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ABSTRACT
Trained with a sufficiently large training and testing dataset, Deep
Neural Networks (DNNs) are expected to generalize. However, in-
puts may deviate from the training dataset distribution in real de-
ployments. This is a fundamental issue with using a finite dataset,
which may lead deployed DNNs to mis-predict in production.

Inspired by input-debugging techniques for traditional software
systems, we propose a runtime approach to identify and fix failure-
inducing inputs in deep learning systems. Specifically, our ap-
proach targets DNN mis-predictions caused by unexpected (de-
viating and out-of-distribution) runtime inputs. Our approach has
two steps. First, it recognizes and distinguishes deviating (“unseen”
semantically-preserving) and out-of-distribution inputs from in-
distribution inputs. Second, our approach fixes the failure-inducing
inputs by transforming them into inputs from the training set that
have similar semantics. We call this process input reflection and
formulate it as a search problem over the embedding space on the
training set.

We implemented a tool called InputReflector based on the above
two-step approach and evaluated it with experiments on three DNN
models trained on CIFAR-10, MNIST, and FMNIST image datasets.
The results show that InputReflector can effectively distinguish de-
viating inputs that retain semantics of the distribution (e.g., zoomed
images) and out-of-distribution inputs from in-distribution inputs.
InputReflector repairs deviating inputs and achieves 30.78% accu-
racy improvement over original models. We also illustrate how
InputReflector can be used to evaluate tests generated by deep
learning testing tools.
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1 INTRODUCTION
Complex Deep Neural Network (DNN) models are now being in-
tegrated into modern software stacks (e.g., mobile, web, cloud) for
tasks as diverse as object detection [46], image classification [20],
social media [58, 59], and semantic segmentation [36]. As more
software relies on DNNs, existing software engineering (SE) tech-
niques and practices must be updated since, for example, incorrect
software executions may now be caused by the model.

DNNs require that inputs in deployment come from the same
distribution as the training dataset [62, 63]. However, real world
inputs that are semantically similar to a human observer may look
different to themodel. For example, the distribution of data observed
by an onboard camera of a self-driving car may change due to
environmental factors; the images may be brighter or more blurry
than those in the training dataset. Even worse, altogether new and
unexpected inputs may be presented to a deployed model. When
presented with such unexpected inputs, the model may manifest
unexpected behaviors.

To address the issue caused by the failure-inducing inputs, SE
and AI communities have proposed a variety of techniques, includ-
ing delta debugging [28, 38, 65], data augmentation [8, 13, 47, 68],
adversarial training [12, 39, 49, 50], and adversarial sample defense
techniques [24, 47, 57, 60, 66].

SE researchers have proposed delta debugging techniques to
locate and recover from inputs that cause failure. For example,
Kirschner et al. [28] proposed an input-debugging technique to
deal with failure-inducing inputs in data files like HTML. Never-
theless, techniques on sequential data cannot be easily adapted to
image inputs of a conventional deep learning model. By contrast,
AI/ML researchers have proposed offline retraining techniques that
increase the range of the training dataset so that the trained model
can better generalize. However, in the meantime, this generaliza-
tion is constrained by the model architecture and the finite training
dataset. And, real-world inputs in deployment can have unexpected
variations that are difficult to capture through data augmentation
during training.

In this work, inspired by delta debugging, we investigate whether
failure-inducing image inputs in deep learning models can be identi-
fied and fixed without retraining the model. Driven by this question,
we propose an input-reflection technique, InputReflector, which (1)
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Figure 1: Input Reflection examples.

identifies the failure-inducing input, and (2) fixes the input so that
the model makes a correct prediction.

Figure 1 presents two examples where the input reflection pro-
cess corrects the classification of a brightened digit “7” and a blurry
“dress”. The digit “7” presents a different handwriting style (e.g.,
with thicker strokes than those in the training data), causing the
model to mis-predict it as a “1”. Our reflection approach, without
learning any handwriting style, can reflect this input into a digit “7”
from the training dataset to mitigate the mis-prediction. Similarly,
the right side of Figure 1 shows a blurry “dress” input. The DNN
model incorrectly classifies this input as a “pullover”. By contrast,
the reflected version is correctly classified as a “dress”. Both ex-
amples illustrate how input reflection can help DNNs deal with
unexpected deviating inputs in production.

We use representative and differentiable input transformation
types (e.g., blur), to learn auxiliary models. These models tell us
how much an input deviates from normal training samples. Rep-
resentativeness ensures that these auxiliary models generalize to
unseen inputs, while differentiability ensures that the auxiliary
models properly measure the distance between an unseen input
and a known training sample. In contrast to data augmentation, our
use of auxiliary models separates out the concern of model fitting
from model generalization, which improves model maintainability.

