡𝑢𝑏𝑠
𝑆𝐶𝑝𝑙𝑥(𝑖, 𝑗) (2)

If no cycles among class dependencies exist in the program under
ntegration testing, a class integration test order can be generated
y the reverse topological sorting of all classes, and no test stubs
re required. However, constructing test stubs are unavoidable when
ircular dependencies exist among classes in the program, which is a
ommon phenomenon. Existing studies aimed at devising a class test
rder with lower overall stubbing complexity and proposed different
inds of approaches for this issue.

In this paper, we focus on one popular kind of class integration
est order generation approaches, which is based on graph theory.
iven a program under integration testing, this kind of approaches first
escribe class dependencies in this program through constructing an
bject relation diagram (ORD). In such a diagram, each node represents
class and each directed edge represents a class dependency from one

lass (source node) to the target class (target node) on which it depends.
ig. 1 shows an ORD for a sample program containing six classes.
alues above the edge indicate the corresponding SCplx for each edge.
or example, 𝐶1 → 𝐶2 indicates class 𝐶1 depends on class 𝐶2, and the
Cplx is 0.3. Four cycles exist in this ORD:

(1) 𝐶1 → 𝐶5 → 𝐶6 → 𝐶1
(2) 𝐶1 → 𝐶5 → 𝐶4 → 𝐶1
(3) 𝐶1 → 𝐶3 → 𝐶4 → 𝐶1
(4) 𝐶1 → 𝐶2 → 𝐶3 → 𝐶4 → 𝐶1

To generate the final class integration test order, such cycles must
e broken by removing some edges and test stubs are constructed
or the corresponding class dependencies. The OCplx of such class
ntegration test order can be calculated based on the constructed test
tubs. Therefore, the adopted cycle-breaking algorithms are important,
hich affect the removed edges and the final stubbing cost.

Most existing cycle-breaking algorithms are greedy algorithms: they
ssign weights for different edges to assess the stubbing cost for the
orresponding class dependencies and remove the edge with the mini-
al or maximal weight that indicates the lowest stubbing cost in each

tep. Such operation will be repeated until no cycles exist. These cycle-
reaking algorithms can be characterized as three types based on their
eight calculation.
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Fig. 1. Object relation diagram for a sample program. The sample program contains
six classes. Each node represents a class. Each directed edge from source node to target
node represents the source class depends on the target class, and the value above the
edge represents the corresponding SCplx for each edge.

(1) Number of cycles. The weight for each edge is calculated as the
number of cycles in which the edge is involved. For example,
Briand et al. [5] roughly estimated the number of cycles in which
an edge is involved by the product of in-degree of source node and
out-degree of target node. The edge that is involved in more cycles
is desired because removing such an edge can break more cycles at
once. For the sample program, the edge 𝐶4 → 𝐶1 will be removed
first, which breaks three out of four cycles.

(2) Stubbing cost. The stubbing cost for each class dependency is calcu-
lated as the weight for the corresponding edge, such as the SCplx
calculated by Eq. (1). Hashim [6] measured the effort to construct
test stubs for each class as its weight, the class with the minimal
weight is identified and test stubs are created to emulate the classes
on which it depends. For the sample program, the edge 𝐶4 → 𝐶1
and 𝐶5 → 𝐶6 with the lowest SCplx will be removed first.

(3) Cycles-weight ratio. The weight for each edge is calculated com-
bining the abovementioned two factors, which is the ratio of the
number of cycles and stubbing cost. Bansal et al. [7] and Abdurazik
et al. [8] used such an approach. Removing the edge with the
highest value means that we can break more cycles at a relatively
lower stubbing cost. For the sample program, the edge 𝐶4 → 𝐶1
having the highest cycles-weight ratio will be removed first.

Although these cycle-breaking algorithms adopted different meth-
ods for weight calculation, the procedure to generate class integration
test orders is identical. Systems implementing these cycle-breaking
algorithms are similar except for weight calculation.

2.2. Metamorphic testing (MT)

Metamorphic Testing (MT) is first proposed by Chen et al. [4,9] to
alleviate the problem of test oracles by verifying the relations among
the inputs and outputs of multiple executions for the programs or
systems under testing. Metamorphic Relation (MR) is the key compo-
nent in MT, which reasons about relations between test outputs of a
program when it lacks test oracles. In general, a MR is a necessary
property of a function f over function inputs 𝑥1, 𝑥2, . . . , 𝑥𝑛 (𝑛 > 1),
and their corresponding output values 𝑓 (𝑥1), 𝑓 (𝑥2), . . . , 𝑓 (𝑥𝑛) [10,11].
For example, a mathematical property of the 𝑠𝑖𝑛𝑒 function is that
sin(𝑥) = sin(𝜋 − 𝑥), the corresponding MR is that if two function inputs
𝑥1 and 𝑥2 satisfy 𝑥1 + 𝑥2 = 𝜋, then two function outputs should be
equal, i.e., sin(𝑥1) = sin(𝑥2). In this example, 𝑥2 is constructed based on
⟨𝑥1, sin(𝑥1)⟩ according to the MR, therefore, we refer to 𝑥1 as a source
input and 𝑥2 as a follow-up input. Such relations can be used to test
the program when we are not sure whether the test output is correct.
An implementation for this function must have faults if it violates the
3

above relation.
Many studies from different domains have proved the effectiveness
of MT to alleviate the test oracle problem, such as, epidemiologi-
cal [12,13], big data analytics software [14,15], and security-critical
applications (cybersecurity [16] and cryptography [17,18]). Especially
in compilers [19,20], MT has helped to detect many real-life faults.
Le et al. [19] used a very simple MR and detected 147 unique bugs
in two popular C compilers (GCC and LLWM) in 2014. But they are
not the only researchers to use MT to test compilers. In 2010, Tao
et al. [20] also conducted the testing of similar compilers, but they only
found one fault in the GCC compiler. The number of faults detected by
two research teams is dramatically different, which means MRs have a
significant impact on the MT’s capability for fault detection. Further-
more, as observed by Liu et al. [21], a small number of diverse MRs
may effectively reveal almost all faults. Therefore, we aim to analyze
different kinds of MRs, develop more effective MRs, and demonstrate
the practicality and robustness of class integration test order generation
systems through a comprehensive scaled experiment.

3. Our validation framework

3.1. Validation procedure

In this paper, we adopt MT to validate systems implementing the
class integration test order generation approaches introduced in Sec-
tion 2. MR is the key component in MT, which is a necessary property
of the function over its inputs and the corresponding outputs. MR
describes how to generate a follow-up test case based on the source test
case and its source output, and explains which relation between two
outputs (i.e., source output and follow-up output) must be satisfied. We
first extract MRs for these systems implementing the class integration
test order generation approaches. The proposed MRs are generated
based on the necessary property of these approaches, which will be
explained in detail in Section 3.2. The main procedure of these class
integration test order generation approaches is identical, which is to
break all cycles in the object relation diagram constructed for the
program under integration testing. Once no cycle exists in the diagram,
classes are integrated and tested based on the reverse topological sort-
ing. Test stubs are only constructed for the class dependencies whose
corresponding edges are removed in cycles.

