
Information and Software Technology 129 (2021) 106438

A
0

E
o
M
a

b

A

K
C
I
S
S

1

t
t
t
i
a
i
e
c

m

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

valuating the effects of similar-class combination on class integration test
rder generation
iao Zhang a, Jacky Wai Keung a, Yan Xiao b,∗, Md Alamgir Kabir a

Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong, China
School of Computing, National University of Singapore, 117417, Singapore

R T I C L E I N F O

eywords:
lass integration test order

ntegration testing
imilar classes
tubbing complexity

A B S T R A C T

Context: In integration testing, the order in which classes are integrated and tested is significant for the
construction of test stubs. With the existing approaches, it is usually difficult to generate the sub-optimal test
orders for real applications, which have large numbers of classes.
Objective: There exist moderately large numbers of classes in software systems, which is one of the main
factors that complicate the generation of class integration test order (CITO). The main objectives of this study
are reducing the problem space for CITO generation, and minimizing the stubbing cost of the generated test
orders.
Method: The approach proposed in this study is based on the hypothesis that similar-class combination can
remove class dependencies and yield a smaller problem space. Identical class dependence and symmetric
classes are the two main properties that are used to identify similar classes. In addition, a new cycle-breaking
algorithm is introduced to minimize the stubbing cost of the generated test orders, which fully considers the
two factors (number of test stubs and the corresponding stubbing complexity) that affect the overall stubbing
cost. Empirical experiments are conducted on nine open-source Java programs to evaluate the performance of
the proposed approach.
Results: With similar-class combination, the proposed approach reduced the numbers of classes and class
dependencies by over 10% and 6%, respectively, for six programs. Moreover, for four programs, the proposed
approach reduced the number of cycles among class dependencies by more than 20%. The cycle-breaking
algorithm achieved reduction of more than 13% in the stubbing cost, thus outperforming other competing
techniques.
Conclusions: The proposed method relies on the two aforementioned important properties to identify similar
classes, and these properties are known to significantly improve the performance of CITO generation. The
results obtained in this study confirmed the capability of the proposed approach in terms of minimizing the
number of classes and class dependencies in programs. It outperformed other competing methods in minimizing
the stubbing costs of the generated test orders.
. Introduction

In the integration testing of a program, it is important to determine
he order in which classes are integrated and tested. Class integration
est order (CITO) affects the preparation of test cases, and it determines
he order in which inter-class faults are detected [1]. When the classes
n a program are independent of each other, the testing order is
rbitrary, and the classes are tested directly and separately. However,
n real applications, class dependency is commonly encountered, for
xample, when class 𝐴 depends on class 𝐵, we integrate class 𝐵 before
lass 𝐴. If we integrate and test class 𝐴 first, class 𝐵 may be unreliable

∗ Corresponding author.
E-mail addresses: miazhang9-c@my.cityu.edu.hk (M. Zhang), jacky.Keung@cityu.edu.hk (J.W. Keung), dcsxan@nus.edu.sg (Y. Xiao),

or be unable to provide related services to class 𝐴. In such a case, a
test stub must be created for class 𝐴 to emulate the services of class
𝐵. Especially in large-scale programs, stubbing is inevitable because
circular dependencies are quite common [2].

Although many tools to easily create stubs (or mocks) have been
implemented, for instance, Mockito [3] and JUnit [4], test stubs are
error-prone [5]. Therefore, designing an optimal test order with the
minimal stubbing cost is extremely important.

Searching for the globally optimal class test order is impractical,
even when the number of classes is moderately large. Graph-based and
vailable online 25 September 2020
950-5849/© 2020 Elsevier B.V. All rights reserved.

akabir4-c@my.cityu.edu.hk (M.A. Kabir).

ttps://doi.org/10.1016/j.infsof.2020.106438
eceived 27 December 2019; Received in revised form 29 July 2020; Accepted 22
 September 2020

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:miazhang9-c@my.cityu.edu.hk
mailto:jacky.Keung@cityu.edu.hk
mailto:dcsxan@nus.edu.sg
mailto:makabir4-c@my.cityu.edu.hk
https://doi.org/10.1016/j.infsof.2020.106438
https://doi.org/10.1016/j.infsof.2020.106438
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2020.106438&domain=pdf

Information and Software Technology 129 (2021) 106438M. Zhang et al.

w
r
F
J
c
g
o
c
a
a

i

c

m

search-based approaches have been extensively adopted to search for
the locally optimal class test order instead [6]. Graph-based approaches
aim to break cycles among class dependencies, while search-based
approaches devise superior class test orders by executing evolutionary
operations, such as mutation and crossover in a genetic algorithm, on
the initial test order. However, the performances of these two types of
approaches are limited by two problems:

• It becomes difficult for the existing heuristics to generate the
locally optimal test order for real applications with a moderately
large number of classes.

• Ignorance of the factors that affect the overall stubbing cost makes
these methods ineffective.

The first problem affects the two types of approaches in different
ays. For instance, the performance of graph-based methods deterio-

ates when applied to a program with an enormous number of cycles.
or example, the program Byte Code Engineering Library [7] from the
akarta project is used to analyze, create, and manipulate binary Java
lass files, and it contains more than 400,000 cycles. With the existing
raph-based approaches, it is difficult to manage such a large number
f cycles. The unsatisfactory performance of search-based methods is
aused by the underlying encoding strategy for class test orders. Given
n integer corresponding to a class, a vector of such integers represents
class test order. For a program containing 𝑁 classes, the search space

contains 𝑁! possible solutions, which is an enormous number in the
case of a program with hundreds or thousands of classes.

We aim to reduce the problem space to address the first issue.
The CITO generation is basically equivalent to the problem of the
identification of a minimal feedback vertex set (FVS) [8]. To simplify
the problem of finding an FVS, Orenstein et al. [9] proposed a new kind
of graph reduction operation in which they eliminate edges from the
graph, such that an optimum solution for the reduced graph yields an
optimum solution for the original graph. To this end, we observe that
a few classes are involved in similar cycles. If we regard such ‘‘similar
classes’’ holistically, some cycles containing such classes are redundant
and can be removed, which reduces the problem space. Therefore,
we hypothesize that similar-class combination can reduce the problem
space for large-scale programs that contain a moderately large number of
classes. Based on this hypothesis, two properties pertaining to class
dependency, namely, identical class dependence (ICD) and symmetric
classes (SC), are proposed to identify similar classes. Owing to the
combination of similar classes, overall, the method is required to man-
age fewer classes, which reduces the search space for the search-based
approaches. Similarly, for the graph-based approaches, the numbers of
class dependencies and cycles are reduced.

In terms of the second problem, as suggested by Briand et al. in [7],
‘‘more precise indicator’’ rather than the number of test stubs should be
used to assess the stubbing cost, therefore, they proposed the overall
stubbing cost to measure the effort required to construct all of the
test stubs during integration testing [10]. The overall stubbing cost
is affected by two factors: the distinct number of test stubs and the
corresponding stubbing complexity (which is a measure of the stubbing
cost of each test stub). Most existing graph-based approaches are unable
to determine a satisfactory class test order because they do not simul-
taneously consider these two factors. For example, Briand et al. [7]
assigned weights to estimate the number of cycles that each class
dependency is involved in and constructed test stubs to emulate the
class dependency with the maximal value of a weight; in this manner,
they only considered the first factor that impacts the stubbing cost.
Hashim et al. [11] focused only on the second factor and sequentially
created test stubs for the class dependencies with the minimal stubbing
costs. The same problem is encountered in the search-based approaches
due to the lack of sufficient guidance in the search process.

Therefore, we propose a cycle-breaking algorithm to simultaneously
2

consider these two factors that affect the overall stubbing cost. Given a
set of class dependencies that are going to be removed, this algorithm
finds superior alternatives that break the same cycles or an equal
number of cycles with lower stubbing cost than the original class
dependencies.

We evaluate the proposed approach by conducting experiments on
nine open-source Java programs. The results indicate that the proposed
approach reduces the number of cycles and the number of classes for
eight of the nine programs. In the case of six of the nine programs,
the numbers of classes and class dependencies are reduced by more
than 10% and 6%, respectively. Moreover, for four programs, the
proposed approach reduces the number of cycles by more than 20%.
In generating the class test order with the minimum stubbing cost,
the proposed approach reduces the stubbing cost for six programs by
0.35% to 13.09%, and its performance is at least comparable to if
not better than those of the existing approaches. Overall, similar-class
combination does not degrade the performance of the cycle-breaking
techniques when considering the coupling values of class dependencies.
The main contributions of this paper are as follows:

• We analyze class dependencies and propose two properties,
namely ICD and SC, to identify similar classes. Two proposi-
tions are elucidated to verify the effectiveness of similar-class
combination.

• We apply the idea of similar-class combination to CITO generation
to minimize the search space for search-based methods and the
number of cycles for graph-based methods.

• We develop a graph-based approach for class test order gener-
ation, which includes a cycle-breaking algorithm to comprehen-
sively consider the two factors, namely number of test stubs and
the corresponding stubbing complexity, that affect the overall
stubbing cost.

• A set of experiments is conducted to validate the effectiveness of
the proposed approach and the effects of similar-class combina-
tion on the CITO generation performance.

The remainder of this paper is organized as follows. Section 2
introduces the background, motivation and problem representation of
the proposed approach. We present our approach in Section 3. The
experiments follow in Section 4. Related work is presented in Sections 5
and 6 concludes this work.

2. Background and motivation

This section first presents preliminary knowledge about CITO gen-
eration, including test stubs and stubbing complexity. Then, a sam-
ple program is used to illustrate our motivation. Finally, problem
representation is provided.

2.1. Background

A test stub describes the coupling between the source class and the
target class on which the source class depends, providing services from
the target class to the source class. Attribute assessment and method
invocation are two common routes for class interaction, and they are
termed attribute coupling and method coupling, respectively.

Fig. 1 shows a source code example to describe the coupling infor-
mation between class 𝐴 and class 𝐵. In Fig. 1, the attribute coupling
between class 𝐴 and class 𝐵 is one, because class 𝐴 accesses an
nstance of class 𝐵 as the parameter for 𝑚𝑒𝑡ℎ𝑜𝑑𝐴2 (line 10). The method

coupling between class 𝐴 and class 𝐵 is three, i.e., the constructor of
class 𝐴 invokes the constructor of class 𝐵 (line 3), 𝑚𝑒𝑡ℎ𝑜𝑑𝐴1 invokes
method 𝑔𝑒𝑡𝐼𝑛𝑡() (line 8), and 𝑚𝑒𝑡ℎ𝑜𝑑𝐴2 invokes method 𝑔𝑒𝑡𝐷𝑜𝑢𝑏𝑙𝑒() in
lass 𝐵 (line 11).

Briand et al. [10] proposed the concept of stubbing complexity to
easure the stubbing cost of a test stub (𝑖, 𝑗). This idea depends on the
attribute coupling and method coupling, which count the number of

Information and Software Technology 129 (2021) 106438M. Zhang et al.

a
c

𝑆

Fig. 1. A source code example to describe the coupling information between class 𝐴
and 𝐵.

Fig. 2. A sample program to illustrate our motivation.

ttribute accesses and method invocations, respectively. The stubbing
ost is calculated using Eq. (1).

𝐶𝑝𝑙𝑥(𝑖, 𝑗) = [𝑊𝐴 ⋅ 𝐴(𝑖, 𝑗)
2
+𝑊𝑀 ⋅𝑀(𝑖, 𝑗)

2
]1∕2 (1)

Because attribute coupling and method coupling may vary signifi-
cantly within the same program, we normalize them using min–max
normalization [12] to avoid the influences of the extreme values.
In Eq. (1), the normalized attribute coupling and method coupling are
linear-weighted, and their weights are equal to 0.5.

For a generated CITO 𝑜, the overall stubbing complexity (OCplx) is
used to estimate the overall stubbing cost through integration testing.
OCplx is equal to the sum of the stubbing complexity of each test stub
that belongs to the set 𝑆𝑡𝑢𝑏𝑠, and it is calculated as follows.

𝑂𝐶𝑝𝑙𝑥(𝑜) =
∑

(𝑖,𝑗)∈𝑆𝑡𝑢𝑏𝑠
𝑆𝐶𝑝𝑙𝑥(𝑖, 𝑗) (2)

According to Eq. (2), the overall stubbing cost is affected by two
factors: (1) The number of test stubs or the number of class dependen-
cies removed. As the number of class dependencies removed increases,
the stubbing cost possibly increases. (2) The corresponding stubbing
complexity, that is, the overall stubbing cost tends to decrease if the
test stubs for all of the removed class dependencies have relatively low
stubbing costs.

2.2. Motivation

In this subsection, we will use a sample program to illustrate why
the existing approaches are unable to obtain an optimal class test order.
Then, we present our approach to address this problem.

Fig. 2(a) shows the object relation diagram (ORD) of a sample
program consisting of five classes 𝐴, 𝐵, 𝐶, 𝐷 and 𝐸, which each node
represents a class, and a dependency from the source class to the target
class is represented by a directed edge from the head node to the tail
node. According to Fig. 2(a), this sample program contains three cycles.

(1) 𝐴→𝐵→𝐴
(2) 𝐴→𝐵→𝐶→𝐷→𝐴
(3) 𝐴→𝐵→𝐶→𝐸→𝐴
3

Table 1
Comparison of results for cycle-breaking strategies.

Strategies Removed Deps Stubs OCplx

NC 𝐴 → 𝐵 1 1
SCplx 𝐶 → 𝐷, 𝐵 → 𝐴, 𝐸 → 𝐴 3 0.707
CWR 𝐶 → 𝐷, 𝐵 → 𝐴, 𝐸 → 𝐴 3 0.707
Optimal 𝐵 → 𝐶, 𝐵 → 𝐴 2 0.599

Table 2(b) summarizes the information pertaining to class depen-
dencies in this sample program, including the value of couplings, num-
ber of cycles involved, stubbing complexity calculated using Eq. (1),
and the cycles–weight ratio. For example, class dependency 𝐴→𝐵,
both its attribute coupling and method coupling are five, and its
cycles–weight ratio is three (3/1 = 3).