In this work we make the first attempt to reflect inputs by over-
coming the above challenges in the context of computer vision
models. We build one auxiliary model as a Siamese model [2] to
learn a measurement to discriminate the in-distribution, deviat-
ing, and out-of-distribution inputs. In-distribution inputs are fed
to the subject model for prediction as usual. Out-of-distribution
inputs raise a warning for follow-up human intervention. As for
the deviating inputs, we train a Quadruplet network [5] for the
auxiliary model and use it to map a deviating input to its similar
known training input. Our results show that InputReflector can ef-
fectively distinguish deviating and out-of-distribution inputs from
in-distribution ones and fix failure-inducing (i.e., deviating) inputs
without sacrificing accuracy on in-distribution inputs.

We believe that the approach in InputReflector is a broadly useful
building block in SE forML. To demonstrate this, we use InputReflec-
tor to evaluate the quality of tests generated by deep learning test-
case generation tools (RobOT [56], ADAPT [33], DeepXplore [43],
and DLFuzz [17]).

In summary, we make the following contributions:
• We propose a novel technique to improve DNN general-
ization by focusing on DNN inputs and treating the DNN
as a black-box in production. Our technique contributes
(1) a general discriminative measurement to distinguish in-
distribution, deviating, and out-of-distribution inputs; and
(2) a search method to reflect an unexpected deviating input
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Figure 2: An example of using triplet loss to discriminate the
positive and negative samples via an anchor.

into one that has similar semantics and is present in the
training set.

• We implemented a tool called InputReflector based on the
above approach, and evaluate it on three DNN models (Con-
vNet, VGG-16, and ResNet-20) trained on the CIFAR-10,
MNIST, and FMNIST datasets. Our experimental results show
that our tool InputReflector recognizes 75.53% of the unex-
pected deviating inputs and achieves 30.78% higher accuracy
after "reflection". Our implementation is publicly accessible
on GitHub1.

• We empirically demonstrate that InputReflector can effec-
tively evaluate test cases generated by four deep learning
testing tools.

2 BACKGROUND
In this section we review Siamese networks and triplet loss, which
are key to our solution. Siamese networks are used to learn repre-
sentative embeddings of the input, based on which the triplet loss
is used to discriminate positive and negative examples.

2.1 Siamese Network
Bromley et al.[2] introduced the idea of a Siamese network to quan-
tify the similarity between two images. Their Siamese network
quantifies the similarity between handwriting signatures. Typically,
a Siamese network transforms the inputs x into a feature space
z = f (x), where similar inputs have a shorter distance and dissimi-
lar inputs have larger distance. Given a pair of inputs x1 and x2, we
use the Euclidean distance to compare f (x1) and f (x2). Siamese
networks [6] have been applied to a wide-range of applications,
like object tracking [34, 67], face recognition [52], and image recog-
nition [29]. In this work, we use Siamese networks to evaluate the
semantic similarity between an input in deployment and samples
in the training dataset.

2.2 Triplet Loss
Triplet loss was first proposed in FaceNet [48]. Given a training
dataset where samples are labeled with classes, the triplet loss is
designed to project the samples into a feature space where sam-
ples under the same class have shorter distance than those under
different classes.

Figure 2 shows an example of triplet loss. Given a sample as
Anchor of class c1, taking a positive sample (annotated as “+”) under
c1 and a negative sample (annotated as “-”) under c2, minimizing the
triplet loss is to pull the positive sample closer while pushing the
negative sample further from the anchor. Technically, the definition

1https://github.com/yanxiao6/InputReflector
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Figure 3: The design of InputReflector in training. Lsiamese
is used in Figure 4.(1) to detect deviating data. And, Lquad is
used in Figure 4.(2) to find a reflected sample.
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Figure 4: The design of InputReflector in deployment. OOD
stands for out-of-distribution data and ID stands for in-
distribution data.

of triplet loss is as follows:

Ltriplet =max(Dis(Anchor , Pos) − Dis(Anchor ,Neд) + α , 0) (1)

In the above, α is the margin, introduced to keep a distance
gap between positive and negative samples. The loss can be opti-
mized if the Siamese network can push Dis(Anchor , Pos) to 0 and
Dis(Anchor ,Neд) to be larger than Dis(Anchor , Pos) + α .

Next, we describe our approach, which uses Siamese networks
and triplet loss to realize input reflection.

3 DESIGN OF INPUTREFLECTOR
Figures 3 and 4 review the training-time and runtime design of Inpu-
tReflector. InputReflector uses information during model training to
inform its runtime strategy. We review how InputReflector acquires
the required information during training later in this section.

At runtime (Figure 4), given an input I and a deployed model M ,
InputReflector follows a two-step approach:

(1) Generate the embeddings of I based on the distribution anal-
yser (1.1) and check how well I conforms to the distribu-
tion of the training dataset by using distance as a proxy
for semantics (1.2). In this step, InputReflector distinguishes
in-distribution, out-of-distribution, and deviating data.