Our validation procedure for the class integration test order gener-
ation systems includes four steps. Firstly, we select source programs as
source inputs to run the class integration test order generation system
and obtain the generated test orders as source outputs. Then, follow-
up programs are generated based on the proposed MR, source inputs
and their corresponding source outputs. Such follow-up programs are
referred to as follow-up inputs. Next, follow-up inputs are used to run
the class integration test order generation system. The obtained test
orders are follow-up outputs. Finally, we check whether the proposed
MR holds for such two kinds of outputs. If the relation is violated, a
failure is revealed.

3.2. Metamorphic relations (MRs)

In this section, we discuss the developed MRs for the class integra-
tion test order generation systems.

(1) MR1: Permutation of class names
An obvious MR to validate class integration test order generation

systems is about permuting class names. Fig. 2 shows an example for
the permutation of class names. In the source program and follow-
up program, each node represents a class and each directed edge
represents a class dependency, for example, 𝐶1 → 𝐶2 represents class
𝐶1 depends on class 𝐶2. Let SP denote the source program that contains
six classes, and the output is a class integration test order, 𝑂𝑠𝑝, which
is further supposed to be [𝐶4, 𝐶5, 𝐶3, 𝐶2, 𝐶1, 𝐶6]. A follow-up program
FP can be constructed by permuting the class names without any

modifications on inter-class relationships and functionality of these
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o
a

Fig. 2. Example of MR1 (Permutation of class names). The adopted permutation
scheme is 𝐶1 → 𝐶5, 𝐶2 → 𝐶1, 𝐶3 → 𝐶6, 𝐶4 → 𝐶3, 𝐶5 → 𝐶4, 𝐶6 → 𝐶2.

classes. Obviously, there is a one-to-one correspondence between the
computed test orders of programs SP and FP, and the efforts required
to construct test stubs based on these two test orders should also be
equal.

(2) MR2: Adding/deleting class dependencies for the initial
class with the aim of preserving its test order

Fig. 3 shows an example for MR2. The notation for nodes and
edges is similar with Fig. 2, and the weight for each edge represents
the stubbing cost for each class dependency. Let SP denote the source
program that contains six classes, and in the output, i.e., the generated
class integration test order, 𝑂𝑠𝑝, class 𝐶4 is integrated and tested first.
It indicates that the highest test priority of class 𝐶4 will contribute to
a lower stubbing cost for the subsequent integration testing (i.e., test
stubs are not required for those classes depending on class 𝐶4). In such
a case, adding new class dependencies to class 𝐶4 will not incur extra
stubbing cost for the subsequent integration testing, and this operation
will not affect the test order of class 𝐶4. Hence, a follow-up program FP
which has the same classes as SP, can be generated by adding one or
more class dependencies to class 𝐶4, for example, the addition of edge
𝐶2 → 𝐶4. Class 𝐶4 will still be the initial class in the test order 𝑂𝑓𝑝
generated for the program FP. Because the classes on which class 𝐶4
depends are unchanged, the stubbing cost of 𝑂𝑓𝑝 will be equal to that
of 𝑂𝑠𝑝. Similarly, deleting class dependencies from class 𝐶4, will reduce
the stubbing cost when class 𝐶4 is integrated, and as a consequence, this
operation will not affect its test priority. Therefore, the other follow-up
program FP which has the same classes as SP, can be constructed by
removing class dependencies through the removal of edges, such as,
removing class 𝐶1 on which class 𝐶4 depends, through the removal
of edge 𝐶 → 𝐶 . Class 𝐶 will still be the initial class in the class
4

4 1 4
integration test order 𝑂𝑓𝑝 generated for the program FP. Because the
classes on which class 𝐶4 depends are fewer in FP, the stubbing cost of
𝑂𝑓𝑝 will be smaller than that of 𝑂𝑠𝑝.

To prove MR2, we need the following proposition:

Proposition 1. Suppose class 𝐶 is integrated and tested first. If class 𝐶
is not independent, all class dependencies from class 𝐶 will be involved in
cycles.

Proof of Proposition 1. Suppose that there exists another class 𝐷, class
𝐶 depends on class 𝐷 and the class dependency 𝐶 → 𝐷 is not involved
in any cycles. According to our assumption that all systems for class
integration test order generation will not construct unnecessary test
stubs when no cycle exists, class 𝐷 should be integrated and tested prior
to class 𝐶, so that a test stub created for class 𝐶 to emulate class 𝐷
can be avoided. Although class 𝐷 might be involved in cycles, we can
regard class 𝐷 and other classes that are involved in the same cycles
as a whole. The test order of other classes can be ignored because it
will not affect the test sequence between class 𝐷 and class 𝐶. Class 𝐶
will not be the initial class in the class integration test order, which
contradicts our assumption that class 𝐶 is integrated and tested first.
Therefore, the class dependency 𝐶 → 𝐷 must be involved in cycles.

Proof of MR2. Class 𝐶 is integrated and tested first, which means
all class dependencies from class 𝐶 are removed and test stubs are
constructed for these class dependencies. Because all class dependencies
from class 𝐶 are involved in cycles, such class dependencies must be
the locally optimal solution obtained by approaches to break cycles
in which they are involved. To generate the follow-up program, we
remove some of these class dependencies from class 𝐶, the correspond-
ing cycles will be broken automatically. This operation will not affect
remaining cycles and solutions to break these cycles. Remaining class
dependencies from class 𝐶 will still be the locally optimal solution for
the follow-up program, and corresponding test stubs are constructed.
Therefore, class 𝐶 will still be the initial class in the test order.

Another measure to generate the follow-up program is to add new
class dependencies to class 𝐶. If such class dependencies do not form
new cycles, the locally optimal solution obtained by class integration
test order generation approaches will be the same, and class 𝐶 will still
be the initial class in the integration test order. If the newly added class
dependencies form new cycles, some class dependencies from class 𝐶
must be involved in these cycles. Removing such class dependencies
from class 𝐶 will be the optimal solution to break these cycles if they
own lower stubbing cost. Therefore, to make sure that class 𝐶 will still
be the initial class in the class integration test order, the newly added
class dependencies should be assigned a very large weight 𝑊 .

(3) MR3: Adding/deleting class dependencies for the last class
with the aim of preserving its test order

Fig. 4 shows an example for MR3, where the notation for nodes
and edges is similar with that of other MRs. Let SP denote the source
program that contains six classes, and in its generated class integration
test order, 𝑂𝑠𝑝, class 𝐶6 is the last class to be integrated and tested.
That means testing class 𝐶6 requires the greatest stubbing cost, or this
operation cannot lower stubbing cost for the subsequent integration
testing (i.e., fewer classes depending on class 𝐶6). A MR can be defined
relating to the modification of class dependencies for the last class
in the integration test order, i.e., class 𝐶6. Because testing class 𝐶6
has already incurred the greatest stubbing cost, the increase of its
stubbing cost by adding more class dependencies from class 𝐶6 will not
affect the test order of class 𝐶6. Hence, a follow-up program FP which
has the same classes as SP, can be produced by adding one or more
dependencies from class 𝐶6 to other classes, for example, adding edge
𝐶6 → 𝐶2. Class 𝐶6 will still be the last class in the class integration test
rder 𝑂𝑓𝑝 generated for the program FP. Because class 𝐶2 is integrated
nd tested prior to class 𝐶 , no extra test stubs are required in the
6
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Fig. 3. Example of MR2 (Adding/deleting class dependencies for the initial class). The
added class dependency is 𝐶2 → 𝐶4 with a very large weight 𝑊 , and the removed class
ependency is 𝐶4 → 𝐶1.