To generate the class test orders for this sample program, we first
eliminate all of the cycles among the class dependencies. The existing
graph-based approaches can be characterized into three types based on
their cycle-breaking strategies.

• Number of Cycles (NC): Deleting the class dependency involved in
the greatest number of cycles. For instance, Briand et al. [7] used
the product of in-degree of the source node and out-degree of the
target node as edge weight in the ORD to emulate the number of
cycles in which the class dependency is involved.

• Stubbing Complexity (SCplx): Deleting the class dependency that
requires the minimal stubbing effort. For example, Hashim et al.
[11] assigned the value of coupling measures to each class and
measured the effort required to construct the test stubs for such
classes.

• Cycles–Weight Ratio (CWR): Deleting the class dependency with
the highest cycles–weight ratio value, such as the approaches
proposed by Bansal et al. [13] and Abdurazik et al. [14]. The class
dependency with the highest cycles–weight ratio value indicates
that it is involved in the greatest number of cycles, but incurs a
minimal stubbing cost if stubbed.

Table 1 presents the class dependencies removed by the above three
typical cycle-breaking strategies, as well as the number of test stubs and
the overall stubbing complexity calculated using Eq. (2). The optimal
choices for class dependency removal are also listed.

As shown in the results, none of the overall stubbing costs of NC,
SCplx or CWR are the minimal values. NC only considers the number of
removed dependencies, while SCplx only compares stubbing complex-
ity. Even in the case of CWR, although it considers these two factors
that affect the overall stubbing cost, it can still lead to sub-optimal
results owing to rough calculation. For example, the dependency 𝐵→𝐶
is involved in two cycles with the stubbing complexity (0.316), while
the dependency 𝐶→𝐷 is involved in only one cycle with the stubbing
complexity (0.141). Accordingly, constructing a test stub for the de-
pendency 𝐶→𝐷 seems to be a good choice because its CWR (7.092) is
slightly higher than that of 𝐵→𝐶 (6.329), but the results indicate that
removing the dependency 𝐵→𝐶 rather than 𝐶→𝐷 is the best choice.

The optimal solution is to remove dependencies 𝐵→𝐶 and 𝐵→𝐴
to break cycles, even though these two dependencies do not have the
best values in terms of the number of cycles, stubbing complexity or
cycles–weight ratio.

Similar scenarios are encountered in other types of approaches
based on evolutionary algorithms. For example, genetic algorithms [10,
15] regarded all test orders as the population and the overall stubbing
complexity as the fitness. However, these algorithms do not consider
any detailed factors (such as, the stubbing complexity of each class
dependency) that affect the overall stubbing cost as the guidance
information to generate new test orders. Several multi-objective evo-
lutionary algorithms [6,16] consider only the number of emulated

methods and attributes, but they omit the detailed information. For

Information and Software Technology 129 (2021) 106438M. Zhang et al.

l
(
c
i
w
l
i
t
m
t
t
w

l
s
i
d
t
t
‘
c
b
F
c

Table 2
Information of used programs.

Programs Source Description Classes

daisy https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/java
objects&id=51&file=daisy_1.1.tar.gz

(v1.1) NFS UNIX-like file system 23

deos https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/java
objects&id=57&file=deos_1.1.tar.gz

(v1.1) A scheduler from a real-time
executive for avionics systems

25

email_ _spl https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/java
objects&id=157&file=email__spl_1.0.tar.gz

(v1.0) Email tool 39

GPL_ _spl https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/java
objects&id=158&file=GPL__spl_1.0.tar.gz

(v1.0) Graph generator 178

JHotDraw http://sourceforge.net/projects/jhotdraw/ package used: org.jhotdraw.draw
of JHotDraw (v7.5.1)

2D graphics framework 411

jmeter https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/java
objects&id=8&file=jmeter_1.0.tar.gz

(v1.0) Load test tool 372

log4j3 https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/java
objects&id=106&file=log4j3_1.2.tar.gz

(v1.2) Log tool for Java 261

MyBatis http://code.google.com/p/mybatis/ MyBatis (v3.0.2) Java persistence framework 428

notepad_ _spl https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/java
objects&id=162&file=notepad__spl_1.0.tar.gz

(v1.0) Source code editor 65
w

g
t
t
t

l
a
d
𝑑
f
f
f
t
≤

3

F
p
o
t

Table 3
Number of instances for similar classes identified by two properties (ICD and SC).

Programs # of instances identified by ICD # of instances identified by SC

daisy 1 1
deos 0 0
email_ _spl 5 3
GPL_ _spl 16 11
JHotDraw 26 18
jmeter 15 5
log4j3 16 15
MyBatis 21 16
notepad_ _spl 5 3

Total 105 72

instance, to minimize the number of emulated methods, the number of
test stubs can be reduced, or the test stubs for those class dependencies
with fewer method invocations can be created.

Therefore, in this paper, we conduct an analysis involving the
number of test stubs and their corresponding stubbing complexity when
breaking cycles. For this example, we have three choices: (1) to remove
a class dependency involved in all three cycles to minimize the test
stub number, i.e., 𝐴→𝐵, (2) to remove the class dependency with the
owest stubbing cost in each cycle, i.e., 𝐵→𝐴, 𝐶→𝐷 and 𝐸→𝐴, and
3) to remove the class dependency involved in only a part of the
ycles, and remove the class dependency with the lowest stubbing cost
n each cycle for the remaining cycles, i.e., 𝐵→𝐶 and 𝐵→𝐴. Then,
e compare the three choices and select the best solution with the

owest stubbing cost. These three choices have the same effect, that
s, breaking the same cycles, and we search for the choice that has
he lowest stubbing cost. Therefore, in the proposed algorithm, we
easure the stubbing cost of the current test order, and decide whether

o remove a class dependency involved in more cycles that minimizes
he test stub number, or to create a test stub for a class dependency
ith the minimal stubbing cost that reduces the final stubbing cost.

Meanwhile, we aim to combine similar classes to reduce the prob-
em space for the existing approaches. Fig. 3 shows an example of
imilar-class combination for the sample program in Fig. 2. As shown
n Fig. 2(a), classes 𝐷 and 𝐸 depend only on class 𝐴, and class 𝐶
epends on classes 𝐷 and 𝐸. Classes 𝐷 and 𝐸 are ‘‘similar’’ because
hey are involved in the same cycles. Therefore, we combine these
wo classes and replace them with a new class 𝑋. The ORD for the
‘new’’ sample program is shown on the right side of Fig. 3(a). The
lass number and cycle number of the ‘‘new’’ sample program decrease
y one. The information of the ‘‘new’’ sample program is shown in
ig. 3(b). Different from the original sample program, SCplx and CWR
an also generate the optimal solution for the reduced program.
4

Fig. 3. An example for similar class combination. Class 𝐷 and 𝐸 are similar because
they are involved in the same cycles. A new class 𝑋 is created to replace them.

2.3. Problem representation

Class Integration Test Order (CITO): 𝑜 is a class integration test
order generated for a given program containing 𝑚 classes, i.e., 𝑜 = {𝐶1,
𝐶2, . . . , 𝐶𝑚}.

Let 𝑂 represents all potential solutions for inter-class integration
testing, 𝑂 = {𝑜1, 𝑜2, . . . , 𝑜𝑛}, where 𝑛 = 𝑚!. Each solution 𝑜𝑗 is a test
order from 𝑂, 𝑜𝑗 = {𝐶𝑗1, 𝐶𝑗2, . . . , 𝐶𝑗𝑚} where 𝐶𝑗𝑖 refers to a class that

ill be integrated and tested in the 𝑖th position in 𝑜𝑗 .
Class Integration Test Order (CITO) Generation Problem: CITO

eneration problem aims to find a solution 𝑜𝑠 = {𝐶𝑠1, 𝐶𝑠2, . . . , 𝐶𝑠𝑚} such
hat: 𝑂𝑐𝑝𝑙𝑥(𝑜𝑠) ≤ 𝑂𝑐𝑝𝑙𝑥(𝑜𝑗), where 𝑂𝑐𝑝𝑙𝑥 (𝑜𝑗) is an objective function
hat represents the overall stubbing complexity of the class integration
est order 𝑜𝑗 .

For graph-based methods, the critical step in CITO generation prob-
em is cycle-breaking. Let 𝑐 represents the number of all of the cycles
mong class dependencies in a given program. A set of class depen-
encies 𝐷𝑒𝑝, are removed to break 𝑐 cycles, 𝐷𝑒𝑝 = {𝑑𝑒𝑝1, 𝑑𝑒𝑝2, . . . ,
𝑒𝑝𝑘} where 𝑘 ≤ 𝑐. Correspondingly, a set of test stubs are constructed
or 𝐷𝑒𝑝, and a class integration test order 𝑜 is generated. Specifically,
or this kind of approaches, CITO generation problem aims to search
or a set of class dependencies 𝐷𝑒𝑝𝑠 = {𝑑𝑒𝑝𝑠1, 𝑑𝑒𝑝𝑠2, . . . , 𝑑𝑒𝑝𝑠𝑘} such
hat: the generated class integration test order 𝑜𝑠 can satisfy 𝑂𝑐𝑝𝑙𝑥(𝑜𝑠)
𝑂𝑐𝑝𝑙𝑥(𝑜𝑗) where 𝑜𝑗 represents any other class integration test orders.

. Approach

This section introduces the proposed CITO generation approach.
ig. 4 shows an overview of the proposed approach, which takes a
rogram containing ten classes as an example to make the process
f CITO generation more intuitively. We first construct an ORD for
he given program, then combine similar classes to reduce the graph.

https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=51&file=daisy_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=57&file=deos_1.1.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=157&file=email__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=158&file=GPL__spl_1.0.tar.gz
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
http://sourceforge.net/projects/jhotdraw/
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=8&file=jmeter_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=106&file=log4j3_1.2.tar.gz
http://code.google.com/p/mybatis/
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz
https://sir.csc.ncsu.edu/php/common/download.php?ac=pub&key=sir/javaobjects&id=162&file=notepad__spl_1.0.tar.gz

Information and Software Technology 129 (2021) 106438M. Zhang et al.

k
a
n
a
o
d
s
t

a

m
o
s

3

p
m
t
t
t
P
t
b
W
p

Fig. 4. Overview of our approach.
Our hypothesis is that similar-class combination can reduce the problem
space of large-scale programs that contain a moderately large number of
classes. Therefore, a new notion of similar classes has been developed
through the identification of two properties pertaining to class depen-
dence, namely, ICD and SC. Through similar-class combination, some
redundant cycles containing similar classes can be effectively identified
and removed. Thereafter, a ‘‘reduced’’ graph that contains fewer class
dependencies and class cycles is generated.

Next, Tarjan’s algorithm [17] is adopted to divide the diagram into
different strongly connected components. We identify all of the cycles
in each strongly connected component.

The new proposed cycle-breaking algorithm ANS, which aims to
eep a good Analysis involving the Number of removed dependencies
nd the related Stubbing complexity, is applied to each strongly con-
ected component. In our algorithm, we first select a class dependency
s an initialization. Then, we search for a superior choice (i.e., deleting
ther dependencies) that has a similar effect as removing the initial
ependency, such as breaking the same cycles, but incurs a lower
tubbing cost. The above process is repeated until no cycles remain in
he strongly connected component.

Finally, test stubs are constructed for the removed dependencies,
nd a CITO is generated for the acyclic diagram.

Similar-class combination and cycle-breaking algorithm are the
ain components of our approach, which differs from other meth-

ds. The details of these components are discussed in the following
ubsections

.1. Similar-class combination

In this section, we analyze the relationships among classes and pro-
ose two properties, namely identical class dependence (ICD) and sym-
etric classes (SC), to identify similar classes. Moreover, two proposi-

ions are presented to verify that similar-class combination can reduce
he problem space of CITO generation. Proposition 1 demonstrates
hat classes having the ICDs are involved in the same cycles, and
roposition 2 shows that SCs have the same test priority. Classes with
he same test order or classes that are involved in the same cycles can
e combined to reduce the numbers of classes and class dependencies.
e first describe the following notations that are used to describe the

roposed properties for a given class 𝐶.

• Set Target_C stores all classes upon which class 𝐶 depends.
• Set Source_C is the set of dependent classes of class 𝐶, which stores

all classes that depend on class 𝐶.
5

• Set Cycles_C stores a set of cycles among class dependencies that
class 𝐶 is involved in.

• List Order_C denotes the final test order of class 𝐶.

In this paper, we define the concepts ICD and SC and subsequently
propose two corresponding propositions to demonstrate the effective-
ness of these concepts:

Definition 1 (Identical Class Dependence). Given two classes 𝐶𝑖 and 𝐶𝑗 , if
they depend on the same set of classes, and their dependent classes are
equal, i.e., Target_𝐶𝑖 = Target_𝐶𝑗

⋀ Source_𝐶𝑖 = Source_ 𝐶𝑗 , then classes
𝐶𝑖 and 𝐶𝑗 are said to be having identical class dependence.

Proposition 1. For two classes 𝐶𝑖 and 𝐶𝑗 having identical class depen-
dence, if class 𝐶𝑖 is involved in cycles among class dependencies, then 𝐶𝑗
is also involved in the same cycles, which means that all classes except for
class 𝐶𝑖 or 𝐶𝑗 in these cycles are equal, i.e., Cycles_𝐶𝑖 = Cycles_𝐶𝑗 .

Proof. Suppose the given conclusion is false; that is, the set of cycles
containing class 𝐶𝑖 is not the same as the set of cycles containing class
𝐶𝑗 , i.e., Cycles_𝐶𝑖 ≠ Cycles_𝐶𝑗 , which includes three situations:

(1) The set Cycles_𝐶𝑖 is a subset of the set Cycles_𝐶𝑗 , or vice versa,
i.e., Cycles_𝐶𝑖 ⊆ Cycles_𝐶𝑗 or Cycles_𝐶𝑗 ⊆ Cycles_𝐶𝑖.

(2) The set Cycles_𝐶𝑖 is not a subset of the set Cycles_𝐶𝑗 , or vice versa,
but these two sets contain some equal elements. That is, Cycles_𝐶𝑖 ⊄
Cycles_𝐶𝑗 and Cycles_𝐶𝑗 ⊄ Cycles_𝐶𝑖 and Cycles_𝐶𝑖 ∩ Cycles_𝐶𝑗 ≠ ∅.