(2) If I is semantically similar to the training samples, then
generate the embeddings of I based on the reflector (2.1) and

IN

OUT

IN In-Distribution

SP Semantic-Preserving Deviations

OUT Out-Of-Distribution

(a)

IN

OUT

SP
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Figure 5: Comparison of problem formulation and thresh-
olds used by (a) previous work, and (b) this paper.

determine which training sample is best used instead of I
for the prediction (2.2).

The key to the above steps is correct characterization of the
semantics of an input. For this, we rely on sample distribution and
design a Distribution Analyzer (Section 3.1). This piece of our
approach is inspired by prior research [27, 45] that indicates that the
distribution of embedding vectors can be used to group semantically
similar data (e.g., images of the same class). InputReflector uses the
embedding distribution to check the semantic similarity between
the test instance and the training data. For inputs that are classified
by the Distribution Analyzer as deviating samples, we design the
Reflector (Section 3.2) to search for a close training sample to
replace the runtime test instance. Building on previous work [5, 27,
45], our InputReflector design assumes that samples with similar
embedding vectors are semantically similar.

We designed the Distribution Analyzer and Reflector as auxiliary
DNNs, for their inherent expressiveness. The Distribution Analyzer,
implemented as a Siamese network, captures the general landscape
of in-distribution, deviating, and out-of-distribution samples. This
is different from previous studies that only distinguish between
in-distribution and out-of-distribution samples (Figure 5(a)).

The Reflector, implemented as a Quadruplet network, calculates
the detailed distancemeasurement between the samples. The goal of
Siamese network is to push the semantic-preserving deviating input
away from both the in-distribution data and out-of-distribution data
as shown in Figure 5(b) while the quadruplet network’s goal is to
pull instances with the same label closer and push away instances
with different labels (see Figure 6).

Next, we detail the Distribution Analyzer.

3.1 Distribution Analyzer Design
A challenge in building an effective Distribution Analyzer is design-
ing a smooth measure for samples that are semantically the same,
similar, and dissimilar. Specifically, we need to design the auxiliary
model so that samples can be projected into a space where there is
such smoothness between the three categories.

To address this challenge, we require the auxiliary model to
learn the smooth measurement from in-distribution, deviating, and
out-of-distribution samples as shown in Figure 5(b). For this, let an
in-distribution sample be x , a sample in the training data (Xt ) be
xt , Kin be the distance between x and its most different semantic-
preserving (deviating) sample, and Kout be the distance between x
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Figure 6: Illustration of learning with a quadruplet network:
(a) before learning, and (b) after learning. After loss update,
the distance between the anchor and a positive sample dap
decreases, while the distances between the anchor and a neg-
ative sample dan and between two different negative sam-
ples dnn increase. dnn is a component in the new constraint
(Section 3.2.1) over triplet loss, which makes the quadruplet
loss more effective.

and its most similar semantic-different (out-of-distribution) sample.
Any deviating sample x ′ should conform to:

Kin < minx t ∈Xt (f (x ′,xt )) < Kout (2)

In this equation, f is a similarity function to calculate the dis-
tance between x ′ and xt . Since it is hard to evaluate their similarity
in high dimension, we design an auxiliary model to learn their
feature embeddings with low dimension. We then define f as the
distance between the embeddings (ebd) of the two instances, for-
mally, f (x ′,xt ) =

ebd(x ′) − ebd(xt )

2.

To train a quality auxiliary model we prepare representative
transformed samples (detailed in subsection 4.1) that preserve the
semantics of the training data. Specifically, our auxiliary models
are trained on three types of data: (1) in-distribution samples (i.e.,
original training data), (2) deviating samples (i.e., representative
transformed data), and (3) one kind of out-of-distribution samples
(i.e., extremely transformed data, discussed in Section 4.1).

Next we discuss how we learning feature embeddings and how
we set Kin and Kout .

3.1.1 Siamese Network Training. Existing work on detecting out-
of-distribution data uses one threshold as in Figure 5(a). By contrast,
the challenge in our work is to find two thresholds,Kin andKout in
Figure 5(b), so that we can discriminate three types of data. Inspired
by the Siamese network with triplet loss, which are used to identify
people across cameras [5, 48], we build a Siamese network to learn
two thresholds (Kin andKout ) so that we can discriminate the three
kinds of data.

To split the three kinds of data, both training data and their avail-
able transformed versions are needed. For example, if we consider
the blur transformation as an example, then the three kinds of data
would be the normal training data x , blurry training data x ′, and
very blurry training data x ′′ (Figure 7).