rogram FP. The stubbing cost of 𝑂𝑓𝑝 will be the same as that of 𝑂𝑠𝑝.
imilarly, reducing the stubbing cost saved by the integration of class

6 for the subsequent integration testing has no effects on the test
rder of class 𝐶6. Therefore, suppose that class 𝐶6 is depended by some
ther classes, a follow-up program FP which has the same classes as
P, can be generated by removing one or more class dependencies to
lass 𝐶6, such as, removing edge 𝐶5 → 𝐶6. Class 𝐶6 will still be the

last class in the test order 𝑂𝑓𝑝 generated for the program FP. The test
stub constructed for class 𝐶5 to emulate the services from class 𝐶6 is
unnecessary now. The stubbing cost of 𝑂𝑓𝑝 will be lower than that of
𝑂𝑠𝑝.

To prove MR3, we need the following proposition:
5

b

Fig. 4. Example of MR3 (Adding/deleting class dependencies for the last class). The
added class dependency is 𝐶6 → 𝐶2 with a very large weight 𝑊 , and the removed class
dependency is 𝐶5 → 𝐶6.

roposition 2. Suppose that class 𝐶 is the last class to be integrated and
ested. If other classes depend on class 𝐶, all class dependencies to class 𝐶
re involved in cycles.

roof of Proposition 2. Suppose that there exists another class 𝐵, such
hat class 𝐵 depends on class 𝐶 and the class dependency 𝐵 → 𝐶 is
ot involved in any cycles. Class 𝐶 should be integrated and tested
rior to class 𝐵, so that a test stub created for class 𝐵 to emulate class

can be avoided according to our assumption that unnecessary test
tubs are not constructed. Then, class 𝐶 will not be the last class in the
ntegration test order, which contradicts our assumption. Therefore, the
lass dependency 𝐵 → 𝐶 must be involved in cycles.

roof of MR3. Class 𝐶 is integrated and tested lastly, which means all
lass dependencies to class 𝐶 are the locally optimal solution obtained
y class integration test order generation approaches to break cycles in
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Fig. 5. Example of MR4 (Adding a new class with the aim of preserving the original
test order). One kind of added class is 𝐶𝑡, which is depended by all the existing classes,
and the other kind is 𝐶𝑠, which depends on all other existing classes.

hich they are involved. Removing some class dependencies to class
breaks their corresponding cycles and does not affect the solutions

o break the remaining cycles. Therefore, test stubs will be constructed
or other remaining class dependencies to class 𝐶, and class 𝐶 will still

be the last class in the class integration test order.

For adding new class dependencies from class 𝐶, if such class depen-
dencies do not form new cycles, the classes on which class 𝐶 depends
will be integrated and tested before class 𝐶, which is consistent with
the fact that class 𝐶 is integrated and tested lastly. If the newly added
class dependencies form new cycles, some existing class dependencies
to class 𝐶 must be also involved in these cycles. To make sure that
removing these class dependencies to class 𝐶 will also be the optimal
solution for the new cycles, a very large weight 𝑊 should be assigned
to the newly added class dependencies.

(4) MR4: Adding a new class with the aim of preserving the
6

original test order
Fig. 6. Example of MR5 (Combining classes while preserving the original test order).
Classes 𝐶2 and 𝐶3 are combined as a new class 𝐶𝑥.

Different from MR2 and MR3 in which classes in the program
remain unchanged, a new class is added to the program with the aim of
preserving the original test order in MR4. Fig. 5 shows an example for
MR4. Let SP denote the source program that contains six classes, and
the class integration test order generated for the program SP is 𝑂𝑠𝑝,
which is further supposed to be [𝐶4, 𝐶5, 𝐶3, 𝐶2, 𝐶1, 𝐶6]. A follow-up
program FP can be generated by adding a new class 𝐶𝑡 such that all
the classes in the program depend on this new class 𝐶𝑡. Therefore, the
class integration test order 𝑂𝑓𝑝 generated for the program FP should
be 𝑂𝑓𝑝 = [𝐶𝑡, 𝑂𝑠𝑝]. Similarly, a new class 𝐶𝑠 that depends on all other
existing classes is added, and the class integration test order 𝑂𝑓𝑝 should
be [𝑂𝑠𝑝, 𝐶𝑠]. The stubbing cost of these two class integration test orders
𝑂𝑓𝑝 will be the same as that of 𝑂𝑠𝑝.

(5) MR5: Combining classes with the aim of preserving the original
test order

A more complicated MR is to combine some classes with the aim of
preserving the original test order. Fig. 6 shows an example for MR5.
Let SP denote the source program that contains six classes, and the
class integration test order generated for the program SP is 𝑂𝑠𝑝, which
is further supposed to be [𝐶4, 𝐶5, 𝐶3, 𝐶2, 𝐶1, 𝐶6]. Two edges 𝐶4 → 𝐶1
and 𝐶5 → 𝐶6 are removed to break cycles, and test stubs are constructed
for the two corresponding class dependencies. A follow-up program
FP can be generated by combining classes, for example, combining
classes 𝐶2 and 𝐶3 to form a new class 𝐶𝑥. Dependencies between class
𝐶2 and 𝐶3 are ignored, while dependencies between class 𝐶2 (or 𝐶3)
and other remaining classes are generated for the new class 𝐶𝑥. For
instance, an edge 𝐶1 → 𝐶𝑥 with the weight as 0.8 replaces the edge
𝐶1 → 𝐶2 (weight = 0.3) and the edge 𝐶1 → 𝐶3 (weight = 0.5). In the
follow-up program, the combination of classes 𝐶2 and 𝐶3 does not affect
the class integration test order generated by approaches, therefore, the
class integration test order generated for the program FP is similar with
𝑂𝑠𝑝, that is, 𝑂𝑓𝑝 = [𝐶4, 𝐶5, 𝐶𝑥, 𝐶1, 𝐶6]. The stubbing cost of 𝑂𝑓𝑝 will
be the same as that of 𝑂 .
𝑠𝑝
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To preserve the original test order, the combination of appropriate
classes is very important. As we have known the generated class
integration test order for the source program, we can easily infer which
edges are removed to break cycles. Suppose that an edge 𝑒 is removed
to break 𝑚 (𝑚 > 1) cycles, and 𝑐 is one of these cycles. If a class
dependency 𝐶𝑖 → 𝐶𝑗 is only involved in this cycle 𝑐, combining 𝐶𝑖
nd 𝐶𝑗 will not affect the generated class test order, because the class
ependency 𝐶𝑖 → 𝐶𝑗 is not the optimal solution to break cycles, i.e., the
dge 𝑒 will still be removed to break such 𝑚 cycles.

Based on the above five MRs, follow-up inputs are generated. Then
ollow-up outputs can be obtained by running the class integration test
rder generation system. Finally, we check whether follow-up outputs
nd source outputs satisfy the corresponding MR. Faults are detected if
he MR is violated.