(3) The intersection of two sets Cycles_𝐶𝑖 and Cycles_𝐶𝑗 is empty set,
i.e., Cycles_𝐶𝑖 ∩ Cycles_𝐶𝑗 = ∅.

For the first situation, if Cycles_𝐶𝑖 ⊆ Cycles_𝐶𝑗 , suppose that cycle
𝑐𝑗 = 𝐶1→𝐶2→. . .→𝐶𝑛→𝐶𝑗→𝐶1 (1 ≤ 𝑛 ≤ 𝑚, 𝑚 is the number of classes)
belongs to Cycles_𝐶𝑗 whereas the cycle 𝑐𝑖 = 𝐶1→𝐶2→. . .→𝐶𝑛→𝐶𝑖→𝐶1
does not belong to Cycles_𝐶𝑖, which means the cycle 𝑐𝑗 but not 𝑐𝑖
exists in the program. Because the common path 𝑝 = 𝐶1→𝐶2→. . .→𝐶𝑛
exists, the disappearance of cycle 𝑐𝑖 is caused by at least one of two
class dependencies (𝐶𝑛→𝐶𝑖 or 𝐶𝑖→𝐶1) does not exist. Hence, class 𝐶𝑛
depends on class 𝐶𝑗 but not class 𝐶𝑖, or class 𝐶1 is depended by the class
𝐶𝑗 but not class 𝐶𝑖, or both two cases hold on. No matter which cases,
this contradicts the assumption that class 𝐶𝑖 and 𝐶𝑗 have identical class
dependence, so our assumption is false. In other words, the set Cycles_𝐶𝑖
is not a subset of the set Cycles_𝐶𝑗 . Similarly, Cycles_𝐶𝑗 ⊆ Cycles_𝐶𝑖 does
not hold on.

For the other two situations, we can make the same supposition that
cycle 𝑐𝑗 = 𝐶1→𝐶2→. . .→𝐶𝑛→𝐶𝑗→𝐶1 belongs to Cycles_𝐶𝑗 whereas the
cycle 𝑐 = 𝐶 →𝐶 →. . .→𝐶 →𝐶 →𝐶 does not exist. Based on the similar
𝑖 1 2 𝑛 𝑖 1

Information and Software Technology 129 (2021) 106438M. Zhang et al.
inference, we can conclude that these two situations do not hold on,
either. Therefore, all three situations are false, i.e., Cycles_𝐶𝑖 ≠ Cycles_𝐶𝑗
is false. In other words, the set of cycles containing class 𝐶𝑖 is the same
as the set of cycles containing class 𝐶𝑗 , i.e., Cycles_𝐶𝑖 = Cycles_𝐶𝑗 .

Definition 2 (Symmetric Classes). Two classes 𝐶𝑖 and 𝐶𝑗 , are said to
be symmetric if they satisfy the following three conditions, (1) they
depend on the same set of classes, i.e., Target_𝐶𝑖 = Target_𝐶𝑗 , (2) their
dependent classes are equal, i.e., Source_𝐶𝑖 = Source_𝐶𝑗 , (3) for any
pair of class dependencies, such as 𝐶1→𝐶𝑖 and 𝐶1→𝐶𝑗 (or 𝐶𝑖→𝐶1 and
𝐶𝑗→𝐶1), their attribute coupling and method coupling are identical,
respectively.

Proposition 2. Given a stable CITO generation algorithm, if class 𝐶𝑖 and
𝐶𝑗 are symmetric classes, then the generated test orders of class 𝐶𝑖 and 𝐶𝑗
are equal, i.e.,Order_𝐶𝑖 = Order_𝐶𝑗 .

Proof. Because class 𝐶𝑖 and 𝐶𝑗 are symmetric classes, if class 𝐶𝑖 is
not involved in any cycles, then class 𝐶𝑗 is not involved in any cycles,
either. For a stable CITO generation algorithm, if there are no cycles, a
class is integrated once all classes upon which it depends have been
integrated and tested. All classes on which class 𝐶𝑖 and 𝐶𝑗 depend
are the same, i.e., set Target_𝐶𝑖 = Target_𝐶𝑗 , therefore, in this case,
the generated test orders of class 𝐶𝑖 and 𝐶𝑗 are equal. If class 𝐶𝑖 is
involved in cycles, according to Proposition 1, class 𝐶𝑗 is also involved
in the same cycles, i.e., Cycles_𝐶𝑖 = Cycles_𝐶𝑗 . For any cycle 𝑐𝑖 =
𝐶1→𝐶2→. . .→𝐶𝑛→𝐶𝑖→𝐶1 (1≤ 𝑛 ≤ 𝑚, 𝑚 is the number of classes) in
Cycles_𝐶𝑖, there is a corresponding cycle 𝑐𝑗 = 𝐶1→𝐶2→. . .→𝐶𝑛→𝐶𝑗→𝐶1
in Cycles_𝐶𝑗 . All Class dependencies are the same except for 𝐶𝑛→𝐶𝑖
(𝐶𝑖→𝐶1) and 𝐶𝑛→𝐶𝑗 (𝐶𝑗→𝐶1). Because the pair of class dependencies
𝐶𝑛→𝐶𝑖 (𝐶𝑖→𝐶1) and 𝐶𝑛→𝐶𝑗 (𝐶𝑗→𝐶1) have the same value of attribute
coupling and method coupling, respectively, these two cycles are iden-
tical except for two different notations 𝐶𝑖 and 𝐶𝑗 . Correspondingly,
solutions to break cycles in Cycles_𝐶𝑖 and Cycles_𝐶𝑗 are equal. Therefore,
after removing some class dependencies, all classes on which class 𝐶𝑖
and 𝐶𝑗 depend are still the same. The generated test orders of class 𝐶𝑖
and 𝐶𝑗 are equal.

Similar-class combination is inspired by the graph reduction oper-
ation proposed by Orenstein et al. [9] for FVS identification problem.
In theory, similar-class combination based on SCs cannot degrade the
performance of any cycle-breaking technique, but in some cases, it can
help to lower the stubbing cost of the generated CITOs. In contrast,
similar-class combination based on ICD can both increase and lower the
stubbing cost of the generated CITO depending on the specific case.

For the best case, similar-class combination can lower the stubbing
cost of the generated CITO. For the example in Fig. 3 introduced
in Section 2.2 Motivation, the cycle-breaking algorithms SCplx and
CWR can generate the optimal solution for the reduced program, but
these two algorithms cannot generate the optimal CITO for the original
sample program. In the original program, the dependency 𝐵→𝐶 is
involved in two cycles with the stubbing complexity (0.316), and the
dependencies 𝐶→𝐷 and 𝐸→𝐴 have the lowest stubbing complexity
(0.141 and 0.283) in these two cycles, separately. In this case, the
dependency 𝐵→𝐶 cannot be selected by the two algorithms because it
does not have the lowest stubbing cost or the greatest cycles–weight
ratio. However, in the reduced program, the classes 𝐷 and 𝐸 are
combined and consequently, the dependencies 𝐶→𝐷 and 𝐸→𝐴 do not
exist. Two new class dependencies 𝐶→𝑋 and 𝑋→𝐴 are constructed,
and their stubbing costs are higher (0.588 and 0.883) than that of
𝐵→𝐶. Therefore, the dependency 𝐵→𝐶 can be selected by the two
algorithms.

Although ICD can identify a greater number of similar classes due
to looser conditions, this advantage can be a drawback that increases
the stubbing cost in the worst case. For example, suppose class 𝐶𝑖
and class 𝐶 have identical class dependence, indicating that these
6

𝑗

two classes are involved in the same cycles, that is, all of the classes
in the corresponding cycles are equal, except for the classes 𝐶𝑖 and
𝐶𝑗 . Consider 𝐶𝑦𝑐𝑙𝑒𝑠_𝐶𝑖 (𝐶𝑦𝑐𝑙𝑒𝑠_𝐶𝑗) to represent the set of cycles in
which class 𝐶𝑖 (𝐶𝑗) is involved. Supposing that the class dependency
𝐶→𝐶𝑖 is the best choice to break all of the cycles in 𝐶𝑦𝑐𝑙𝑒𝑠_𝐶𝑖, the
corresponding class dependency 𝐶→𝐶𝑗 is guaranteed to break all of
the cycles in 𝐶𝑦𝑐𝑙𝑒𝑠_𝐶𝑗 . However, this class dependency may not be
the optimal solution for 𝐶𝑦𝑐𝑙𝑒𝑠_𝐶𝑗 because of different stubbing com-
plexity. The stubbing complexity of the class dependency 𝐶→𝐶𝑗 may be
lower than, equal to, or even higher than that of the class dependency
𝐶→𝐶𝑖 due to the lack of restrictions on the coupling values of the
class dependencies with identical class dependence. If the stubbing
complexity of class dependency 𝐶→𝐶𝑗 is lower or equal, 𝐶→𝐶𝑗 is the
best choice for 𝐶𝑦𝑐𝑙𝑒𝑠_𝐶𝑗 . Otherwise, there may exist another class
dependency in 𝐶𝑦𝑐𝑙𝑒𝑠_𝐶𝑗 with a stubbing complexity value between
that of the class dependencies 𝐶→𝐶𝑖 and 𝐶→𝐶𝑗 . In such a case, the class
dependency 𝐶→𝐶𝑗 is no longer the optimal choice to break all of the
cycles in 𝐶𝑦𝑐𝑙𝑒𝑠_𝐶𝑗 . We are unable to obtain a better solution when we
regard similar classes as a whole and consider 𝐶𝑦𝑐𝑙𝑒𝑠_𝐶𝑖 and 𝐶𝑦𝑐𝑙𝑒𝑠_𝐶𝑗
together. This problem is described in greater detail in Section 4.3 with
the aid of real applications.

Combining symmetric classes does not confront with the above-
mentioned problem in similar-class identification by identical class
dependence because symmetric classes specify the detailed constraints
on the coupling values of similar classes, which ensures that the class
dependencies related to these symmetric classes have the equal stub-
bing complexity. Therefore, for two symmetric classes 𝐶𝑖 and 𝐶𝑗 ,
the counterpart of the class dependency that is the best solution for
𝐶𝑦𝑐𝑙𝑒𝑠_𝐶𝑖 must be the optimal result for 𝐶𝑦𝑐𝑙𝑒𝑠_𝐶𝑗 .

We apply these two properties, namely, identical class dependence
and symmetric classes, in the proposed approach to identify similar
classes. Similar classes can be combined and some redundant cycles
containing such similar classes can be removed. These two proper-
ties mainly help to reduce the problem space for the existing CITO
generation approaches, and theoretically, they have no effect on the
stubbing cost if we use a stable cycle-breaking algorithm. However, a
moderately large number of classes or cycles is an important reason for
the poor effectiveness of the existing approaches, especially when these
approaches are applied to a program with enormous class dependencies
and complicated cycles. With heuristics, it would be easier to generate
a better class test order for a program containing fewer classes and
class dependencies. From this viewpoint, these two properties simplify
the CITO generation problem for the original program, which helps to
generate class test orders with a lower stubbing cost.

Algorithm 1 is the similar-class combination algorithm. Given a pair
of classes 𝐶𝑖 and 𝐶𝑗 , we first calculate the source and target sets for
them (lines 1–3). Then, based on the proposed properties, we identify
whether these classes are similar (line 4). If they are similar, a new class
𝐶 is created to replace them (line 5). The related class dependencies are
constructed for the new class 𝐶 (lines 6–7), and the stubbing complexity
is calculated for these new class dependencies (lines 13–20). Finally,
the sets of classes and cycles are updated (lines 9–10).

For simplicity, we consider only two classes in the algorithm, but
in practice, multiple similar classes can be identified by using the
proposed properties. Supposing that a new class 𝐶 represents the
combination of 𝑛 similar classes, the set 𝑠𝑖𝑚(𝐶) represents the set of
these similar classes 𝐶1, 𝐶2, . . . , 𝐶𝑛. For the class 𝐶𝑖 in the set 𝑠𝑖𝑚(𝐶), a
new class dependency 𝑆→𝐶 is formed for each class 𝑆 in 𝑆𝑜𝑢𝑟𝑐𝑒_𝐶𝑖.
Similarly, a new class dependency 𝐶→𝑇 is formed for each class 𝑇
in 𝑇 𝑎𝑟𝑔𝑒𝑡_𝐶𝑖. The stubbing complexity of the new class dependencies
is calculated using Eqs. (3) and (4), and it is the sum of stubbing
complexities of the corresponding original class dependencies. After
adding the new class 𝐶 and its class dependencies into the program,
the original similar classes and their related class dependencies are
removed from the program.