Our goal is to learn feature embeddings from the training dataset
that push the semantic-preserving deviating input away from both
the in-distribution data and out-of-distribution data. Specifically,
the Siamese network in the distribution analyzer is designed to
make the distance between the very blurry training data and the
normal data larger than the distance between the blurry training
data and the normal data. Formally, the aim of the Siamese network

Losses with small 
and large margins

Losses with large 
margin Loss

TransformedOriginal Extremely
Transformed

+

EmbeddingEmbeddingEmbedding

Feature Extraction Feature Extraction Feature Extraction

Figure 7: The architecture of the Siamese network used dur-
ing the training phase.

is to learn f so that f (xci ,xc j ) + Kin < f (xci ,x
′

c ) < f (xci ,xc j ) +

Kout < f (xci ,x
′′

c ). The loss function of this network is designed to
minimize the objective:

L =max(f (xci ,xc j ) − f (xci ,x
′

c ) +m1, 0)+

max(f (xci ,x
′

c ) − f (xci ,xc j ) −m2, 0)+

max(f (xci ,xc j ) − f (xci ,x
′′

c ) +m2, 0)

(3)

wherem1 andm2 are the values of margins andm1 < m2 whose
default values are 0.5 and 1.0 respectively, xci , xc j , and xc denote
instances with the same label c , but i , j which means that xci and
xc j are different instances.

This loss function consists of three components. Minimizing
the first and the last max components pushes both transformed
versions of the training data away from the in-distribution data but
keep the extremely transformed version further away using a larger
marginm2. After training, the goal of f (xci ,xc j )+Kin < f (xci ,x

′

c )

and f (xci ,xc j ) + Kout < f (xci ,x
′′

c ) can be reached. The middle
max component is designed to distinguish transformed (x ′) and
extremely transformed data (x ′′).

Note that the distance between in-distribution data with a large
marginm2, f (xci ,xc j ) +m2, can serve as a smaller upper bound
of the distance between transformed data and in-distribution data.
Hence, we use f (xci ,xc j ) +m2 instead of f (xci ,x

′′

c ) in the middle
component of Eq. (3)

Figure 7 shows the architecture of our Siamese network. Three
kinds ofdata (original training data, transformed training data, and
extremely transformed training data from available transforma-
tions) are given to the three models that share weights with each
other. During training, the DNN classifierM learns to extract mean-
ingful and complex features in feature extraction layers before these
are fed to the classification layers. To benefit from these rich repre-
sentations of feature extraction layers, the Siamese network builds
onM to pass these features (feature extraction in Figure 7) through
a succession of dense layers. The outputs of the final dense layer
are embeddings that we use to minimize the loss function in Eq. (3).

3.1.2 Distribution Discrimination. We designed the distribution
analyzer to distinguish between the three kinds of data. In the
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training module, the embeddings of the original training data and
validation data are generated from the trained Siamese network.
For each validation sample, its embedding is used to search for
the closest element from the training data by the distance measure
f . Kin and Kout are selected from the distances of embeddings
between validation and training data. In deployment, given a test
instance x , the minimum distance between its embedding and those
of the training data will be a discriminator to determine its category:


In-distribution data minxt ∈Xt (f (x ,xt )) < Kin
Out-of-distribution data minxt ∈Xt (f (x ,xt )) > Kout
Deviating data otherwise

(4)

Note that unlike other enhanced classifier approaches [54, 63],
InputReflector understands potential model prediction risks and
can be made to discard runtime test instances that are unsuitable for
model prediction (the Out-of-Distribution Alarm in Figure 4).

3.2 Reflector Design
When the distribution analyzer recognizes an input instance as a
deviation from the in-distribution data, the reflector will map this
input to the closest sample in the training data. Reflector’s design
relies on separation of concern [44]: we let the subject model focus
on fitting while tasking the auxiliary models with generalizability
learning.

3.2.1 Quadruplet Network Training. Inspired by Chen et al. [5]
who built a deep quadruplet network for person re-identification,
we construct a quadruplet network using parts of the subject DNN
classifier M . As illustrated in Figure 3 and Figure 6, the goal of
the Quadruplet network is to learn the feature embeddings so that
instances of intra-class will be clustered together but those of inter-
class will be further away. As a result, when an unexpected deviat-
ing instance is presented, its embedding can be used to search for
the closest samples from the training data, and these can be used
as a proxy for identifying the input class.

Although the Quadruplet network construction is similar to
the Siamese network, they have different goals. The quadruplet
network’s aim is to pull instances with the same label closer and
push away instances with different labels (Figure 6). The Siamese
network’s goal is to push the deviating input away from both the
in-distribution data and out-of-distribution data.

Algorithm 1 lists the details of our Quadruplet network construc-
tion and how we use it in deployment. The Quadruplet network
consists of the feature extraction layers of the target DNN classifier
M (line 2) and a succession of dense layers (lines 2-4), which are
trained by the quadruplet loss.

It introduces a new constraint on top of the triplet loss, which
pushes away negative pairs from positive pairs w.r.t different anchor
images [22].

We use (lossan+lossnn ) as the Quadruplet network loss. The first
part, lossan , is the traditional triplet loss that is the main constraint.
After convergence, the maximum intra-class distance (e.g., dap in
Figure 6) is required to be smaller than the minimum inter-class
distance (e.g., dan ) with respect to the same anchor.