. Experiments

This section provides an experimental evaluation of our validation
ramework for three class integration test order (CITO) generation
ystems. Test data, including source test cases and follow-up test cases
re generated based on the proposed MRs. Firstly, source test cases
nd follow-up test cases are applied in three original CITO generation
ystems to detect any violations of these proposed MRs. If any viola-
ion is detected, which means that faults exist, then we will modify
he systems to correct these faults. After that, mutation analysis is
dopted to evaluate the effectiveness of five proposed MRs. Mutants
re generated for the CITO generation system as faulty programs. If
n MR is violated, a mutant is killed and correspondingly, a fault
an be detected. Section 4.1 introduces the information of three CITO
eneration systems. Section 4.2 introduces the experimental design.
eneration of test cases and mutants are described in Sections 4.3
nd 4.4, respectively. Section 4.5 provides the experimental results and
nalyses. Section 4.6 presents the discussion, and Section 4.7 discusses
he threats to validity.

.1. CITO generation systems

Fig. 7 shows the overview of three CITO generation systems. These
ystems are implemented by us based on the corresponding CITO
eneration approaches introduced in Section 2, because there are no
ublic CITO generation systems. Given a program under the integra-
ion testing, CITO generation system takes the information of classes
nd class dependencies as the input and generates a class order for
ntegration testing as an output. For each class, class information
resents its dependent classes, and the classes on which it depends.
lass dependency information indicates attribute coupling and method
oupling for each class dependency, which can be used to calculate its
tubbing cost. Based on such class and class dependency information,
n object relation diagram is constructed for the given program and
ycles are identified in the diagram. We assign different weights to
ach edge measuring the effort of removing it. The appropriate edge
s removed to break cycles based on its weight. After all cycles have
een broken, a class integration test order is generated. Three CITO
eneration systems are implemented based on different kinds of weight
alculation:

• NCSystem: weight is calculated based on the number of cycles.
The edge that is involved in the greatest number of cycles will be
removed.

• SCSystem: weight is calculated based on stubbing cost. The edge
that requires the lowest stubbing cost will be removed.

• CWRSystem: weight is calculated based on cycles-weight ratio.
7

The edge with the highest cycles-weight ratio is removed.
Fig. 7. Overview of class integration test order generation systems.

Table 1
Information of source programs.

Programs Classes Deps Cycles Deps in Cycles LOC

ANT 25 83 654 41 4093
ATM 21 67 30 29 1390
DNS 61 276 16 23 6710
SPM 19 72 1178 59 1198

Multiple edges may satisfy the above criteria for the cycle-breaking
in practice. In case of a tie, we propose the following measures for this
issue. If the weight calculation is based on the number of cycles, the
edge attracting the lowest stubbing cost is selected from its competitors.
If the weight calculation is based on stubbing cost or cycles-weight
ratio, the edge involved in the greatest number of cycles is selected.
Otherwise, the edge where the source node has the smallest index
is selected. Similarly, multiple classes can be integrated at the same
time if all classes on which they depend have been tested. Hence, such
multiple classes have the same test order.

4.2. Experimental design

We first generate test suites based on the proposed MRs. Then we
test three CITO generation systems using the given test suites. Once
a MR is violated, faults can be detected. We can modify our systems
based on the violated MR and the corresponding test suites until no
faults can be found. We conduct experiments to answer the following
two questions.

RQ1: What is the performance of different MRs on detecting
faulty programs? As we have known, different MRs have different
impacts on the MT’s capability for fault detection. We evaluate the ef-
fectiveness of different MRs on detecting faults. Mutants are generated
as faulty programs. A mutant is killed if the given MR is violated, and
correspondingly, faults are detected.

RQ2: What is the performance of MT on detecting different
kinds of faults? Because these faults generated by mutation operators
are very common in practice. We aim to validate the capability of MT
in detecting different kinds of faults. Therefore, we count the number of
killed mutants generated by different mutation operators. By comparing

the number of different kinds of killed mutants, we can find for which
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Table 2
Number of follow-up programs for MRs. For MR2 and MR3, column ADD (DEL) counts the number of follow-up programs
generated by adding (deleting) class dependencies for the initial or last class. For MR4, column SRC (TAR) counts the number
of follow-up programs generated by adding a source (target) class.

SUT Programs MR1 MR2 MR3 MR4 MR5 SUM
ADD DEL ADD DEL SRC TAR

NCSystem

ANT 5 5 0 5 0 5 5 1 26
ATM 5 5 0 5 1 5 5 2 28
DNS 5 5 0 5 2 5 5 4 31
SPM 5 5 3 5 1 5 5 3 32
SUM 20 20 3 20 4 20 20 10 117

SCSystem

ANT 5 5 1 5 0 5 5 1 27
ATM 5 5 0 5 1 5 5 2 28
DNS 5 5 0 5 2 5 5 4 31
SPM 5 5 3 5 1 5 5 1 30
SUM 20 20 4 20 4 20 20 8 116

CWRSystem

ANT 5 5 1 5 0 5 5 0 26
ATM 5 5 0 5 1 5 5 2 28
DNS 5 5 0 5 2 5 5 4 31
SPM 5 5 3 5 1 5 5 3 32
SUM 20 20 4 20 4 20 20 9 117
a
g
2
c
c
‘
g
t

kinds of faults the proposed MRs performed well, and for which kinds
of faults the proposed MRs performed the worst, which can provide
the direction for our future work, i.e., to propose more specific MRs
for those kinds of faults that are difficult to detect now.

4.3. Test case generation

For the source test cases, we choose four benchmark programs
that are popularly used in the class integration test order generation
problem as source inputs. Table 1 presents the information of source
programs, i.e., these benchmark programs, including the number of
classes, class dependencies (Deps), cycles, dependencies that are in-
volved in cycles, and LOC. The detailed information of classes and class
dependencies, such as attribute coupling and method coupling, can be
found in the literature [3].

We run three CITO generation systems for these benchmark pro-
grams and obtain the corresponding class integration test orders as the
source outputs. Follow-up test cases can be generated easily based on
source inputs, source outputs, as well as these proposed MRs. For some
MRs, more than one follow-up program can be generated according
to a source test case, therefore, we randomly choose five follow-
up programs in such cases. Table 2 counts the number of follow-up
programs for each MR.

As shown in Table 2, total 117, 116 and 117 follow-up programs
are generated for NCSystem, SCSystem and CWRSystem, respectively.
For MR1, i.e., the permutation of class name, which is the simplest,
five follow-up test cases are generated for each source test case. For
MR2 and MR3, adding class dependencies for the initial (last) class is
much easier than deleting class dependencies for the initial (last) class
with the aim of preserving its test order. In some cases, such as ANT for
NCSystem, the initial class in the class test order does not depend on
any other classes. Similarly, no other classes depend on the last class
in the test order. Therefore, no class dependencies from the initial class
(or to the last class) can be removed. For MR4, adding a target class on
which all the existing classes depend, or a source class which depends
on all the existing classes, is easy to implement. Therefore, 20 follow-up
test cases are generated for both situations respectively. For MR5, only
certain class combinations may preserve the class test order and remain
the same stubbing cost. Therefore, it is more complicated to generate
such follow-up test cases compared with other MRs.