Information and Software Technology 129 (2021) 106438M. Zhang et al.
Algorithm 1 Similar Class Combination
Input: a set of all classes 𝐶𝑙𝑎𝑠𝑠𝑒𝑠

a set of all cycles 𝐶𝑦𝑐𝑙𝑒𝑠
Output: a set of combined classes 𝑅𝐶𝑙𝑎𝑠𝑠𝑒𝑠

a set of reduced cycles 𝑅𝐶𝑦𝑐𝑙𝑒𝑠
1: for each pair of classes 𝐶𝑖 and 𝐶𝑗 in 𝐶𝑙𝑎𝑠𝑠𝑒𝑠 do
2: calculate 𝑇 𝑎𝑟𝑔𝑒𝑡_𝐶𝑖 and 𝑇 𝑎𝑟𝑔𝑒𝑡_𝐶𝑗
3: calculate 𝑆𝑜𝑢𝑟𝑐𝑒_𝐶𝑖 and 𝑆𝑜𝑢𝑟𝑐𝑒_𝐶𝑗
4: if classes 𝐶𝑖 and 𝐶𝑗 own identical class dependence

or are symmetric classes then
5: create a new class 𝐶
6: 𝑇 𝑎𝑟𝑔𝑒𝑡_𝐶 ← 𝑇 𝑎𝑟𝑔𝑒𝑡_𝐶𝑖
7: 𝑆𝑜𝑢𝑟𝑐𝑒_𝐶 ← 𝑆𝑜𝑢𝑟𝑐𝑒_𝐶𝑖
8: calculateSCplx()
9: 𝑅𝐶𝑙𝑎𝑠𝑠𝑒𝑠 ← updateClasses(𝐶𝑖, 𝐶𝑗 , 𝐶)

10: 𝑅𝐶𝑦𝑐𝑙𝑒𝑠 ← updateCycles(𝐶𝑖, 𝐶𝑗 , 𝐶)
11: end if
12: end for

13: function calculateSCplx()
14: for each class 𝐶𝑡 in 𝑇 𝑎𝑟𝑔𝑒𝑡(𝐶) do
15: 𝑆𝐶𝑝𝑙𝑥(𝐶→𝐶𝑡)=𝑆𝐶𝑝𝑙𝑥(𝐶𝑖→𝐶𝑡)+𝑆𝐶𝑝𝑙𝑥(𝐶𝑗→𝐶𝑡)
16: end for
17: for each class 𝐶𝑠 in 𝑆𝑜𝑢𝑟𝑐𝑒(𝐶) do
18: 𝑆𝐶𝑝𝑙𝑥(𝐶𝑠→𝐶)=𝑆𝐶𝑝𝑙𝑥(𝐶𝑠→𝐶𝑖)+𝑆𝐶𝑝𝑙𝑥(𝐶𝑠→𝐶𝑗)
19: end for
20: end function

𝑆𝐶𝑝𝑙𝑥(𝑆,𝐶) =
∑

𝐶𝑖∈𝑠𝑖𝑚(𝐶)
𝑆𝐶𝑝𝑙𝑥(𝑆,𝐶𝑖) (3)

𝑆𝐶𝑝𝑙𝑥(𝐶, 𝑇) =
∑

𝐶𝑖∈𝑠𝑖𝑚(𝐶)
𝑆𝐶𝑝𝑙𝑥(𝐶𝑖, 𝑇) (4)

3.2. Breaking cycles in reduced programs

As discussed in Section 3.1, original programs can be reduced by
means of similar-class combination based on the proposed properties.
For such a reduced program that contains fewer classes and cycles, we
construct an ORD, where each node represents a class and each edge
represents the corresponding class dependency. Therefore, the CITO
generation problem is transformed into the problem of traversing nodes
in the ORD. The cycles in the diagram must be broken first, so that
nodes can be visited by reverse topological sorting when no cycles exist,
and consequently, the CITO is generated based on the node visitation
order.

The cycles can be broken by removing the class dependencies.
For each removed class dependency, a test stub is constructed. To
minimize the stubbing cost of these test stubs, the most appropriate
class dependency should be selected for removal. If the cycles among
the class dependencies are independent and do not share common
paths, the optimal solution is to remove the class dependency with
the least stubbing complexity in each cycle. However, the existence of
overlapping paths complexifies the class test order generation process.

Definition 3 (Overlapping Paths). Supposing that 𝑐𝐴 and 𝑐𝐵 are two cy-
cles in the object relation diagram for a given program. 𝑐𝐴 is composed
by 𝑚 unique classes 𝑐𝐴 = 𝐶𝐴1→𝐶𝐴2→. . .→ 𝐶𝐴𝑚→𝐶𝐴1, and similarly, 𝑐𝐵
consists of 𝑛 unique classes 𝑐𝐵 = 𝐶𝐵1→𝐶𝐵2→. . .→𝐶𝐵𝑛 →𝐶𝐵1. For a path
𝑃𝐴 = 𝐶𝐴𝑖 →𝐶𝐴(𝑖+1)→. . .→𝐶𝐴𝑗 (1 ≤ 𝑖 < 𝑗 ≤ 𝑚) in 𝑐𝐴, if there exists a path
in 𝑐𝐵 , i.e., 𝑃𝐵 = 𝐶𝐵𝑖→𝐶𝐵(𝑖+1) →. . .→ 𝐶𝐵𝑗 , with the same length as that
of 𝑃𝐴, and the nodes in the same position are identical, i.e., 𝐶𝐴𝑖 = 𝐶𝐵𝑖,
𝐶𝐴(𝑖+1) = 𝐶𝐵(𝑖+1) and so on. Thus, 𝑐𝐴 and 𝑐𝐵 share common edges, 𝑃𝐴
7

and 𝑃𝐵 are overlapping paths.
Fig. 5. An example of cycle breaking. A new choice (removing edges 3→4 and 6→4)
with lower stubbing cost replaces the initially removed edge 4→2.

The overall stubbing cost of integration testing is calculated as the
sum of the stubbing complexity of each class dependency, which can be
affected by two factors. One is the number of removed dependencies;
as the number of removed dependencies increases, the stubbing cost
likely increases. The other is the stubbing complexity of each removed
class dependency; the overall stubbing cost is likely to be low if all of
the dependencies with relatively low stubbing complexity are removed.
The overlapping paths in cycles tend to create a conflict between these
two factors of the overall stubbing cost. This is also the reason why the
existing cycle-breaking strategies do not yield satisfactory results when
faced with overlapping cycles, as we have explained in Section 2.2. Two
choices are presented when we deal with multiple overlapping cycles.
Removing the common edges that are involved in multiple cycles
requires fewer test stubs but the overall stubbing cost may increase
because the construction of each test stub can be a complex process.
Meanwhile, deleting the edge with the least stubbing complexity cannot
guarantee an overall minimal stubbing cost because a greater number
of edges may be removed than that with the former option.

We propose a new cycle-breaking algorithm called ANS because the
basic idea of the proposed algorithm is to perform a good Analysis of
the relationship between the Number of removed dependencies and
the related Stubbing complexity. Our algorithm first selects a class
dependency that breaks multiple cycles. Due to the existence of over-
lapping paths, there exist alternative solutions for the initially removed
class dependency to break these cycles. Therefore, based on the cycles
broken by this initial class dependency, our algorithm searches for
another dependency or a set of other dependencies that break the
same cycles but with a lower stubbing cost. The idea behind this
algorithm is similar to the concept of ‘‘exploitation’’ in evolutionary
algorithms, which searches for solutions that have better performance
in the neighborhood of the current solution [18].

Fig. 5 shows an example of cycle-breaking. In this example, the
object relation diagram contains six nodes. We choose the edge 4→2 as
the initially removed dependency in Fig. 5(a), which breaks three cycles
in the diagram: (1) 2→3→4→2, (2) 2→6→4→2, (3) 2→5→6→4→2. A
new choice with lower stubbing cost devised by our cycle-breaking
algorithm are edges 3→4 and 6→4 in Fig. 5(b). The edge 3→4 is
removed to break the cycle (1), and edge 6→4 is deleted to break the
cycles (2) and (3). Besides, only the new generated choice with lower
stubbing cost is reserved, others are discarded.

Algorithm 2 is the proposed cycle-breaking algorithm, which at-
tempts to maintain a good analysis between the two factors for mini-
mizing the stubbing cost: the number of removed dependencies and the
related stubbing complexity. All of the cycles in the program and all of
the edges that are involved in the cycles constitute the input, and the
algorithm generates a set of removed edges as its output. The algorithm
begins with the initialization procedure (line 1), where the output set
𝑅𝑒𝑚𝐸𝑑𝑔𝑒𝑠 is created. Then, the edge that is involved in the greatest
number of cycles is extracted (line 3) as the initially removed edge 𝑒.
The stubbing complexity of edge 𝑒 is calculated (line 4), and all of the
cycles in which edge 𝑒 is involved (𝐸𝐶𝑦𝑐𝑙𝑒𝑠) and all of the edges that
are involved in these cycles (𝐸𝐸𝑑𝑔𝑒𝑠) are identified (lines 5–6). The

Information and Software Technology 129 (2021) 106438M. Zhang et al.

1
1
1
1
1
1

1
1
1
1
2
2
2
2
2
2
2
2

2
2
3
3
3
3
3
3
3
3
3
3
4
4

Fig. 6. Relationship between properties and similar classes.

algorithm then attempts to find a set of removed edges that can replace
the initial edge, that is, breaking the same cycles or an equal number
of cycles but with a lower stubbing cost (lines 7–8), which is executed
by two functions, findFromCycles (lines 16–27) and findFromEdges
(lines 28–41). The two sets 𝑇 𝑒𝑚𝑝𝐸𝑑𝑔𝑒𝑠1 and 𝑇 𝑒𝑚𝑝𝐸𝑑𝑔𝑒𝑠2 store the
set of removed edges generated by findFromCycles and findFromEdges,
respectively.

For the first function findFromCycles, we start from the cycles in
which edge 𝑒 is involved. For each cycle, edge 𝑒𝑡 with the minimal
stubbing complexity is obtained (line 18). If 𝑒𝑡 is not equal to edge 𝑒 and
the overall stubbing cost after considering 𝑒𝑡 is reduced (line 19), then
𝑒𝑡 is added to the set 𝑇 𝑒𝑚𝑝𝐸𝑑𝑔𝑒𝑠1, and consequently, all of the cycles
in which 𝑒𝑡 is involved are updated (lines 20–21). If the algorithm is
unable to obtain better alternatives, it returns an empty set (line 23).
After all of the cycles in set 𝐸𝐶𝑦𝑐𝑙𝑒𝑠 have been processed, the final set
𝑇 𝑒𝑚𝑝𝐸𝑑𝑔𝑒𝑠1 is obtained.

For the second function findFromEdges, we start from the edges that
are involved in 𝐸𝐶𝑦𝑐𝑙𝑒𝑠 and find a set of removed class dependencies
that break the same number of cycles as the initial edge 𝑒. In these
edges, the edge 𝑒𝑡 with the maximal number of cycles is obtained (line
31). If removing 𝑒𝑡 rather than 𝑒 can reduce the overall stubbing cost,
then 𝑒𝑡 is added to the set 𝑇 𝑒𝑚𝑝𝐸𝑑𝑔𝑒𝑠2 (lines 32–33). The number of
remaining cycles is updated (line 34) as are the other edges in the set
𝐸𝐸𝑑𝑔𝑒𝑠 (line 35). Similarly, an empty set is returned when no better
alternatives exist (line 37). After the set 𝑇 𝑒𝑚𝑝𝐸𝑑𝑔𝑒𝑠2 breaks the same
number of cycles as the initial edge 𝑒, the execution of this function is
completed.

Finally, the overall stubbing costs of these two sets obtained using
the functions findFromCycles and findFromEdges are compared, and
the better set is reserved (lines 9–10). Correspondingly, for the remain-
ing edges, the cycles in which they are involved are updated (line 14).
The above process is repeated until no cycles exist.

For the time complexity, assuming that the number of edges that are
involved in cycles is 𝐸𝐼 , and the number of cycles in the program is 𝐶.
For each edge that is involved in the most cycles, we iterate all these
cycles and their corresponding edges and then perform two functions.
For these two functions, their main task is to compare the stubbing
complexity of the initial edge with that of alternatives, whose time
complexity is 𝑂(𝐶) and 𝑂(𝐸𝐼), respectively. The worst case is that we
iterate all edges (𝐸𝐼), therefore, the overall time complexity is 𝑂(𝐸2

𝐼 +
𝐶⋅𝐸𝐼).

Although both graph-based and search-based methods ignore these
8

two factors, we did not solve this problem for search-based methods,
Algorithm 2 Cycle-Breaking ANS Algorithm
Input: a list of edges that are involved in cycles 𝐴𝑙𝑙𝐸𝑑𝑔𝑒𝑠

a list of cycles in the entire program 𝐴𝑙𝑙𝐶𝑦𝑐𝑙𝑒𝑠
Output: a set of removed edges 𝑅𝑒𝑚𝐸𝑑𝑔𝑒𝑠
1: 𝑅𝑒𝑚𝐸𝑑𝑔𝑒𝑠 ← ∅
2: for 𝐴𝑙𝑙𝐶𝑦𝑐𝑙𝑒𝑠.size != 0 do
3: 𝑒 = getMaxCyclesEdge(𝐴𝑙𝑙𝐸𝑑𝑔𝑒𝑠)
4: 𝑠𝑐𝑝𝑙𝑥 = getSCplx(𝑒)
5: 𝐸𝐶𝑦𝑐𝑙𝑒𝑠 = getCycles(𝑒)
6: 𝐸𝐸𝑑𝑔𝑒𝑠 = getEdges(𝐸𝐶𝑦𝑐𝑙𝑒𝑠)
7: 𝑇 𝑒𝑚𝑝𝐸𝑑𝑔𝑒𝑠1 ← findFromCycles(𝐸𝐶𝑦𝑐𝑙𝑒𝑠, 𝑠𝑐𝑝𝑙𝑥)
8: 𝑇 𝑒𝑚𝑝𝐸𝑑𝑔𝑒𝑠2 ← findFromEdges(𝐸𝐸𝑑𝑔𝑒𝑠, 𝑠𝑐𝑝𝑙𝑥)
9: if 𝑇 𝑒𝑚𝑝𝐸𝑑𝑔𝑒𝑠1.size != 0 || 𝑇 𝑒𝑚𝑝𝐸𝑑𝑔𝑒𝑠2.size != 0 then
0: 𝑅𝑒𝑚𝐸𝑑𝑔𝑒𝑠.add(Compare(𝑇 𝑒𝑚𝑝𝐸𝑑𝑔𝑒𝑠1, 𝑇 𝑒𝑚𝑝𝐸𝑑𝑔𝑒𝑠2))
1: else
2: 𝑅𝑒𝑚𝐸𝑑𝑔𝑒𝑠.add(𝑒)
3: end if
4: update(𝑅𝑒𝑚𝐸𝑑𝑔𝑒𝑠)
5: end for

6: function findFromCycles(𝐸𝐶𝑦𝑐𝑙𝑒𝑠, 𝑠𝑐𝑝𝑙𝑥)
7: for each cycle 𝑐 in 𝐸𝐶𝑦𝑐𝑙𝑒𝑠 do
8: 𝑒𝑡 = getMinSCplxEdge(𝑐)
9: if 𝑠𝑐𝑝𝑙𝑥 > SCplx(𝑒𝑡, 𝑇 𝑒𝑚𝑝𝐸𝑑𝑔𝑒𝑠1) then
0: 𝑇 𝑒𝑚𝑝𝐸𝑑𝑔𝑒𝑠1.add(𝑒𝑡)
1: update(𝑒𝑡)
2: else
3: 𝑇 𝑒𝑚𝑝𝐸𝑑𝑔𝑒𝑠1 ← 𝛷
4: break
5: end if
6: end for
7: end function

8: function findFromEdges(𝐸𝐸𝑑𝑔𝑒𝑠, 𝑠𝑐𝑝𝑙𝑥)
9: 𝑛𝑢𝑚 = getCyclesNum(𝑒)
0: for 𝑛𝑢𝑚 > 0 do
1: 𝑒𝑡 = getMaxCyclesEdge(𝐸𝐸𝑑𝑔𝑒𝑠)
2: if 𝑠𝑐𝑝𝑙𝑥 > SCplx(𝑒𝑡, 𝑇 𝑒𝑚𝑝𝐸𝑑𝑔𝑒𝑠2) then
3: 𝑇 𝑒𝑚𝑝𝐸𝑑𝑔𝑒𝑠2.add(𝑒𝑡)
4: 𝑛𝑢𝑚 = 𝑛𝑢𝑚 - getCyclesNum(𝑒𝑡)
5: updateEdges(𝑒𝑡)
6: else
7: 𝑇 𝑒𝑚𝑝𝐸𝑑𝑔𝑒𝑠2 ← 𝛷
8: break
9: end if
0: end for
1: end function

because these two factors (the number of test stubs and the corre-
sponding stubbing complexity) can be considered only when dealing
with an incomplete CITO. In graph-based methods, the CITO can be
generated only after all of the cycles have been broken. Therefore, we
can choose which class dependency is to be removed by considering
these two factors. In contrast, in search-based methods, an integer
represents a class, and a vector of such integers represents a CITO. All
of the evolutionary operators are applied to full CITOs to generate an
offspring. Therefore, the proposed measure for graph-based methods
cannot be applied to search-based methods.