The second part, lossnn , is auxiliary to the first loss and conforms
to the structure of traditional triplet loss but has different triplets. Its

Algorithm 1: Quadruplet Network Training and Inference
Input: Target DNN classifier: M ;
Input instances in Dtrain: Xt , true labels in Dtrain: Yt ;
Deviating test instances: Xd

Output: [Training] Trained Quadruplet network;
Output: [Inference] Alternative predictions of Xd

1 # Training
2 base_model = M .дet_layer (“cnn”).output ;
3 Add several dense layers after base_model as embeddings

embed ;
4 model = Model (base_model .input, embed );
5 model .compile(optimizer, Quadruplet_loss);
6 model .f it (Xt , Yt );
7 # Inference
8 embed t =model .predict (Xt );
9 for x in Xd do
10 embed (x ) =model .predict (x );
11 idxT = arдmin(dist (embed (x ), embed t ));
12 predict ionnew = YT [idxT ];
13 end

aim is to make the maximum intra-class distance (e.g., dap ) smaller
than the minimum inter-class distance regardless of whether pairs
contain the same anchor (e.g., dnn ). We use two different margins
(m1 > m2) to balance the two constraints.

The primary challenge in constructing the Quadruplet network
is how to sample the quadruplet from the training data. Due to
space constraints, the reader can find the technical details in the
GitHub repository2. The sample mining process of the Siamese
network in Section 3.1 also uses the same process.

As discussed in [5], (lossan + lossnn ) leads to a larger inter-class
variation and a smaller intra-class variation as compared to the
triplet loss. And, as we will show in the evaluation (Section 4),
this loss combination improves generalization. The benefit of this
arrangement is that the Quadruplet network can be used to help
generalize the subject classifierM to unexpected deviations from
in-distribution data.

3.2.2 Input Reflector for unexpected deviating instances. Lines 8-13
in Algorithm 1 list the procedure for the reflector using the trained
Quadruplet network in deployment. Given an instance x that is
classified as deviating by the distribution analyzer, the reflector first
obtains its feature embedding learned by the Quadruplet network
(line 10).

Next, the distance between embed(x) and those embeddings of
the training data generated in the training module (line 8) are
calculated so that the minimum distance can be found.

Finally, the deviating test instance x is reflected to the specific
training instance with the minimum distance. The label of this
training instance becomes the alternative prediction for x (lines
11-12).

Now that we have detailed InputReflector’s design, we evaluate
its performance on different datasets and DL models.

4 EVALUATION
Our evaluation aims to answer the following research questions:
2https://github.com/yanxiao6/InputReflector
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RQ1. How effective is the distribution analyzer in distin-
guishing three types of data? To evaluate the distribution an-
alyzer, we compare its area under the receiver operating charac-
teristic curve (AUROC) with two related techniques: Generalized
ODIN (G-ODIN) [23] and SelfChecker [63]. Specifically, we evalu-
ate the accuracy of the distribution analyzer on detecting out-of-
distribution and deviating data. Since the authors of G-ODIN did
not release the code nor hyperparameter values, we implemented
G-ODIN ourselves and used grid search to find the best combina-
tion of hyperparameters on the validation dataset, from which we
obtained close results on the dataset in the G-ODIN paper. As there
are two parts to SelfChecker, alarm and advice, to answer this RQ,
we compare the distribution analyzer with SelfChecker’s alarm
accuracy.

RQ2. What is the accuracy of the reflection process on un-
seen deviating data?We answer this question by comparing the
accuracy of reflector (Section 3.2) in InputReflector against the ac-
curacy of the subject modelM and advice accuracy of SelfChecker
on unseen deviating inputs.

RQ3. What is the performance of InputReflector on the in-
distribution and deviating input in deployment? Since the dis-
tribution analyzer is designed to learn Kin and Kout from available
transformed versions of training data (blur as an available trans-
formation and other transformations as unseen in this work since
blur is the most informative and representative), we compare the
accuracy of InputReflector against the accuracy of original subject
model (M), subject model with data augmentation (M +Auд), and
SelfChecker on both in-distribution inputs and the deviating inputs.

RQ4. What is InputReflector’s performance when training
data includes adversarial examples? Adversarial examples in
training data decrease the accuracy of M . We evaluate how well
InputReflector performs when training data contains adversarial
examples.

RQ5. What InputReflector’s overhead in training and in de-
ployment? To evaluate the efficiency of InputReflector, we calcu-
lated its overall time overhead and compared it against the ones
ofM +Auд and SelfChecker. In the training phase,M +Auд needs
to conduct data generation and extra training. But, we regard the
generation part as having zero cost and only consider the extra
training time. Augmentation also does not have extra time cost in
deployment. For SelfChecker and InputReflector, we measure their
time overheads during training and deployment.

RQ6. How well does InputReflector generalize to unseen
transformations? We first train InputReflector with blur+zoom
inputs. Then, we evaluate InputReflector’s generalizability by
using it to detect and fix inputs transformed with con-
trast/bright/rotate/shear.