4.4. Mutant generation

To evaluate the effectiveness of the proposed MRs, we generate
mutants for three CITO generation systems by the tool, PIT.1 PIT is

1 https://pitest.org/
8

m

a mutation testing system, which runs the provided test cases against
mutants, i.e., faulty programs. PIT first compiles the given source code
to generate byte code. Then faulty programs are obtained by applying
a set of mutation operators to the byte code. Different results are
produced when the application code changes, and correspondingly,
such faulty programs can be detected. Mutation operators used in PIT
are described as the following:

• FALSE_RETURNS (False Returns Mutator): Replace primitive and
boxed Boolean return values with false.

• CONDITIONALS_BOUNDARY (Conditionals Boundary Mutator):
Replace the relational operators, such as, <, >, with their bound-
ary counterpart, i.e., <=, >=.

• EMPTY_RETURNS (Empty Returns Mutator): Replace return val-
ues with an ‘empty’ value for that type. For example, replacing
java.util.List with Collections.emptyList().

• INCREMENTS (Increments Mutator): Replace increments with
decrements and vice versa. For example, change increment from
1 to −1 and change increment from −1 to 1.

• VOID_METHOD_CALLS (Void Method Call Mutator): Remove
method calls to void methods.

• MATH (Math Mutator): Replace binary arithmetic operations for
integer or floating-point arithmetic with another operation. For
example, replace integer subtraction with addition, replace dou-
ble addition with subtraction, replace double division with mul-
tiplication, and replace double multiplication with division.

• NEGATE_CONDITIONALS (Negate Conditionals Mutator): Re-
place the original conditional with its negate conditional.

• NULL_RETURNS (Null Returns Mutator): Replace return values
with null.2

• PRIMITIVE_RETURNS (Primitive Returns Mutator): Replace int,
short, long, char, float and double return values with 0.

Table 3 counts the number of different kinds of mutants gener-
ted for three CITO generation systems. The total number of mutants
enerated for NCSystem, SCSystem, and CWRSystem is 290, 287, and
86, respectively. More than 30% of mutants are generated by negate
onditionals mutator, which replaces the original conditional with the
orresponding negate conditional. For example, ‘==’ is replaced by
! =’, ‘<=’ is replaced by ‘>’, and ‘>=’ is replaced by ‘<’. Mutants
enerated by void method call mutator account for 28%, which ranks
he second.

2 Methods that can be mutated by Empty Returns Mutator will not be
utated.

https://pitest.org/


Information and Software Technology 132 (2021) 106507M. Zhang et al.

m
e
m
s
a

d
t

𝑀

w
c
e
O
e
i
a
f
o

g
t
o
g
t
a

4

M
c
a
b

f
d
a
e

Table 3
Information of mutants for CITO generation systems. Column NC, SC and CWR counts
the number of different kinds of mutants generated for NCSystem, SCSystem and
CWRSystem, respectively.

Type of mutants Number

NC SC CWR

FALSE_RETURNS 5 5 5
CONDITIONALS_BOUNDARY 28 27 27
EMPTY_RETURNS 17 17 17
INCREMENTS 16 16 16
VOID_METHOD_CALLS 62 64 63
MATH 31 31 33
NEGATE_CONDITIONALS 106 103 101
NULL_RETURNS 14 13 13
PRIMITIVE_RETURNS 11 11 11
SUM 290 287 286

Table 4
Information of mutants for cycle-breaking module in CITO generation systems. Column
NC, SC and CWR counts the number of different kinds of mutants generated for
NCSystem, SCSystem and CWRSystem, respectively.

Type of mutants Number

NC SC CWR

CONDITIONALS_BOUNDARY 7 6 6
EMPTY_RETURNS 2 2 2
VOID_METHOD_CALLS 4 5 5
MATH 2 2 4
NEGATE_CONDITIONALS 24 21 19
NULL_RETURNS 3 2 2
PRIMITIVE_RETURNS 1 1 1
SUM 43 39 39

Table 4 counts the number of mutants generated for cycle-breaking
odule, which is the most different module among three CITO gen-

ration systems. The number of mutants generated in cycle-breaking
odule is 43, 39 and 39 for NCSystem, SCSystem, and CWRSystem, re-

pectively. Similar with the whole system, almost half of these mutants
re generated by negate conditionals mutator.

Mutation score (MS) is adopted to measure the performance of
ifferent MRs. MS indicates the adequacy of a test suite (TS) against
he program (P) under test, which is calculated as follows:

𝑆(𝑃 , 𝑇𝑆) =
𝑁𝑘

𝑁𝑚 −𝑁𝑒
(3)

here 𝑁𝑘 counts the number of killed mutants by the test suite, 𝑁𝑚
ounts the total number of mutants and 𝑁𝑒 refers to the number of
quivalent mutants, which behave the same as the unmutated program.
ne kind of output information indicates which module our system
xecuted. Therefore, mutants could be regarded as equivalent mutants
f the mutated modules were not executed by the system, or the mutants
re generated by mutating the statements that print such indication in-
ormation. Equivalent mutants are excluded when counting the number
f mutants in Tables 3 and 4.

In our experiments, a test suite consists of a set of test cases
enerated for the same MR. Different from the traditional testing where
he expected values are provided, MRs are provided in MT. If the test
utputs of the source test case and its follow-up test case violate the
iven MR for a mutant, the mutant is referred to be killed. The higher
he MS, the more adequate the given test suite (i.e., the proposed MR)
gainst the program under the test is.

.5. Experimental results

We first test three CITO generation systems using the five proposed
Rs. All pairs of test cases, i.e., source test cases and follow-up test

ases, pass the corresponding CITO generation systems respectively
nd no MRs are violated. It indicates that no faults can be detected
9

y the five proposed MRs in three CITO generation systems, which p
Table 5
Mutation scores of CITO generation systems for different test suites generated based on
five MRs. Column 𝑁𝑘 counts the number of killed mutants and column MS represents
the corresponding mutation scores.

MRs Type NCSystem SCSystem CWRSystem

𝑁𝑘 MS 𝑁𝑘 MS 𝑁𝑘 MS

MR1 None 143 0.4931 141 0.4913 141 0.4930

MR2
ADD 163 0.5621 237 0.8258 238 0.8322
DEL 146 0.5034 221 0.7700 225 0.7867
TOTAL 163 0.5621 241 0.8397 242 0.8462

MR3
ADD 221 0.7621 235 0.8188 240 0.8392
DEL 141 0.4862 210 0.7317 210 0.7343
TOTAL 229 0.7897 242 0.8432 245 0.8566

MR4
SRC 207 0.7138 205 0.7143 200 0.6993
TAR 210 0.7241 208 0.7247 203 0.7098
TOTAL 210 0.7241 208 0.7247 245 0.8566

MR5 None 246 0.8483 247 0.8606 248 0.8671

Total None 246 0.8483 248 0.8641 248 0.8671

increases the likelihood of being valid for our systems. However, the
effectiveness of different MRs cannot be distinguished by the three sys-
tems. Therefore, we use these systems as benchmarks for the following
experiments, that is, to evaluate the effectiveness of the proposed MRs
using mutation analysis.