4. Experiments

We conducted several experiments to evaluate the performance of
our approach. The information of used programs, experimental set-
tings, and evaluation metrics are described in Section 4.1. Research

Information and Software Technology 129 (2021) 106438M. Zhang et al.

c

m
a
d
r

4

p

p
o
S
s
e
t
t
n
s

w
F
s

l
n
d
M
o
b
n
5
o

r
c

questions and the corresponding results and analyses are introduced in
Sections 4.2 and 4.3, respectively. Section 4.4 presents the discussion.
Section 4.5 discusses the threats to validity.

4.1. Experimental settings and evaluation metrics

We selected nine Java programs that are widely used in the existing
CITO generation approaches to evaluate the performance of our ap-
proach. Table 2 summarizes these programs, including their sources,
descriptions, and numbers of classes.

For these programs, the class dependencies and the related coupling
information were obtained using a Java program analysis framework
called Soot (http://www.sable.mcgill.ca/soot).

We used overall stubbing complexity to estimate the stubbing cost
of the entire integration testing process. A class test order with the
minimum value of OCplx was desired. The number of test stubs (Stubs)
was also used as a supplementary metric. We considered that the fewer
test stubs are required, the better is the performance of the CITO
generation approach.

4.2. Research questions

Our approach first identifies similar classes by identifying the two
properties pertaining to class dependence, namely, ICD and SC. Based
on this notion of similar classes, some inter-class relationships can
be effectively identified, and some redundant cycles containing these
inter-class relationships can be removed. Thereafter, a reduced program
that contains fewer classes and class dependencies is generated. For
the reduced program, we adopt the proposed cycle-breaking algorithm
(ANS) to minimize the stubbing cost. To evaluate the performance of
the proposed approach, we designed experiments to answer the follow-
ing three research questions. RQ1 and RQ2 pertain to the effectiveness
of the similar-class combination and cycle-breaking algorithm, respec-
tively, under the condition that the other factors remain unchanged.
RQ3 assesses the performance of the proposed approach and explores
the effects of similar-class combination on the performance of the
state-of-the-art cycle-breaking techniques.

RQ1: What is the performance of similar-class combination in terms
of reducing the problem space?

Before generating CITOs, we first analyze the effects of similar-
class combination on reducing the problem space for graph-based and
search-based methods. We collect two types of similar classes by iden-
tifying two properties, namely ICD and SC, as proposed in Section 3.1,
and obtain two reduced programs by combining these similar classes.
We count the number of classes, class dependencies, and cycles in the
original program and the two reduced programs. The changes in the
above statistics represent the effects of similar-class combination on
minimizing the program scale, such as reduction of the number of
classes and class dependencies.

RQ2: What is the performance of the proposed cycle-breaking algo-
rithm (ANS) in terms of minimizing the stubbing cost?

To answer this question, we evaluate whether the proposed cycle-
breaking algorithm (ANS) reduces the stubbing cost of the original
program compared with the state-of-the-art cycle-breaking techniques.
The three cycle-breaking strategies mentioned in Section 2.2 are used
as competitors to validate the effectiveness of the proposed algorithm.
For the ORD constructed for the original program, these strategies use
the following three rules to remove the edges in the diagram until all
of the cycles are broken.

• Number of Cycles (NC) removes the edge that is involved in the
greatest number of cycles, which is adopted by Briand et al. [7].

• Stubbing Complexity (SCplx) removes the edge with the minimal
9

stubbing complexity, which is applied by Hashim et al. [11]. a
• Cycles–Weight Ratio (CWR) removes the edge with the highest
cycles–weight ratio, such as the methods proposed by Bansal
et al. [13] and Abdurazik et al. [14]. The idea behind this rule
is that removing such an edge may break the most cycles with
minimal stubbing cost. In this experiment, weight for each edge is
the stubbing complexity for the corresponding class dependency.

After eliminating all of the cycles, test stubs are constructed for the
removed class dependencies. The overall stubbing complexity and the
number of test stubs are counted and compared.

RQ3: Will similar-class combination affect the performance of the
ycle-breaking techniques?

We evaluate whether similar-class combination affects the perfor-
ance of the cycle-breaking techniques. We apply the cycle-breaking

lgorithms mentioned in RQ2 and the proposed algorithm to the re-
uced programs obtained by similar-class combination and compare the
esults.

.3. Results and analyses

RQ1: The performance of similar-class combination in reducing the
roblem space.

We recorded the set of similar classes identified based on the two
roposed properties, namely ICD and SC. Table 3 lists the number
f records for similar classes that were identified based on ICD and
C for each program. The statistics show that all programs contained
imilar classes that were identified by the two proposed properties,
xcept for the program deos. For the large-scale programs with more
han 100 classes, we identified greater numbers of similar classes than
hose for small-scale programs, such as programs daisy, email__spl, and
otepad__spl. In general, SC identified fewer similar classes due to its
tricter conditions compared with the property of ICD.

We also counted the number of similar classes in each record that
ere identified by the two properties ICD and SC for all programs.
ig. 6 shows the relationship between the proposed properties and
imilar classes. The value on the 𝑦-axis indicates the number of sets with

similar classes whose sizes, indicated on the 𝑥-axis, are obtained using
the corresponding property. Among the sets obtained based on ICD and
SC, in 61.9% (65/105) and 58.3% (42/72), respectively, two similar
classes were identified. Most of the sets of similar classes contained no
more than 10 similar classes, and the largest set contained 72 similar
classes.

Table 4 summarizes a comparison of the programs obtained by
means of similar-class combination based on the two properties ICD
and SC in terms of the number of classes, number of class depen-
dencies (Deps), number of class dependencies that are involved in
cycles (OverDeps), and number of cycles. The columns ‘‘Original’’,
‘‘ICD’’, and ‘‘SC’’ present the statistics of the original programs and
the programs obtained by means of similar-class combination based on
ICD and SC, respectively. The percentage values describe the degree
of the reduction in these statistics. Most programs contained fewer
classes and class dependencies after similar-class combination, except
for the program deos. For six programs (email__spl, GPL__spl, JHotDraw,
og4j3, MyBatis and notepad__spl), more than 10% reductions in the
umber of classes and more than 6% reductions in the number of
ependencies were achieved. For four programs (email__spl, GPL__spl,
yBatis and notepad__spl), more than 20% reductions in the number

f cycles were achieved. The ICD property identified a greater num-
er of similar classes, and it achieved the highest reductions for the
otepad__spl program: approximately 55.38% (1-29/65), 62.41% (1-
3/141), 70.49% (1-36/122), and 86.78% (1-30/227) in the numbers
f classes, dependencies, OverDeps, and cycles, respectively.

To highlight the differences between the original programs and the
educed programs more intuitively, we drew the ORDs for the strongly
onnected components that contained similar classes. Fig. 7 shows

comparison of two ORDs generated for the program notepad__spl.

http://www.sable.mcgill.ca/soot

Information and Software Technology 129 (2021) 106438M. Zhang et al.
Table 4
Comparison of programs obtained by combining similar classes based on two properties — columns ‘Original’, ‘ICD’ and ‘SC’ present the statistics in the original programs, programs
obtained by combining similar classes based on ICD and SC, respectively. Percentage below describes the degree of the reduction in these items compared with the original
programs.

Programs # of classes # of Deps # of OverDeps # of cycles

Original ICD SC Original ICD SC Original ICD SC Original ICD SC

daisy 23 22 22 36 35 35 9 9 9 4 4 4
4.35% 4.35% 2.78% 2.78% 0.00% 0.00% 0.00% 0.00%

email_ _spl 39 29 31 61 49 53 28 23 25 38 26 30
25.64% 20.51% 19.67% 13.11% 17.86% 10.71% 31.58% 21.05%

GPL_ _spl 178 103 114 260 150 167 104 68 80 144 88 103
42.13% 35.96% 42.31% 35.77% 34.62% 23.08% 38.89% 28.47%

JHotDraw 411 357 366 1680 1417 1458 199 180 186 225 204 210
13.14% 10.95% 15.65% 13.21% 9.55% 6.53% 9.33% 6.67%

jmeter 372 340 352 1252 1204 1238 147 137 145 729 721 728
8.60% 5.38% 3.83% 1.12% 6.80% 1.36% 1.10% 0.14%

log4j3 261 211 226 784 662 705 242 162 186 2173 2053 2136
19.16% 13.41% 15.56% 10.08% 33.06% 23.14% 5.52% 1.70%

MyBatis 428 302 327 1211 1058 1131 389 327 351 37,882 14,790 23,861
29.44% 23.60% 12.63% 6.61% 15.94% 9.77% 60.96% 37.01%

notepad_ _spl 65 29 31 141 53 55 122 36 36 227 30 30
55.38% 52.31% 62.41% 60.99% 70.49% 70.49% 86.78% 86.78%
Table 5
Comparison of results on original programs for our cycle-breaking algorithm (ANS) and three competitors (NC, SCplx and CWR). The best values are highlighted in bold.

Programs Methods OCplx Stubs

Range Mean 𝑝-value Range Mean 𝑝-value

daisy

NC [0.129–0.482] 0.319 1.666e−09 3 3 –
SCplx 0.161 0.161 – 4 4 –
CWR [0.129–0.161] 0.145 9.651e−06 [3–4] 3.5 9.651e−06
ANS 0.129 0.129 – 3 3 –

deos

NC [1.547–3.180] 2.595 1.191e−12 [11–13] 12.333 0.01548
SCplx 2.695 2.695 – 27 27 –
CWR 1.351 1.351 – 14 14 –
ANS 1.257 1.257 – 12 12 –

email_ _spl

NC [0.957–1.168] 1.075 1.111e−12 5 5 –
SCplx [0.972–1.061] 1.008 1.052e−12 [6–11] 8.033 1.052e−12
CWR 0.902 0.902 – 5 5 –
ANS 0.902 0.902 – 5 5 –

GPL_ _spl

NC [2.488–3.959] 3.060 1.212e−12 42 42 –
SCplx [2.950–2.981] 2.967 4.455e−13 [52–53] 52.567 4.455e−13
CWR 2.582 2.582 – 49 49 –
ANS 2.244 2.244 – 42 42 –

JHotDraw

NC [1.599–2.328] 1.979 1.212e−12 90 90 –
SCplx [0.977–1.004] 0.988 8.691e−13 [94–98] 95.700 8.691e−13
CWR 0.963 0.963 – 92 92 –
ANS 0.963 0.963 – 91 91 –

jmeter

NC [1.998–2.694] 2.278 1.212e−12 39 39 –
SCplx [1.467–1.547] 1.513 1.132e−12 [55–60] 57.833 9.807e−13
CWR [1.305–1.335] 1.320 4.696e−13 [42–43] 42.500 4.696e−13
ANS 1.284 1.284 – 40 40 –

log4j3

NC [2.433–3.065] 2.816 1.212e−12 90 90 –
SCplx [2.162–2.425] 2.297 1.199e−12 [103–120] 111.833 1.167e−12
CWR 1.972 1.972 – 96 96 –
ANS 1.965 1.965 – 91 91 –

MyBatis

NC [1.603–2.580] 2.103 1.212e−12 [58–59] 58.567 4.455e−13
SCplx [2.086–2.271] 2.171 1.210e−12 [119–132] 124.167 1.145e−12
CWR 1.201 1.201 – [60–62] 61.800 6.115e−14
ANS 1.209 1.209 – 57 57 –

notepad_ _spl

NC [2.489–3.480] 3.031 1.211e−12 43 43 –
SCplx [1.249–1.478] 1.347 1.132e−12 [56–68] 61.167 1.132e−12
CWR 1.019 1.019 – 44 44 –
ANS 1.000 1.000 – 43 43 –
Due to space limitations in this paper, the diagrams of the other
programs can be accessed on GitHub (https://github.com/miazhang9/
CITO_SCC). Fig. 7(a) shows the ORD for the original program, where
the value in each node indicates the class number, and the directed
edge represents the dependency between two classes. The ORDs of
10
the two reduced programs obtained using ICD and SC are identical,
as shown in Fig. 7(b). Two types of similar classes that are shown in
Fig. 7 were identified by both properties, and the class numbers of these
classes are shown as follows:

https://github.com/miazhang9/CITO_SCC
https://github.com/miazhang9/CITO_SCC
https://github.com/miazhang9/CITO_SCC

Information and Software Technology 129 (2021) 106438M. Zhang et al.
Table 6
Comparison of results on programs after combining similar classes by property ICD. Values that are different from those in Table 5 are highlighted in bold.