4.1 Experimental Setup
We evaluate InputReflector on three popular image datasets (MNI-
ST [31], FMNIST [61], and CIFAR-10 [30]) using three DL models
(ConvNet [26], VGG-16 [51], and ResNet-20 [20]). To reduce vari-
ance due to randomness, we ran each experiment five times and
report the average.

Datasets.We prepare three types of datasets, i.e., in-distribution,
deviating, and out-of-distribution datasets.
(1) In-distribution datasets. In-distribution data conform to the dis-
tribution of the training data. As in prior studies [23, 32, 35], we
regard the testing data of each dataset (i.e., MNIST, FMNIST, and
CIFAR-10) as the in-distribution data.
(2) Deviations from in-distribution datasets. We selected six kinds of
transformations used by the computer vision community [9, 13] to
construct the transformed data of in-distribution testing datasets:
blur, bright, contrast, zoom, rotation, and shear. These operations
transform an image x as follows:
• zoom(x ,d): zoom in x with a zoom degree d in range [1,5).
• blur (x ,d): blur x using Gaussian kernel with degree d in [0,5).
• briдht(x ,d): uniformly add a value for each pixel of x with a
degree d in range [0, 255) and then clip x within [0, 255].

• contrast(x ,d): scale the RGB value of each pixel of x by a degree
d in range (0, 1] and then clip x within [0, 255].

• rotation(x ,d): rotate x by a degree d in range [0, 360).
• shear (x ,d): horizontally shear x with shear factor d in [0, 1)

We search for crash transformation degrees (dcrash ) for each
training and testing image on which the original classifier begins
to mis-predict. The instances with such degrees then serve as the
deviations of in-distribution data. We manually confirmed that each
instance is visually recognizable.
(3) Out-of-distribution datasets. There are two kind of out-of-distri-
bution data: the first one is the same as the existing work — another
dataset which is completely different from the training data. The
second one is the extremely transformed training and testing data
using extreme degrees of the six transformations. Taking the maxi-
mum degree of a transformation (dcrash ), dmax , we construct the
extremely transformed sample from a normal sample by applying
the transformation degree as dmax + dcrash .

Specifically, we use FMNIST, MNIST, SVHN [40] as the first to-
tally different dataset for MNIST, FMNIST, CIFAR-10 respectively.
The extremely transformed data cannot be recognized by both DL
models and humans. We present the performance of the distri-
bution analyzer on both datasets: another dataset and extremely
transformed testing data.
Subject DL models. We use three DL models as our subject mod-
els: ConvNet [26], VGG-16 [51], and ResNet-20 [20]. These are
commonly-used models that range from small to large, with the
number of layers ranging from 9 to 20 [63].
Evaluationmetrics.We adopt two measures to evaluate the distri-
bution analyzer. AUROC plots the true positive rate (TPR) against
the false positive rate (FPR) by varying a threshold, which can
be regarded as an averaged score that can be interpreted as the
model’s ability to discriminate between positive and negative in-
puts. TNR@TPR95 is the true negative rate at 95% true positive
rate, which simulates an application requirement that the recall
should be 95%. Having a high TNR under a high TPR is much more
challenging than having a high AUROC score. We use classical
model accuracy on testing data to evaluate the performance of both
sample selector and InputReflector. We also adopt the Wilcoxon
rank sum test (p-value <.05) to evaluate whether the performance
between InputReflector and baselines are significantly different.
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Table 1: Performance of two methods on detecting out-of-
distribution data.

AUROC TNR@TPR95

ConvNet VGG-16 ResNet-20 ConvNet VGG-16 ResNet-20

G-ODIN/Siamese G-ODIN/Siamese
blur

MT 69.50/69.29 60.88/85.15 78.00/78.38 13.67/50.11 02.00/56.23 45.37/48.25
FT 73.99/69.85 71.51/57.58 74.86/75.50 37.16/50.05 38.26/28.40 27.17/44.98
CF 77.09/79.97 45.28/85.28 73.70/76.51 52.69/55.70 04.44/36.95 40.96/39.94

bright

MT 58.77/73.70 60.23/81.83 89.00/88.11 21.66/49.96 38.30/46.43 57.01/67.57
FT 78.62/84.70 74.14/73.45 73.79/76.82 40.18/59.94 49.54/33.03 33.02/41.62
CF 77.04/95.39 44.77/86.90 77.00/82.71 55.20/79.80 04.34/37.69 46.65/60.06

contrast

MT 58.71/71.73 73.74/83.43 88.38/84.39 20.37/49.90 31.87/48.71 58.90/69.68
FT 74.82/81.98 71.77/70.30 79.33/75.79 38.70/57.32 41.12/31.23 30.39/41.46
CF 72.73/89.78 41.73/82.51 69.22/79.95 50.02/70.45 03.44/32.64 39.19/53.08