RQ1: What is the performance of different MRs on detecting
faulty programs?

For this research question, the generated mutants are used as faulty
programs and pairs of test cases are applied in such faulty programs to
detect the violation of the proposed MRs. Table 5 shows the MS of CITO
generation systems for different test suites generated based on five MRs,
where all test cases for the same MR are consisted of a test suite. More
than 84% of faulty programs can be detected by all MRs for three CITO
generation systems. Specifically, all 177 pairs of test cases killed 246
mutants and detected 84% of faults for NCSystem. All pairs of test
cases killed 248 mutants and detected 86% of faults for SCSystem and
CWRSystem. Test cases adopted on SCSystem and CWRSystem detected
two more faults compared with those applied on NCSystem. These
two faults exist in the function for stubbing cost calculation. While in
NCSystem, stubbing cost is not calculated when breaking cycles because
breaking cycles is based on the number of cycles in which each edge
involves. Therefore, these two faults are missed in NCSystem.

Among five MRs, the test suite generated based on MR5 (i.e., com-
bining certain classes with the aim of preserving the class test order for
other classes and remaining the same stubbing cost) not only killed the
greatest number of mutants, but also killed almost all the mutants that
can be killed by other MRs. Although the number of test cases in this
test suite is not the greatest (only 10, 8 and 9 test cases for NCSystem,
SCSystem, and CWRSystem), the violation detection effectiveness of the
test suite for MR5 is the highest.

While for the simplest MR, the permutation of class names (MR1),
its test suite included 20 pairs of test cases, but it only killed 143
mutants for NCSystem (141 mutants for SCSystem and CWRSystem).
This finding indicates that different MRs own different capability of
fault detection, which is consistent with the previous study on MT [21].

More complex MRs are likely to kill more mutants. That is because
the follow-up programs generated by more complex MRs, such as
MR5, have more different class dependencies from the source programs
compared with the follow-up programs generated by simple MRs. For
example, Fig. 8 shows a snippet where a faulty program is generated
by changing the conditionals boundary ‘‘i < value’’ to ‘‘i ≤ value’’. The
unction of this snippet is to store the attribute coupling value of a class
ependence from the source class to the target class. For instance, if the
ttribute coupling value is five, then the function addAttrDeps will be
xecuted five times to add five different attribute coupling. The faulty
rogram generated by conditionals boundary will count one more time
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Fig. 8. A snippet to store attribute coupling values for class dependencies in CITO
generation systems.

on attribute coupling for all class dependencies. Different values of
attribute coupling require different stubbing cost, and correspondingly
affect the generated CITOs. However, such a fault can only be detected
by MR5. That is because the follow-up programs generated by MR5
changed the class dependencies to a greater extent compared with other
MRs by combining some classes. Specifically, MR1, the permutation
of class names, does not affect the class dependencies as well as their
attribute coupling. Although MR2 and MR3 add or delete class depen-
dencies for the initial or last class, for the remaining class dependencies,
if we sort them by the stubbing cost, the results of sorting are the
same as that in the original programs because all class dependencies are
added one more attribute coupling. The situation is the same for MR4.
The more different class dependencies in follow-up programs, the more
difficult for CITO generation systems to preserve the original results.
Therefore, a little modification on the original CITO generation systems
may generate different results. In other words, the mutants are easy to
be killed.

The MS of MR1 is quite low compared with other MRs. As we intro-
duced before, the follow-up programs are constructed by permuting the
class names without any modifications on class dependencies, so that in
most cases, the CITOs generated for the source program and follow-up
program are almost the same except for different notations of classes.
Therefore, it is difficult for MR1 to kill more mutants. But MR1 can
still detect some faults related to the notation of classes. For example,
in NCSystem, if more than one class dependencies are involved in
the greatest number of cycles and have the same stubbing cost, the
class dependency whose source class owns the smallest index will be
removed. A faulty program is generated by mutating the if statement,
which causes the class dependency with the smallest index of source
class is removed, no matter how much the stubbing cost is. Because the
indexes of the same class are different in source programs and follow-up
programs, the generated CITOs will be different, and such a fault can
be detected.

The MS of MR2 on NCSystem is also low compared with that on
the other two systems, SCSystem and CWRSystem. Although MR3 and
MR2 are similar (both are adding class dependencies with the aim of
preserving its source CITO), the MS of MR3 on NCSystem (0.7621)
is higher than that of MR2 (0.5621). That is because the changes in
the number of cycles for each class dependency by MR2 are quite
small. For example, for the source program ATM, MR2 adds three class
dependencies 1 → 6, 5 → 6, and 12 → 6 for the initial class 6 while MR3
adds three class dependencies 15 → 3, 15 → 7,15 → 18 for the last class
15. For the follow-up program generated by MR2, all three new class
dependencies are not involved in any cycles, and the number of cycles
for each class dependency is also unchanged. However, for the follow-
up program generated by MR3, the number of cycles for more than 62%
(18/29) class dependencies increases. The new class dependency 15 →

18 is also involved in one cycle. In NCSystem, the class dependency
involved in the greatest number of cycles is removed. Therefore, the
10

more different class dependencies in follow-up programs, the more
Table 6
Mutation scores of cycle-breaking modules for different test suites generated based on
five MRs. Column 𝑁𝑘 counts the number of killed mutants and column MS represents
the corresponding mutation scores.

MRs Type NCSystem SCSystem CWRSystem

𝑁𝑘 MS 𝑁𝑘 MS 𝑁𝑘 MS

MR1 None 22 0.5116 23 0.5897 23 0.5897

MR2
ADD 28 0.6512 28 0.7179 28 0.7179
DEL 28 0.6512 28 0.7179 28 0.7179
TOTAL 28 0.6512 28 0.7179 28 0.7179

MR3
ADD 25 0.5814 28 0.7179 28 0.7179
DEL 26 0.6047 28 0.7179 28 0.7179
TOTAL 26 0.6047 28 0.7179 28 0.7179

MR4
SRC 20 0.4651 22 0.5641 22 0.5641
TAR 20 0.4651 22 0.5641 22 0.5641
TOTAL 20 0.4651 22 0.5641 22 0.5641

MR5 None 28 0.6512 28 0.7179 28 0.7179

Total None 28 0.6512 28 0.7179 28 0.7179

Table 7
Mutation scores of CITO generation systems for different types of mutants. Column
𝑁𝑘 counts the number of killed mutants and column MS represents the corresponding
mutation scores.

Type of mutants NCSystem SCSystem CWRSystem

𝑁𝑘 MS 𝑁𝑘 MS 𝑁𝑘 MS

FALSE_RETURNS 4 0.8000 5 1.0000 5 1.0000
CONDITIONALS_BOUNDARY 14 0.5000 14 0.5185 14 0.5185
EMPTY_RETURNS 16 0.9412 15 0.8824 15 0.8824
INCREMENTS 16 1.0000 16 1.0000 16 1.0000
VOID_METHOD_CALLS 56 0.9032 57 0.8906 57 0.9048
MATH 25 0.8065 27 0.8710 30 0.9091
NEGATE_CONDITIONALS 94 0.8868 94 0.9126 91 0.9010
NULL_RETURNS 12 0.8571 12 0.9231 12 0.9231
PRIMITIVE_RETURNS 9 0.8182 8 0.7273 8 0.7273
SUM 246 0.8483 248 0.8641 248 0.8671

difficult for CITO generation systems preserve the source CITOs, and
correspondingly, the easier the mutants are killed.