Programs Methods OCplx Stubs

Range Mean 𝑝-value Range Mean 𝑝-value

daisy

NC-ICD [0.129–0.482] 0.332 5.186e−09 3 3 –
SCplx-ICD 0.161 0.161 – 4 4 –
CWR-ICD [0.129–0.161] 0.144 2.364e−05 [3–4] 3.467 2.364e−05
ANS-ICD 0.129 0.129 – 3 3 –

email_ _spl

NC-ICD [0.902–1.168] 1.061 1.583e−11 5 5 –
SCplx-ICD [0.972–1.026] 1.002 9.338e−13 [6–9] 7.667 9.338e−13
CWR-ICD 0.902 0.902 – 5 5 –
ANS-ICD 0.902 0.902 – 5 5 –

GPL_ _spl

NC-ICD [2.572–3.849] 3.076 1.212e−12 42 42 –
SCplx-ICD [2.960–2.991] 2.976 9.338e−13 [52–53] 52.5 4.696e−13
CWR-ICD 2.592 2.592 – 49 49 –
ANS-ICD 2.254 2.254 – 42 42 –

JHotDraw

NC-ICD [1.439–2.207] 1.904 1.211e−12 90 90 –
SCplx-ICD [1.076–1.097] 1.087 7.718e−13 [94–97] 95.600 7.718e−13
CWR-ICD 1.063 1.063 – 92 92 –
ANS-ICD 1.063 1.063 – 91 91 –

jmeter

NC-ICD [1.890–2.738] 2.295 1.212e−12 39 39 –
SCplx-ICD [1.467–1.588] 1.524 1.150e−12 [55–62] 58.333 1.087e−12
CWR-ICD [1.305–1.345] 1.322 5.634e−13 [42–44] 42.600 5.634e−13
ANS-ICD 1.284 1.284 – 40 40 –

log4j3

NC-ICD [2.405–3.186] 2.828 1.212e−12 90 90 –
SCplx-ICD [2.145–2.381] 2.257 1.206e−12 [102–117] 109.3 1.144e−12
CWR-ICD 1.929 1.929 – 94 94 –
ANS-ICD 1.965 1.965 – 91 91 –

MyBatis

NC-ICD [1.574–2.610] 2.034 1.212e−12 58 58 –
SCplx-ICD [1.709–1.920] 1.802 1.210e−12 [101–114] 106.7 1.162e−12
CWR-ICD 1.201 1.201 – [60–62] 61.533 1.969e−13
ANS-ICD 1.209 1.209 – 57 57 –

notepad_ _spl

NC-ICD [1.164–1.846] 1.462 1.211e−12 42 42 –
SCplx-ICD [1.038–1.650] 1.320 1.068e−12 [45–77] 59.733 1.068e−12
CWR-ICD 1.019 1.019 – 44 44 –
ANS-ICD 0.981 0.981 – 42 42 –
Fig. 7. Comparison of object relation diagram for notepad__spl: (a) Original program
(b) Reduced program.

• 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42,
43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54

• 62, 63

As shown in Fig. 7(a), the strongly connected component extracted
from the original program contains 43 classes and 120 class dependen-
cies. While in the reduced program, classes 62 and 63 are combined
as an integral. Similarly, class 25 and other 28 classes are treated
holistically. Therefore, we only need to tackle 14 classes and 34 class
dependencies in the reduced program as shown in Fig. 7(b). The new
program contains only 30 cycles compared with 227 cycles in the
original program.

A reduction in the number of cycles improves the efficiency of the
graph-based approaches because these approaches aim to break all of
the cycles in the program. For search-based approaches, a reduction
11
in the number of classes is helpful due to the encoding strategy for
CITOs, as mentioned in Section 1. The size of the search space for
search-based methods is 𝑁! (𝑁 factorial) for a program containing
𝑁 classes. The fewer the classes, the smaller is the search space.
Hence, the conventional CITO generation approaches can benefit from
similar-class combination based on the proposed properties.

RQ2: Performance of proposed cycle-breaking algorithm (ANS) on
minimizing stubbing cost.

We evaluated the performance of the proposed cycle-breaking al-
gorithm and compared it with the performance of the three other
typical cycle-breaking strategies studied in Section 2.2. Each strategy
was executed 30 times for each program. The non-deterministic re-
sults obtained using the other three methods were subjected to the
Wilcoxon rank-sum test [19] to evaluate whether there exist statis-
tically significant differences between the OCplx and Stubs obtained
by our algorithm and those obtained using the other algorithms. The
process of evaluating the existence of differences is consistent with the
literature [7]. The ranges, means and 𝑝-values of OCplx and Stubs are
listed in Table 5, where the minimal mean values are presented in
boldface.

In terms of the range of OCplx, NC produced a distribution of
widely varying results across the 30 executions for all programs because
multiple dependencies were involved in the same number of cycles
in the later stage of the cycle-breaking algorithm. The range of OC-
plx obtained using SCplx was also wide for some programs, such as
jmeter and log4j3, but the range was narrower than that of NC. These
results indicate that the programs might contain multiple dependencies
with the same minimal stubbing complexity, but the probability is
relatively low because the same stubbing complexities require both
the same attribute coupling and method coupling for two different
class dependencies. In contrast, CWR and the proposed algorithm are

Information and Software Technology 129 (2021) 106438M. Zhang et al.

r
a
g
r
d
a
u

Table 7
Comparison of results on programs after combining similar classes by property SC. Values that are different from those in Table 5 are highlighted in bold.

Programs Methods OCplx Stubs

Range Mean 𝑝-value Range Mean 𝑝-value

daisy

NC-SC [0.129–0.482] 0.315 1.591e−08 3 3 –
SCplx-SC 0.161 0.161 – 4 4 –
CWR-SC [0.129–0.161] 0.148 5.189e−07 [3–4] 3.6 5.189e−07
ANS-SC 0.129 0.129 – 3 3 –

email_ _spl

NC-SC [0.902–1.150] 1.054 4.257e−12 5 5 –
SCplx-SC [0.972–1.026] 1.000 8.727e−13 [6–9] 7.533 8.727e−13
CWR-SC 0.902 0.902 – 5 5 –
ANS-SC 0.902 0.902 – 5 5 –

GPL_ _spl

NC-SC [2.467–3.795] 3.000 1.212e−12 42 42 –
SCplx-SC [2.950–2.981] 2.969 3.798e−13 [52–53] 52.633 3.798e−13
CWR-SC 2.582 2.582 – 49 49 –
ANS-SC 2.244 2.244 – 42 42 –

JHotDraw

NC-SC [1.681–2.245] 1.985 1.212e−12 90 90 –
SCplx-SC [0.977–0.997] 0.988 8.815e−13 [94–97] 95.633 8.815e−13
CWR-SC 0.963 0.963 – 92 92 –
ANS-SC 0.963 0.963 – 91 91 –

jmeter

NC-SC [1.946–3.004] 2.349 1.212e−12 39 39 –
SCplx-SC [1.467–1.578] 1.526 1.151e−12 [55–61] 58.333 1.015e−12
CWR-SC [1.305–1.345] 1.320 5.669e−13 [42–44] 42.567 5.669e−13
ANS-SC 1.284 1.284 – 40 40 –

log4j3

NC-SC [2.432–3.276] 2.790 1.212e−12 90 90 –
SCplx-SC [2.145–2.414] 2.293 1.212e−12 [102–119] 111.567 1.179e−12
CWR-SC 1.972 1.972 – 96 96 –
ANS-SC 1.965 1.965 – 91 91 –

MyBatis

NC-SC [1.602–2.471] 2.023 1.212e−12 [58–59] 58.633 3.798e−13
SCplx-SC [1.743–1.948] 1.839 1.209e−12 [102–116] 109.433 1.171e−12
CWR-SC 1.201 1.201 – [60–62] 61.533 1.969e−13
ANS-SC 1.209 1.209 – 57 57 –

notepad_ _spl

NC-SC [1.060–1.618] 1.368 1.208e−12 42 42 –
SCplx-SC [1.019–1.650] 1.279 1.069e−12 [44–77] 57.567 1.069e−12
CWR-SC 1.019 1.019 – 44 44 –
ANS-SC 0.981 0.981 – 42 42 –
t

o
i

a
c

o

c
p
c
f
i
c
f
W
f
t

t
l
f

Table 8
Class dependencies causing better result of CWR-ICD for program log4j3.

Class Deps # of cycles Stubbing complexity Cycles–weight ratio

36→16 2 0.011 181.818
16→18 8 0.098 81.633
38→16 2 0.032 62.500

more deterministic because they rarely make arbitrary decisions when
removing class dependencies.

Our cycle-breaking algorithm obtained the minimal mean OCplx
values for eight of nine programs, and the exception was the program
MyBatis. Both CWR and the proposed algorithm achieved the minimal
mean OCplx value for the programs email__spl and JHotDraw. For the
emaining programs, the OCplx values obtained using the proposed
lgorithm were lower than the values obtained using the other al-
orithms, and the reductions achieved using the proposed algorithm
anged from 0.35% (1–1.965/1.972) to 13.09% (1–2.244/2.582) re-
uction. Overall, all of the OCplx values obtained using the proposed
lgorithm are comparable to if not better than the best results obtained
sing the other approaches. For the program MyBatis, our algorithm

performed slightly worse than CWR because of the excessive removal
of class dependencies due to the initialization. To accelerate cycle-
breaking, we started from an initially removed edge that was involved
in the greatest number of cycles. However, such a choice may have
led to a sub-optimal result, such as the result obtained for the program
MyBatis.

Although NC created the fewest test stubs for seven programs
(except for the programs deos and MyBatis), its stubbing cost was unsat-
isfactory. Thus, considering only the number of test stubs is inadequate
for minimizing the stubbing cost. The proposed algorithm follows NC in
terms of Stubs, meaning that it comprehensively considers the number
12

a

of test stubs and the corresponding stubbing complexity when deter-
mining the overall stubbing cost. In addition, the 𝑝-values below 0.05
indicate that the differences between OCplx and Stub values obtained
using the proposed method and the other methods are statistically
significant.

RQ3: Effects of similar-class combination on the cycle-breaking
echniques.

To answer RQ3, we evaluate the effects of similar-class combination
n the performance of the cycle-breaking techniques, and this question
ncludes two research sub-questions:

RQ3.1 What is the performance of the proposed cycle-breaking
lgorithm in minimizing the stubbing cost when applying similar-class
ombination?

RQ3.2 Will similar-class combination affect the performance of
ther cycle-breaking techniques?

Tables 6 and 7 present the OCplx and Stubs obtained using the three
ompetitors and the proposed cycle-breaking algorithm for the reduced
rograms, that is, the programs obtained by means of similar-class
ombination based on ICD and SC, respectively. The results obtained
or all of the programs, except for deos (which does not have any
nstances of similar classes identified based on the two properties), are
ompared. As in the case of RQ2, each method was executed 30 times
or each program because some competitors are non-deterministic. The

ilcoxon rank-sum test was performed to investigate whether the dif-
erences between the results obtained using the proposed method and
hose obtained using the existing methods were statistically significant.

For RQ3.1, as shown in Table 6, the proposed approach achieved
he minimal stubbing cost for six of the eight programs (except for
og4j3 and MyBatis). The results shown in Table 7 are identical to our
indings for RQ2: the proposed approach outperformed the competitor
pproaches for all programs, except MyBatis.

Information and Software Technology 129 (2021) 106438M. Zhang et al.

S
t
p
d

o
(
a
b
d
T
c
o

Table 9
P-values for methods performing on programs before and after combining similar classes.

Programs OCplx Stubs

NC-ICD vs. NC NC-SC vs. NC SCplx-ICD vs. SCplx SCplx-SC vs. SCplx SCplx-ICD vs. SCplx SCplx-SC vs. SCplx

daisy 0.808 0.705 – – – –
email_ _spl 0.498 0.352 0.467 0.278 0.467 0.278
GPL_ _spl 0.741 0.495 0.003 0.607 0.614 0.607
JHotDraw 0.149 0.878 1.644e−11 0.926 0.846 0.926
jmeter 0.687 0.248 0.297 0.056 0.334 0.175
log4j3 0.623 0.406 0.052 0.994 0.053 1.000
MyBatis 0.382 0.279 3.012e−11 3.01e−11 2.8e−11 2.816e−11
notepad_ _spl 3.016e−11 3.01e−11 0.662 0.184 0.662 0.184
𝑝
(
(
v
n
I
d
s

s
n
p
s
t
W

m
m

4

p
a
g
c
p
S
e

a
p
o
o
s
t
c

For MyBatis, the proposed approach yielded the same OCplx and
tubs values as those without similar-class combination, as well as
he same as those yielded by CWR. However, the proposed approach
erformed slightly worse than CWR due to the extra removed class
ependencies, as it did in the case of RQ2.

For the program log4j3, CWR-ICD reduced 0.036 (1.965–1.929)
n OCplx, which is better than the performance of the original CWR
1.972) and that of the proposed approach (1.965). CWR-ICD yielded
better choice because it established the association between cycles

y means of ICD. For example, CWR-ICD removed the class depen-
ency 16→18 instead of 36→16 and 38→16, as selected by CWR.
able 8 shows the information of these three class dependencies; the
lass dependency 36→16 has a higher cycles–weight ratio than the
ther class dependencies. Therefore, the class dependency 36→16 was

first removed by CWR. Then, the cycles–weight ratio was updated for
the remaining class dependencies. The class dependency 16→18 was
involved in eight cycles, where two cycles also contained the class
dependency 36→16. Therefore, its cycles–weight ratio was updated
to 61.224 (6/0.098 = 61.224). The class dependency 38→16 was
still involved in two cycles, so it yielded the highest cycles–weight
ratio (62.500). Therefore, CWR removed the class dependency 38→16.
However, classes 36 and 38 exhibited ICD. In this case, CWR-ICD
regarded classes 36 and 38 holistically, replaced them with a new
class 𝑋, and calculated the cycles–weight ratio for the combined class
dependency 𝑋→16 (2/(0.011 + 0.032) = 46.512). Correspondingly, the
class dependency 16→18 was involved in six cycles, and its cycles–
weight ratio was the highest (6/0.098 = 61.224). Although it seems
that removing class dependency 16→18 led to the greatest increase in
stubbing cost by far, CWR-ICD eventually yielded a better result.