zoom

MT 67.43/85.15 66.85/77.19 75.24/82.75 03.97/54.38 03.82/43.96 32.92/56.41
FT 81.28/83.77 70.67/70.10 81.56/83.05 44.66/57.68 33.30/31.66 37.57/51.03
CF 88.25/94.35 47.60/90.11 88.92/91.11 64.49/74.78 05.87/40.93 53.71/56.82

rotation

MT 55.31/74.18 59.15/63.03 71.61/72.35 4.75/19.04 4.99/18.67 15.12/22.18
FT 36.13/76.53 55.62/58.36 79.44/76.77 3.45/44.18 12.04/11.01 8.87/34.09
CF 59.13/73.93 56.38/64.82 53.14/75.73 3.00/16.22 8.36/11.39 10.01/20.08

shear

MT 53.75/90.17 62.33/78.37 57.91/74.29 7.90/68.14 6.70/23.86 19.64/46.70
FT 25.14/86.44 60.77/70.23 71.25/74.27 4.17/51.14 9.89/20.54 11.34/60.84
CF 57.64/67.77 60.89/77.64 61.33/84.75 4.59/26.87 3.69/29.88 7.26/64.12

Mean

MT 60.58/77.37 63.86/78.17 76.69/80.05 12.05/48.59 14.61/39.64 38.16/51.80
FT 61.66/80.55 67.41/66.67 76.71/77.03 28.05/53.39 30.69/25.98 24.73/45.67
CF 71.98/83.53 49.44/81.21 70.55/81.79 38.33/53.97 5.02/31.58 32.96/49.02

MT, FT, and CF stand for MNIST, FMNIST, and CIFAR-10, respectively.

We quantify the difference in performance using effect size (i.e.,
Cliff’s δ ). Following [25], we classify the effect size as negligible (0
< Cliff’s δ < 0.147), small (0.147 < Cliff’s δ < 0.33), medium (0.33 <
Cliff’s δ < 0.474) or large (Cliff’s δ > 0.474).

Runtime Configuration. We conducted all experiments on a
Linux server with Intel i9-10900X (10-core) CPU @ 3.70GHz, one
RTX 2070 SUPER GPU, and 64GB RAM, running Ubuntu 18.04.

4.2 Results and Analyses
We now present results that answer our four research questions.

RQ1. Distribution Analyzer.
We discuss the results on detecting out-of-distribution as well

deviating-distribution data respectively.

Detection of Out-of-distribution Data. Table 1 presents the AUROC
and TNR@TPR95 of the distribution analyzer (Siamese) and Gen-
eralized ODIN (G-ODIN) to detect out-of-distribution data from
in-distribution and deviating data. The out-of-distribution data here
is totally differently data (as is done in existing work [23]) and ex-
tremely transformed data (blur, bright, contrast, zoom, rotation, and
shear). This is why the results in Table 1 are different from previous
work (which focuses on detecting data that is totally differently
from in-distribution data).

Table 1 shows that, Siamese outperforms G-ODIN in most of the
cases except for FMNIST on VGG-16. We can see that both tech-
niques have similar AUROC on FMNIST. Themain reason is that the
Siamese model cannot distinguish well between the deviating data
and out-of-distribution data (MNIST). When FMNIST data is con-
trasted, e.g., trouser, it will be similar to digit "1". For other settings,
Siamese achieves good performance on both different datasets and
extremely transformed data, significantly outperforming G-ODIN.
Overall, Siamese achieves 78.49% AUROC against 66.54% for G-
ODIN. Its performance over G-ODIN has a statistical significance:
p-value < 10E-3, with a large effect size of 0.491.

Detection of Deviating-distribution Data. Table 2 compares the per-
formance of G-ODIN, SelfChecker, and our distribution analyzer
in detecting deviating data from in-distribution data on three DL
models and three datasets with six transformations.

The distribution analyzer (Siamese) significantly outperforms
G-ODIN and SelfChecker (p-value < 10E-5 and 10E-6) with large ef-
fect sizes of 0.633 and 1. Except for CIFAR-10 on ConvNet, Siamese
outperforms G-ODIN. The reason it fails is that ConvNet is too
simple a DNN for CIFAR-10 on which Siamese cannot learn infor-
mative embeddings. But G-ODIN decomposed the softmax score
to distinguish confident inputs from unconfident ones, which is
hardly affected by the model architecture [23].

In all other settings, Siamese achieves both high AUROC (av-
eragely 87.33% against 70.58% of G-ODIN) and TNR@TPR95 (av-
eragely 54.23% against 31.54% of G-ODIN) that is harder to reach.
That means that Siamese can recognize more in-distribution data
with the 95% recall of deviating data, which is important for the
downstream reflection process. Given by the threshold search from
validation dataset, Siamese can correctly detect on average 75.53%
of deviating data. SelfChecker has bad performance since it is con-
strained by the assumption that the testing instance conforms to
the distribution of training dataset. But the deviating testing data
here share similar semantics with the training data but are far away
distribution-wise.