For MR2 and MR3, adding and deleting class dependencies show
different performance on detecting faulty programs. The test suite gen-
erated by adding class dependencies detects more mutants compared
with the test suite obtained by deleting class dependencies. This is be-
cause the number of test cases generated by deleting class dependencies
is much fewer, for example, only three test cases for MR2 and four
test cases for MR3 in NCSystem. Although the test suite generated by
deleting class dependencies kills fewer mutants, it can still detect faults
that are omitted by test cases generated by adding class dependencies.
For MR4, the performance of test suites generated by adding a target
class or a source class is comparable.

Because cycle-breaking module is the most different part among
three systems, Table 6 presents the MS of cycle-breaking modules for
different test suites generated based on five MRs. As shown in Table 6,
more than 65% of faults in cycle-breaking modules can be detected by
all MRs. Similar to the whole system, the test suite generated based on
MR5 killed the greatest number of mutants for all three systems. The
performance of test suites obtained by MR2 and MR3 are comparable,
and it is better than the performance of test suites generated by the
relatively weaker MRs, such as MR4 and MR1.

Overall, the proposed MRs are able to detect more than 84% of
faults in three CITO generation systems. Among five MRs, MR5 owns
the highest capability for fault detection, which killed almost all the
mutants that can be killed by other MRs.

RQ2: What is the performance of MT on detecting different
kinds of faults?

Table 7 shows MS of three CITO generation systems for different
type of mutants. To show the results more intuitively, Figs. 9 to 11
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Fig. 9. The distribution of killed mutants for NCSystem.

Fig. 10. The distribution of killed mutants for SCSystem.

Fig. 11. The distribution of killed mutants for CWRSystem.

present the distribution of these killed mutants for NCSystem, SCSys-
tem, and CWRSystem, respectively.

As shown in Table 7, except for conditionals boundary mutator
and primitive returns mutator, more than 80% of mutants generated
by other mutators can be killed, especially for increments mutator,
all 16 mutants are killed. Over 90% of faults generated by two mu-
tators (empty returns mutator and void method call mutator) can be
detected in NCSystem. Similarly, over 90% of faults obtained by two
mutators (negate conditionals mutator and null returns mutator) can
be detected in SCSystem, and over 90% of faults generated by four
mutators (void method call mutator, math mutator, negate conditionals
mutator and null returns mutator) can be detected in CWRSystem.
Only 50% of mutants generated by conditionals boundary mutator are
killed, that is because the relational operator has the same effects on
11
some functions as their boundary counterpart. For example, in function
getMaxStubDep() which obtains the class dependency with the maximal
stubbing cost, the relation operator ‘>’ is used to compare the stubbing
cost for two class dependencies and the class dependency with higher
stubbing cost will be stored in a temp parameter. In such a case, the
effects of ‘>’ and its boundary counterpart ‘>=’ are equal. Similarly, the
primitive returns mutator that replaces return values with zero may not
violate some proposed MRs. For example, in function getSCplx() which
calculates stubbing cost for each class dependency, the return value of
this function is set to zero by the primitive returns mutator. In such
a case, the stubbing cost of any class integration test orders would be
zero, which still conforms to some MRs where the stubbing costs of
two class test orders generated by the source program and the follow-
up program are expected to be equal. The currently proposed MRs are
unable to detect such faults. Some other criteria should be provided,
such as, the stubbing cost of a generated class integration test order
should be greater than zero, which is left for future work.

Overall, more than 80% of mutants generated by seven of nine mu-
tators can be killed. The performance of MT on detecting different kinds
of faults is varying, and all mutants can be killed by the increments
mutator.

4.6. Discussion

In our experiments, we found that even test cases generated by
the same MR can own the different capability to kill mutants. That is
because the class dependencies in the generated follow-up programs
are different for various test cases. For example, to test NCSystem,
test cases #1 and #2 generate two follow-up programs for the source
program ATM based on MR3, that is, adding class dependencies for the
initial class 15 randomly. The added class dependencies are shown as
following:

Follow-up program #1: 15 → 3, 15 → 7, 15 → 12, 15 → 13, 15 →

14, 15 → 18,
Follow-up program #2: 15 → 4, 15 → 6, 15 → 11, 15 → 17, 15 →

19.
Table 8 shows the number of cycles for each class dependency

in the source program, and its two follow-up programs #1 and #2,
respectively. As shown in Table 8, for those class dependencies that are
already involved in cycles in the source program, most of such class
dependencies are involved in more cycles in the follow-up program
#1. After adding class dependencies, five more class dependencies are
involved in cycles in the follow-up program #1 while only two more
class dependencies are involved in cycles in the follow-up program
#2. It is obvious that class dependencies in the follow-up program #1
are more different from the source program. The number of mutants
killed by test case #1 and #2 is 216 and 129, respectively. It is
consistent with what we analyzed before, that is, the more different
class dependencies in follow-up programs, the more difficult for CITO
generation systems to preserve the source CITOs, and correspondingly,
the easier the mutants are killed.

We also investigate whether the generated CITOs affect the perfor-
mance of MT on three CITO generation systems. Table 9 shows the
generated CITOs and OCplx by three systems for the four test suites
(ANT, ATM, DNS and SPM). Table 10 shows the number of killed
mutants by the four test suites respectively. For the program ANT, the
numbers of killed mutants are equal for SCSystem and CWRSystem
where the generated CITOs are the same. Similarly, for the program
SPM, the CITOs generated by NCSystem and CWRSystem are the same,
and the numbers of killed mutants are also equal for these two systems.
However, for the programs ATM and DNS, although the orders gener-
ated by three systems and the corresponding stubbing efforts are equal,
the numbers of killed mutants are different, especially for the program
ATM. Therefore, we can conclude that the numbers of killed mutants
and the orders generated by three programs are not necessarily related.
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Table 8
Number of cycles for each class dependency in source program and follow-up programs for ATM.
Class dependencies Source program Follow-up program #1 Follow-up program #2

8 → 10 20 33 21
9 → 8 11 18 12
10 → 15 6 25 7
11 → 8, 11 → 9, 11 → 10 5 8 5
12 → 8, 12 → 9, 12 → 10
13 → 8, 13 → 9, 13 → 10
14 → 8, 14 → 9, 14 → 10

1 2 1

12 → 11, 13 → 11, 14 → 11 3 6 3
15 → 12, 15 → 13, 15 → 14 / 6 /
15 → 18, 18 → 9 / 1 /
15 → 19, 19 → 9 / / 1
Table 9
Generated CITOs and OCplx by three systems for four test suites. The number in column CITOs represents the class ID.
Test suites SUT CITOs OCplx

ANT
NCSystem 9 → 12 → 15 → 17 → 3 → 8 → 19 → 21 → 20 → 23 → 2 → 4 → 5 → 16 → 1 → 6 → 7 → 10 → 22 → 25 →