In terms of Stubs, NC yielded the least number of test stubs in most
cases, followed by the proposed approach. This finding is consistent
with our findings for RQ2. Moreover, the 𝑝-values lower than 0.05
indicate that after similar-class combination, the differences between
the results obtained using the competitors and those obtained using the
proposed approach are statistically significant.

For RQ3.2, In Tables 6 and 7, values of OCplx and Stubs that are
different from those in Table 5 are presented in boldface for the sake
of readability, while the best values of OCplx and Stubs are presented
in boldface in Table 5.

The results obtained using CWR and the proposed approach were
deterministic for most of the programs. Therefore, the differences in the
results obtained before and after similar-class combination are obvious.
For the non-deterministic values of OCplx and Stubs, we conducted
the Wilcoxon rank-sum test to estimate whether the results obtained
by means of similar-class combination based on ICD and SC differed
significantly from the original results. Table 9 presents the 𝑝-values of
eight programs for NC and SCplx, respectively. The 𝑝-values below 0.05
indicate significant differences, and they are presented in boldface.

The 𝑝-values of Stubs for NC were not shown because for seven pro-
grams, NC, NC-ICD and NC-SC all obtained certain values. For MyBatis,
the 𝑝-values for NC-ICD and NC-SC were 1.434e−06 and 0.607 (Stubs),
respectively. It indicates that the number of test stubs generated by NC
and NC-ICD has significant differences, but it does not hold for NC-SC.
13
Table 10
Programs for which generated CITOs are affected by similar class combination. The up
arrow indicates higher OCplx (Stubs) compared with its original result, whereas the
down arrow means lower OCplx (Stubs).

Methods OCplx Stubs

NC-ICD notepad_ _spl(↓) MyBatis(↓), notepad_ _spl(↓)

SCplx-ICD GPL_ _spl(↑), JHotDraw(↑), MyBatis(↓) MyBatis(↓)

CWR-ICD GPL_ _spl(↑), JHotDraw(↑), log4j3(↓) log4j3(↓)

ANS-ICD GPL_ _spl(↑), JHotDraw(↑), notepad_ _spl(↓) notepad_ _spl(↓)

NC-SC notepad_ _spl(↓) notepad_ _spl(↓)
SCplx-SC MyBatis(↓) MyBatis(↓)
ANS-SC notepad_ _spl(↓) notepad_ _spl(↓)

CWR, CWR-ICD, and CWR-SC all obtained deterministic values for
most programs. With regard to the remaining programs, for daisy, the
-values for CWR-ICD and CWR-SC were 0.804 (OCplx) and 0.445
Stubs). For jmeter, the 𝑝-values for CWR-ICD and CWR-SC were 0.6202
both OCplx and Stubs) and 0.9068, respectively. For MyBatis, the 𝑝-
alues for CWR-ICD and CWR-SC were 0.173 (Stubs). It indicates that
o statistically significant differences between the results from CWR-
CD (or CWR-SC) and CWR exist. Therefore, similar-class combination
oes not degrade the performance of CWR in terms of minimizing
tubbing cost for programs daisy, jmeter and MyBatis.

By comparing the OCplx and Stubs obtained before and after
imilar-class combination, we found that combining SCs minimized the
umber of classes (as well as class dependencies) without degrading the
erformance of the cycle-breaking techniques in terms of minimizing
tubbing cost for all programs. The other property ICD did not degrade
he performance of the cycle-breaking techniques for most programs.

e will discuss the other special cases in Section 4.4.
Overall, the proposed approach outperformed the competitors on

ost programs, and especially when combining SCs, it achieved the
inimal stubbing cost on seven of the eight programs.

.4. Discussion

In some special cases, similar-class combination based on the two
roposed properties, namely ICD and SC, may affect the specific char-
cteristics of the used programs. Correspondingly, different CITOs are
enerated by these cycle-breaking techniques when combining similar
lasses. We discuss such special cases in this section. We summarize the
rograms for which methods obtained significantly different OCplx and
tubs under similar-class combination based on the two properties and
xplain these differences.

Table 10 presents the programs for which the generated CITOs
re affected by similar-class combination. The upward arrows between
arentheses indicate that a approach obtained better results than the
riginal version, whereas the downward arrows indicate lower OCplx
r Stubs. The results show that similar-class combination based on a
tricter property, that is, SC, not only did not affect the performance of
he cycle-breaking techniques but also helped to reduce the stubbing
ost for some programs (such as notepad__spl and MyBatis), which is

consistent with the explanation given in Section 3.1. Although the

Information and Software Technology 129 (2021) 106438M. Zhang et al.
Fig. 8. Cycles containing class dependency 20→19.

OCplx values for the programs GPL__spl and JHotDraw increased slightly
for the three approaches when similar-class combination based on ICD
was applied, this drawback disappeared when SCs were combined.
This result can be ascribed to the distinct coupling values of these
class dependencies for similar-class combination. For example, three
classes (35, 36, and 38) in GPL__spl form four class dependencies:
35→36 and 38→36 (attribute coupling = 2, method coupling = 2,
stubbing complexity = 0.072), 36→35 (attribute coupling = 0, method
coupling = 3, stubbing complexity = 0.092) and 36→38 (attribute
coupling = 0, method coupling = 2, stubbing complexity = 0.061).
These class dependencies are involved in two cycles: (1) 35→36→35
and (2) 38→36→38. Classes 35 and 38 have ICD based on Proposition 1
rather than are SCs based on Proposition 2 because class dependency
36→35 and 36→38 have different coupling values. If classes 35 and
38 were combined, only one cycle existed. In the case of the NC
approach, such combination of classes did not influence the final result
because all class dependencies had the same number of cycles as before.
While for the other three approaches, class dependencies 35→36 and
38→36 were removed due to lower stubbing complexity than that of
class dependencies 36→35 and 36→38. However, the optimal choice
was removing class dependencies 35→36 and 36→38, which can be
obtained when these two classes were not combined. The same reason
is true for the program JHotDraw.

For notepad__spl, both NC and the proposed approach achieved fewer
OCplx and Stubs with similar-class combination based on ICD and
SC. The class dependency involved in the greatest number of cycles
was removed by NC, but this abundance of cycles can be reduced
by the similar classes identified by ICD and SC. For example, the
class dependency 20→19 (stubbing complexity = 0.713) involved in
30 cycles was removed by NC in a certain stage of its execution, as
shown in Fig. 8. Both ICD and SC identified 29 similar classes in
these cycles, which were highlighted in gray background. We regarded
these 29 classes holistically, and constructed a new class dependency
19→25 (stubbing complexity = 0.019 × 29 = 0.551) to represent all
dependencies from class 19 towards these similar classes. After similar-
class combination, class dependency 19→25 was involved in seven
cycles (the actual number of cycles should be 29 × 7 = 203), which
was the greatest number of cycles. While the class dependency 20→19
was involved in only two cycles. Hence, NC-ICD and NC-SC removed
class dependency 19→25 rather than 20→19, breaking 173 more cycles
with 0.162 less stubbing complexity.

The proposed approach yielded fewer OCplx and Stubs for the
reduced program notepad__spl because of the removal of an extra class
dependency 18→19 from the original program. As we observed in the
case of RQ2, CWR significantly outperformed NC and SCplx in terms
of stubbing cost minimization by calculating the cycles–weight ratio,
which considers the two objectives of reducing the total number of test
stubs and minimizing the stubbing cost for each removed dependency.
While this calculation is easy, it is rough, and it may omit a better class
dependency that breaks the same cycles as the initial choice but reduces
the stubbing cost, which is the aim of our cycle-breaking algorithm.
Although the performance of the proposed cycle-breaking algorithm is
superior to that of the existing methods, we cannot guarantee that its
results are the best, and especially for some complex programs contain-
14

ing numerous cycles, it is arduous to search all possible solutions. The
number of cycles is minimized by means of similar-class combination
based on the two proposed properties, which alleviates this issue to
some extent. For example, the reduced program notepad__spl contained
only 30 cycles in Fig. 7, making the problem easier compared with the
original 227 cycles.

Interestingly, for MyBatis, both SCplx-ICD and SCplx-SC reduced
OCplx and Stubs compared with their original versions. SCplx removed
more class dependencies without similar-class combination. For ex-
ample, four similar classes 182, 186, 192, and 193 are identified by
ICD and SC. Class dependencies 51→ 182, 51 → 186, 51 →192, and
51→193 were removed first by SCplx due to relatively lower stubbing
complexity (the values are all 0.011). However, despite this, it was
unable to break all of the cycles in the program, thus necessitating the
removal of more class dependencies with higher stubbing complexity.
The latter removed class dependencies can also break the same cycles
where the first four class dependencies are involved, which can render
the stubbing efforts redundant. Moreover, these latter removed class
dependencies cannot be considered first due to their higher stubbing
complexities. If we regard these similar classes holistically and combine
their class dependencies, the stubbing complexity of the newly gener-
ated class dependency is 0.044 (4 × 0.011), and this class dependency
will not be selected by SCplx. Therefore, SCplx-ICD and SCplx-SC can
avoid the construction of extra test stubs.

Overall, similar-class combination can minimize the number of
classes (as well as class dependencies) without degrading the perfor-
mance of the cycle-breaking techniques in terms of minimizing the
stubbing cost for most programs. Similar-class combination based on
ICD increases the stubbing cost for GPL__spl and JHotDraw due to
the lack of constraints on the coupling values of the class depen-
dencies, which we addressed by combining SCs. Moreover, similar-
class combination can alleviate the drawbacks of the competitor ap-
proaches in some cases to devise better CITOs with lower stubbing
costs. For the proposed approach, it would be easier to find a satis-
factory cycle-breaking solution among the fewer cycles obtained by
combining SCs.

4.5. Threats to validity

Although the experimental results demonstrate the effectiveness of
the proposed approach, some potential threats to the validity of the
proposed approach and experiments remain.

Internal validity. In ANS algorithm, a class dependency that is
involved in the greatest number of cycles is set as an initialization. The
underlying rationale is to accelerate the processing of the algorithm for
complex and large cycles. However, the performance of the algorithm
may be affected by the initialization, as in the case of MyBatis. There-
fore, in our subsequent work, we aim to study its detailed effects on
performance and explore a better choice for initialization.

Class dependencies of programs are obtained by Soot based on their
binary files. Several dynamic class dependencies are neglected because
they are formed only when the programs are executed. Depth-first
search is adopted to identify cycles in each strongly connected com-
ponent, but it is difficult to verify these cycles one by one. Therefore,
the dependencies among classes and the number of cycles that each
class dependency is involved in may not be adequate. Fortunately, this
problem has little effect on the comparison between our approach and
its competitors because all of the required information is identical for
each method.

External validity. Because the three typical cycle-breaking strate-
gies considered herein are not publicly available, we implemented them
according to the algorithms provided by Briand et al. [7], Hashim
et al. [11], and Abdurazik et al. [14], but made a few minor changes.
To emulate the number of cycles in which each class dependency is
involved, the algorithm of Briand et al. [7] calculates the product
of in-degree of source class and out-degree of target class, while in

our experiments, NC directly counts the number of cycles for each

Information and Software Technology 129 (2021) 106438M. Zhang et al.
class dependency. To measure the stubbing cost of the test stubs for
each class, the algorithm of Hashim et al. [11] counts the number
of use relationships from a certain class to other classes. A smaller
number of use relationships represents a more independent class, and
correspondingly, the test stubs for such classes are easy to construct.
Such measurement of stubbing costs is rough and cannot describe the
intentions of different class dependencies. For example, creating a test
stub for a class dependency that involves multiple method invocations
is much more difficult than that for a class dependency that contains
only one method invocation. The algorithm of Abdurazik et al. [14]
regards the number of parameters and return value types as two dif-
ferent coupling values, but we combine them into attribute coupling in
this paper, as described in Section 2.1. Because our experiments mainly
focused on different types of cycle-breaking strategies, both SCplx and
CWR adopted stubbing complexity, which is the most popular measure.

Our approach was evaluated by applying it to nine Java programs.
However, the generalizability of the experimental results to all pro-
grams needs further exploration, especially for programs written in
other languages. We intend to apply the proposed approach to more
programs in the future.

5. Related work

Integration testing is an important part of software testing.
Grechanik et al. [20] proposed a novel approach to reduce the number
of synthesized integration tests by analyzing the interaction among
software components. Tahvili [21] proposed multiple criteria for the
approach for test execution optimization in integration testing. CITO
generation is an important aspect of integration testing. The existing
CITO generation approaches can be divided into graph-based and
search-based approaches [6].

Kung et al. [22,23] first proposed a graph-based method to mini-
mize the number of required test stubs. Based on Kung et al.’s work,
Tai and Daniels [1] proposed a two-level strategy that assigns a major
test order to each class only when considering strongly connected
relationships (such as inheritance and aggregations) and determines a
minor test order for the classes at the same major test level. Le Traon
et al. [24] extracted frond edges from each strongly connected compo-
nent and removed all of the incoming edges of the node with the max-
imal number of incoming or outgoing fronds. Differently, Hewett [25]
adopted an incremental strategy by including appropriate class candi-
dates into the test order one by one.

Hanh [15] proposed a graph-based method called Triskell that
determines class test orders by considering both stub minimization
and testing resource allocation. Malloy [26] identified six types of
edges in the ORD constructed for C++ programs and assigned different
weights to different types of edges to estimate the stubbing costs for
such edges. Abdurazik and Offutt [14] proposed nine types of coupling
between classes and calculated the stubbing complexity as the weight
for each edge. They removed the edge with the maximal cycles–weight
ratio by considering both the number of test stubs and their stubbing
costs. Bansal [13] combined the above two approaches, introduced
new dependencies that were omitted by Malloy, and adopted the
cycles–weight ratio to remove edges.

Briand et al. [10] first proposed the search-based method. Borner
et al. [27] adopted the simulated annealing algorithm [28] to gen-
erate class test orders and selected error-prone class dependencies
as the test focus. Multi-objective optimization algorithms were in-
troduced by Vergilio et al. [16] and Assunção et al. [6], such as
the ant colony algorithm [29–31] and nondominated sorting genetic
algorithm-II [32,33], in attempts to find Pareto-optimal [34] solutions.
Guizzo et al. [35,36] introduced a hyper-heuristic [37,38] to choose
evolutionary operators that search for class test orders based on their
historical performances. Mariani et al. [39] improved Guizzo et al.’s
approach [35] by adopting grammatical evolution [40,41] to auto-
matically generate multi-objective evolutionary algorithms. Czibula
15
et al. [42] used reinforcement learning [43,44] to search for a CITO
with a minimal number of test stubs. These multi-objective optimiza-
tion algorithms aim to achieve a good tradeoff between the number of
emulated attributes and methods, which is different from the proposed
algorithm that aims to minimize the overall stubbing complexity.

The existing approaches are unable to devise satisfactory class test
orders because they do not fully consider these two factors, namely
the number of test stubs and the corresponding stubbing complexity,
in determining the overall stubbing cost. In contrast, the proposed
approach addresses this problem and performs better.

6. Conclusion

The existing CITO generation approaches usually require consid-
erable amounts of time to generate a sub-optimal test order for real
applications with a moderately large number of classes. We assume
that similar-class combination reduces the problem space for CITO
generation. Therefore, for the proposed approach, we devised two
novel properties – ICD and SC – to identify similar classes involved
in the same cycles or having equal test orders. Two propositions were
presented to prove the effectiveness of similar-class combination in
reducing the problem space for CITO generation. In addition, a cycle-
breaking algorithm was proposed to remove the class dependencies in
programs by fully considering the two factors that impact the overall
stubbing cost, namely the distinct number of test stubs and the corre-
sponding stubbing complexities. A CITO is determined when no cycles
exist in the program.

Experiments were conducted to evaluate the performance of the
proposed approach against that of three typical cycle-breaking methods
(NC, SCplx, and CWR) by applying them to nine Java programs. The ex-
perimental results indicated that the proposed approach outperformed
the conventional methods on six of the nine programs (up to 13.09%
reduction in OCplx), and on the remaining programs, it achieved stub-
bing costs comparable to those achieved by the conventional methods.
The combination of similar classes minimized the number of cycles and
classes for eight of the nine programs, which reduced the problem space
for the existing methods without degrading their performance in terms
of minimizing the stubbing cost.

In this paper, we only identified similar classes that are involved
in the same cycles or have equal test priority. However, negative
associations exist in different classes when class 𝐴 is tested and class
𝐵 should not be tested simultaneously. To further reduce the problem
space, in the future, we will investigate other types of relationships that
can describe these negative associations between different classes.

Acknowledgments

This work is supported in part by the General Research Fund
of the Research Grants Council of Hong Kong (No. 11208017) and
the research funds of City University of Hong Kong (7005028 and
7005217), and the Research Support Fund by Intel (9220097), and
funding supports from other industry partners (9678149, 9440227,
9440180, 9220103 and 9229029). This project is also supported by
the National Research Foundation, Singapore and National University
of Singapore through its National Satellite of Excellence in Trustwor-
thy Software Systems (NSOE-TSS) office under the Trustworthy Soft-
ware Systems - Core Technologies Grant (TSSCTG) award no. NSOE-
TSS2019-05.

References

[1] K.C. Tai, F.J. Daniels, Test order for inter-class integration testing of Object-
Oriented software, in: Proceedings of the 21st Annual International Computer
Software and Applications Conference (COMPSAC’97), 1997, pp. 602–607.

[2] H. Melton, E. Tempero, An empirical study of cycles among classes in Java,
Empir. Softw. Eng. 12 (4) (2007) 389–415.

[3] Mockito, 2016, http://site.mockito.org. Online, Accessed 3 Feb.

http://refhub.elsevier.com/S0950-5849(20)30191-9/sb2
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb2
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb2
http://site.mockito.org

Information and Software Technology 129 (2021) 106438M. Zhang et al.
[4] Junit5, 2017, https://junit.org/junit5. Online, Accessed Sep.
[5] B. Beizer, Software Testing Techniques, second ed., Van Nostrand Reinhold, New

York, 1990.
[6] W.K.G. Assunção, T.E. Colanzi, S.R. Vergilio, A. Pozo, A multi-objective opti-

mization approach for the integration and test order problem, Inform. Sci. 267
(2014) 119–139.

[7] L.C. Briand, Y. Labiche, Y. Wang, An investigation of graph-based class
integration test order strategies, IEEE Trans. Softw. Eng. 29 (7) (2003) 594–607.

[8] E.L. Lloyd, M.L. Soffa, C.-C. Wang, On locating minimum feedback vertex sets,
J. Comput. System Sci. 37 (1988) 292–311.

[9] T. Orenstein, Z. Kohavi, I. Pomeranz, An optimal algorithm for cycle breaking
in directed graphs, J. Electron. Test. 7.1-2 (4) (1995) 71–81.

[10] L.C. Briand, J. Feng, Y. Labiche, Experimenting with genetic algorithms to devise
optimal integration test orders, in: T.M. Khoshgoftaar (Ed.), Software Engineering
with Computational Intelligence, Tech. Rep. TR SCE-02-03, Carleton University,
Springer US, Boston, MA, 2003, pp. 204–234.

[11] N.L. Hashim, H.W. Schmidt, S. Ramakrishnan, Test order for class-based inte-
gration testing of Java applications, in: Proceedings of the 5th International
Conference on Quality Software (QSIC’05), 2005, pp. 11–18.

[12] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, second
ed., Springer, 2009.

[13] P. Bansal, S. Sabharwal, P. Sidhu, An investigation of strategies for finding test
order during Integration testing of Object-Oriented applications, in: Proceedings
of International Conference on Methods and Models in Computer Science
(ICM2CS), 2009, pp. 1–8.

[14] A. Abdurazik, J. Offutt, Using coupling-based weights for the class integration
and test order problem, Comput. J. 52 (2009) 557–570.

[15] V.L. Hanh, K. Akif, Y. Le Traon, J.-M. Jézéque, Selecting an efficient OO
integration testing strategy: An experimental comparison of actual strategies, in:
Proceedings of the 15th European Conference on Object-ORiented Programming,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2001, pp. 381–401.

[16] S.R. Vergilio, A. Pozo, J.C.G. Árias, R. da Veiga Cabral, T. Nobre, Multi-objective
optimization algorithms applied to the class integration and test order problem,
Int. J. Softw. Tools Technol. Transf. 14 (2012) 461–475.

[17] R. Tarjan, Depth-first search and linear graph algorithms, in: Proceedings of
the 12th Annual Symposium on Switching and Automata Theory (SWAT 1971),
1971, pp. 114–121.

[18] M. Črepinšek, S.-H. Liu, M. Mernik, Exploration and exploitation in evolutionary
algorithms: A survey, ACM Comput. Surv. 45 (3) (2013) 1–33.

[19] J.L. Devore, Probability and Statistics for Engineering and the Sciences, fifth ed.,
Duxbury Press, 1999.

[20] M. Grechanik, G. Devanla, Generating integration tests automatically using
frequent patterns of method execution sequences, in: SEKE, 2019, pp. 209–280.

[21] S. Tahvili, Multi-Criteria Optimization of System Integration Testing, Mälardalen
University College, Västerås, Eskilstuna, Sweden, GRIN Verlag, 2019.

[22] D.C. Kung, J. Gao, P. Hsia, J. Lin, Y. Toyoshima, Class firewall, test order, and
regression testing of Object-Oriented programs, J. Object-Oriented Program. 8
(1995) 51–65.

[23] D.C. Kung, J. Gao, P. Hsia, Y. Toyoshima, C. Chen, On regression testing of
Object-Oriented programs, J. Syst. Softw. 32 (1) (1996) 21–40.

[24] Y. Le Traon, T. Jéron, J. Jézéquel, P. Morel, Efficient Object-Oriented integration
and regression testing, IEEE Trans. Reliab. 49 (1) (2000) 12–25.

[25] R. Hewett, P. Kijsanayothin, Automated test order generation for software com-
ponent integration testing, in: Proceedings of the 24th IEEE/ACM International
Conference on Automated Software Engineering (ASE’09), 2009, pp. 211–220.

[26] B.A. Malloy, P.J. Clarke, E.L. Lloyd, A parameterized cost model to order
classes for class-based testing of C++ applications, in: Proceedings of the 14th
International Symposium on Software Reliability Engineering (ISSRE’03), 2003,
pp. 353–364.
16
[27] L. Borner, B. Paech, Integration test order strategies to consider test focus and
simulation effort, in: Proceedings of the 1st International Conference on Advances
in System Testing and Validation Lifecycle, 2009, pp. 80–85.

[28] R.E. Burkard, F. Rendl, A thermodynamically motivated simulation procedure
for combinatorial optimization problems, European J. Oper. Res. 17 (2) (1984)
169–174.

[29] K. Doerner, W.J. Gutjahr, R.F. Hartl, C. Strauss, C. Stummer, Pareto ant colony
optimization: A metaheuristic approach to multiobjective portfolio selection,
Ann. Oper. Res. 131 (1) (2004) 79–99.

[30] M. Dorigo, K. Socha, An Introduction to Ant Colony Optimization, Vol. 194,
Computer Science Technical Report No. TR/IRIDIA/2006-010, Universit de Libre
de Bruxelles, CP, 2006.

[31] R. da Veiga Cabral, A. Pozo, S.R. Vergilio, A pareto ant colony algorithm applied
to the class integration and test order problem, in: Proceedings of the 22nd
IFIP WG 6.1 International Conference on Testing Software and Systems, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 16–29.

[32] K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A fast elitist non-dominated sorting
genetic algorithm for multi-objective optimization: NSGA-II, in: Proceedings
of the 6th International Conference on Parallel Problem Solving from Nature
(PPSN’00), Springer Berlin Heidelberg, Berlin, Heidelberg, 2000, pp. 849–858.

[33] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multi-objective
genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182–197.

[34] V. Pareto, Manuel D’Économie Politique, Ams Press, Paris, 1927.
[35] G. Guizzo, G.M. Fritsche, S.R. Vergilio, A.T.R. Pozo, A hyper-heuristic for the

multi-objective integration and test order problem, in: Proceedings of the 2015
Annual Conference on Genetic and Evolutionary Computation, in: (GECCO ’15),
ACM, New York, NY, USA, 2015, pp. 1343–1350.

[36] G. Guizzo, M. Bazargani, M. Paixao, J.H. Drake, A hyper-heuristic for multi-
objective integration and test ordering in Google Guava, in: Proceedings of the
2017 International Symposium on Search Based Software Engineering (SSBSE
2017), Springer International Publishing, Cham, 2017, pp. 168–174.

[37] M. Harman, E.K. Burke, J. Clark, X. Yao, Dynamic adaptive search based software
engineering, in: Proceedings of the 2012 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM’12), ACM, New York,
NY, USA, 2012, pp. 1–8.

[38] E.K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, R. Qu, A Survey
of Hyper-Heuristics, Computer Science Technical Report No. NOTTCS-TR-SUB-
0906241418-2747, School of Computer Science and Information Technology,
University of Nottingham, 2009.

[39] T. Mariani, G. Guizzo, S.R. Vergilio, A.T.R. Pozo, Grammatical evolution for the
multi-objective integration and test order problem, in: Proceedings of the 2016
Genetic and Evolutionary Computation Conference, in: (GECCO ’16), ACM, New
York, NY, USA, 2016, pp. 1069–1076.

[40] C. Ryan, J.J. Collins, M.O. Neill, Grammatical evolution: Evolving programs for
an arbitrary language, in: Proceedings of the 1998 European Conference on
Genetic Programming, Springer, 1998, pp. 83–96.

[41] E.K. Burke, M.R. Hyde, G. Kendall, Grammatical evolution of local search
heuristics, IEEE Trans. Evol. Comput. 16 (3) (2011) 406–417.

[42] G. Czibula, I.G. Czibula, Z. Marian, An effective approach for determining the
class integration test order using reinforcement learning, Appl. Soft Comput. 65
(C) (2018) 517–530.

[43] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, MIT Press,
Cambridge, MA, 2011.

[44] L.J. Lin, Self-improving reactive agents based on reinforcement learning,
planning and teaching, Mach. Learn. 8 (3–4) (1992) 293–321.

https://junit.org/junit5
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb5
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb5
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb5
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb6
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb6
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb6
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb6
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb6
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb7
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb7
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb7
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb8
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb8
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb8
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb9
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb9
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb9
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb10
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb10
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb10
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb10
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb10
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb10
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb10
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb12
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb12
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb12
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb14
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb14
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb14
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb15
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb15
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb15
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb15
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb15
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb15
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb15
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb16
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb16
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb16
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb16
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb16
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb18
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb18
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb18
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb19
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb19
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb19
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb20
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb20
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb20
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb21
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb21
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb21
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb22
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb22
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb22
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb22
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb22
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb23
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb23
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb23
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb24
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb24
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb24
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb28
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb28
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb28
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb28
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb28
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb29
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb29
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb29
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb29
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb29
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb30
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb30
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb30
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb30
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb30
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb31
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb31
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb31
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb31
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb31
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb31
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb31
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb32
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb32
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb32
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb32
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb32
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb32
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb32
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb33
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb33
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb33
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb34
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb35
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb35
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb35
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb35
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb35
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb35
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb35
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb36
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb36
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb36
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb36
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb36
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb36
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb36
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb37
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb37
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb37
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb37
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb37
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb37
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb37
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb38
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb38
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb38
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb38
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb38
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb38
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb38
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb39
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb39
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb39
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb39
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb39
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb39
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb39
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb40
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb40
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb40
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb40
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb40
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb41
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb41
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb41
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb42
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb42
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb42
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb42
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb42
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb43
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb43
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb43
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb44
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb44
http://refhub.elsevier.com/S0950-5849(20)30191-9/sb44

	Evaluating the effects of similar-class combination on class integration test order generation
	Introduction
	Background and motivation
	Background
	Motivation
	Problem representation

	Approach
	Similar-class combination
	Breaking cycles in reduced programs

	Experiments
	Experimental settings and evaluation metrics
	Research questions
	Results and analyses
	Discussion
	Threats to validity

	Related work
	Conclusion
	Acknowledgments
	References