11 → 14 → 24 → 18 → 13
4.269

SCSystem 4 → 9 → 12 → 15 → 17 → 3 → 5 → 8 → 21 → 20 → 23 → 16 → 1 → 2 → 7 → 10 → 19 → 22 → 6 → 11 →

18 → 24 → 25 → 13 → 14
4.636

CWRSystem 4 → 9 → 12 → 15 → 17 → 3 → 5 → 8 → 21 → 20 → 23 → 16 → 1 → 2 → 7 → 10 → 19 → 22 → 6 → 11 →

18 → 24 → 25 → 13 → 14
4.193

ATM / 6 → 16 → 20 → 21 → 1 → 2 → 7 → 17 → 3 → 4 → 5 → 8 → 9 → 11 → 18 → 19 → 10 → 12 → 13 → 14 → 15 2.701

DNS / 9 → 10 → 13 → 15 → 17 → 27 → 28 → 31 → 36 → 44 → 46 → 49 → 59 → 60 → 61 → 5 → 47 → 53 → 21 →

8 → 14 → 22 → 34 → 39 → 40 → 43 → 58 → 32 → 41 → 1 → 2 → 4 → 6 → 16 → 18 → 19 → 23 → 25 → 26 →

29 → 45 → 48 → 56 → 7 → 11 → 20 → 24 → 30 → 35 → 54 → 55 → 57 → 37 → 42 → 38 → 50 → 51 → 12 →

52 → 3 → 33

1.003

SPM
NCSystem 6 → 11 → 18 → 3 → 10 → 17 → 16 → 2 → 9 → 19 → 1 → 12 → 13 → 14 → 15 → 4 → 5 → 7 → 8 4.361
SCSystem 6 → 11 → 18 → 4 → 10 → 17 → 3 → 16 → 2 → 9 → 13 → 19 → 1 → 12 → 14 → 15 → 5 → 7 → 8 6.535
CWRSystem 6 → 11 → 18 → 3 → 10 → 17 → 16 → 2 → 9 → 19 → 1 → 12 → 13 → 14 → 15 → 4 → 5 → 7 → 8 4.111
Table 10
Number of killed mutants by different test suites.

Test suites SUT 𝑁𝑘

ANT
NCSystem 234
SCSystem 242
CWRSystem 242

ATM
NCSystem 234
SCSystem 241
CWRSystem 240

DNS
NCSystem 237
SCSystem 233
CWRSystem 233

SPM
NCSystem 245
SCSystem 241
CWRSystem 245

The more complicated MRs, the stronger the detection capability is.
t indicates that more complex MRs that can validate the CITO gener-
tion systems may exist. Therefore, except for the five MRs introduced
xplicitly before, we also present an example for a potentially immature
R, division, which is inspired from MR5 (combining classes with the

im of preserving the original test order). The potentially new MR is
ividing some existing classes with the aim of preserving the original
est order. Fig. 12 shows an example of this new MR on NCSystem.
he NCSystem breaks cycles by removing the class dependency that

s involved in the greatest number of cycles. Let SP denote the source
program that contains six classes, and the class integration test order
enerated for the program SP is 𝑂𝑠𝑝, which is further supposed to be
𝐶4, 𝐶5, 𝐶3, 𝐶2, 𝐶1, 𝐶6]. A follow-up program FP can be generated

by dividing the existing class 𝐶4 into two classes (𝐶4 and 𝐶 ′
4) and

remaining the existing class dependencies 𝐶3 → 𝐶4, 𝐶4 → 𝐶1 and
𝐶 → 𝐶 . In the follow-up program, the division of class 𝐶 does
12

5 4 4
not affect the CITO generated by approaches, therefore, the class in-
tegration test order generated for the program FP is similar with 𝑂𝑠𝑝,
that is, 𝑂𝑓𝑝 = [𝐶4, 𝐶 ′

4, 𝐶5, 𝐶3, 𝐶2, 𝐶1, 𝐶6]. We generated test suites
based on this sample program to validate the NCSystem. Although no
MRs are violated, test cases generated by six MRs killed 251 mutants
for NCSystem and achieved 0.8655 in mutation score. The test cases
generated by the new MR improve the MS by 2%. More complex MRs
that can validate the CITO generation systems may exist, which needs
our more exploration in the future.

Although the proposed MRs focus on CITO generation systems,
these MRs can also be extended to other cycle-breaking algorithms
on directed weighted graphs. The proposed MRs can be summarized
as four types, that is, permutation (MR1), edge adding/deleting (MR2
and MR3), node adding (MR4) and combination (MR5), which can be
used to generate specific MRs for other cycle-breaking problem. For
example, the feedback vertex set (FVS) problem is to search for a set
of vertices whose removal leaves a graph without cycles and the sum
of weights for such vertices is minimal. The FVS problem is similar to
the CITO generation problem except that FVS problem is to remove
vertices. However, four types of MRs can also be generated to test the
algorithms for FVS problem. For a given source graph 𝐺 and its solution
𝑆, the follow-up graph 𝐺𝐹 can be generated by permuting the notation
of nodes, adding an edge to the node in solution 𝑆, adding a node that
links to all other remaining nodes with a very large weight, and so on.
The solution 𝑆𝐹 for the follow-up graph 𝐺𝐹 should be the same as the
original solution 𝑆.

4.7. Threats to validity

Although the experimental results demonstrate the effectiveness of
the proposed MRs, it still faces the following threats to validity.

For the internal validity, we implemented three CITO generation

systems for the experiments because no such systems are public. To
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Fig. 12. Example for new MR (division) performed on NCSystem. Class 𝐶4 is divided
into two classes (𝐶4 and 𝐶 ′

4).

check the correctness of our implementation, we generate test suites
based on the proposed MRs. Our implemented systems pass all test
suites successfully and no MRs are violated.

For the external validity, more than 84% of mutants were killed by
around 117 pairs of test cases for three CITO generation systems. As we
analyzed in Discussion, even test cases generated by the same MR can
own the different capability to kill mutants. To improve the fault de-
tection capability, test cases should be able to generate more different
class dependencies in follow-up programs. We intend to explore how
to design such test cases in the future.

In addition, to the best of our knowledge, it is the first time to
validate CITO generation systems, which means no other testing or
validation methods for CITO generation systems exist. Therefore, it
is impossible to compare the effectiveness of MT with other kinds of
testing or validation methods for CITO generation systems.

5. Conclusion

Previous studies focus on exploring different kinds of approaches for
CITO problem but omit to validate such CITO generation systems. A test
oracle problem exists in these CITO generation systems because there
are no practically feasible ways to validate their generated class inte-
gration test orders, which are normally not global optima. To address
this issue, we adopt the technique of MT to validate CITO generation
systems. In this paper, we propose five kinds of MRs for the validating
of these systems. Although no faults can be detected by the test cases
generated based on the five proposed MRs, the likelihood of being
valid increases for the CITO generation systems. We also conducted
mutation analysis to evaluate the effectiveness of five proposed MRs.
The experimental results show that more than 84% of faulty programs
13

can be detected by all MRs for three CITO generation systems. The
fault detection capability of the proposed MRs is different. The more
complicated MRs, the stronger the detection capability is. Therefore,
more complex MRs that can validate the CITO generation systems may
exist, which requires our more exploration in the future.
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