Figure 8 visualizes the separation between three types of data
on MNIST with two labels ("2" and "7"). This is generated from the
learned embeddings from Siamese network and then mapped into
hyperspace by t-SNE [53], which is a dimension-reduction tech-
nique to project high-dimensional data into visible two-dimensional
data.

“2” “7”

In-distribution
Deviating Data
Out-of-distribution 

Class Label

Figure 8: Visualization of the feature embedding learned by
the Siamese network.
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Table 2: Performance of three methods on detecting deviating data.

Deviating
AUROC TNR@TPR95

ConvNet VGG-16 ResNet-20 ConvNet VGG-16 ResNet-20

G-ODIN/SelfChecker/Siamese G-ODIN/Siamese
blur

MNIST 74.62/64.47/99.96 59.14/60.19/99.73 71.01/70.10/99.81 19.21/99.99 06.61/55.37 24.33/93.92
FMNIST 93.61/62.62/99.39 85.90/63.20/96.16 78.72/61.68/94.56 66.43/99.97 47.43/59.52 29.90/57.89
CIFAR-10 90.28/64.44/90.61 52.47/64.91/86.16 82.20/64.86/88.35 47.37/32.41 06.12/21.97 21.27/37.26

bright

MNIST 99.95/61.03/99.99 50.14/57.40/99.61 58.08/66.37/97.48 100.0/99.96 03.47/66.31 06.29/86.96
FMNIST 89.13/67.31/99.84 83.24/67.31/91.94 72.65/71.95/97.58 48.97/88.84 48.30/19.94 22.10/88.12
CIFAR-10 88.86/60.78/75.23 57.69/51.24/73.00 73.95/66.28/82.13 45.95/18.08 06.55/13.23 15.02/26.65

contrast

MNIST 99.93/60.12/99.99 66.79/69.29/99.62 55.13/64.17/97.12 100.0/100.0 04.58/61.18 05.39/84.30
FMNIST 90.82/54.90/99.90 76.06/45.69/95.51 71.76/63.97/97.77 55.98/90.46 26.93/29.09 24.01/88.41
CIFAR-10 93.37/58.14/75.87 63.95/56.07/87.35 85.32/64.15/89.39 64.07/16.24 11.33/29.13 24.64/35.79

zoom

MNIST 83.33/45.87/99.67 68.41/44.76/98.47 88.42/64.15/97.42 30.39/98.91 04.00/71.80 51.83/86.69
FMNIST 80.63/59.24/95.45 65.76/67.02/86.04 63.94/59.88/88.54 32.10/68.60 07.42/33.36 14.55/49.09
CIFAR-10 80.34/49.88/73.46 42.54/45.82/76.82 62.34/60.67/76.42 31.56/15.05 03.79/17.27 13.55/17.20

rotation

MNIST 76.12/51.29/96.62 71.77/53.36/70.16 70.58/61.38/85.99 9.98/83.19 3.31/30.05 56.66/49.80
FMNIST 29.94/40.83/90.96 74.23/47.31/72.21 41.09/50.52/71.93 39.07/55.43 19.54/20.31 18.50/23.09
CIFAR-10 55.65/49.35/55.10 54.48/50.27/60.19 78.88/57.04/72.46 53.41/13.22 44.84/38.88 56.20/54.42

shear

MNIST 65.22/57.46/98.97 66.47/49.84/77.04 73.50/61.59/98.88 14.99/96.19 5.51/38.62 54.50/94.79
FMNIST 26.15/51.28/96.27 75.88/50.17/74.04 42.39/57.31/71.87 25.37/80.87 20.47/23.80 18.88/18.45
CIFAR-10 61.75/45.17/60.73 58.94/46.82/66.69 87.66/60.31/89.21 60.49/22.05 51.06/51.80 78.79/74.60

Mean

MNIST 83.20/56.71/99.20 63.79/55.81/90.77 69.45/64.63/96.12 45.76/96.37 4.58/53.89 33.17/82.74
FMNIST 68.38/56.03/96.97 76.85/56.78/85.98 61.76/60.89/87.04 44.65/80.70 28.35/31.00 21.32/54.18
CIFAR-10 78.38/54.63/71.83 55.01/52.52/75.04 78.39/62.22/82.99 50.48/19.51 20.62/28.71 34.91/40.99

We can see that the three types of data are distant from each
other and that the distance between in-distribution and deviating
data is shorter than the distance between in-distribution and out-
of-distribution data.
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Table 1: Performance of two methods on detecting out-of-
distribution data.

AUROC TNR@TPR95

ConvNet VGG-16 ResNet-20 ConvNet VGG-16 ResNet-20

G-ODIN/Siamese G-ODIN/Siamese

blur

MT 69.50/69.29 60.88/85.15 78.00/78.38 13.67/50.11 02.00/56.23 45.37/48.25
FT 73.99/69.85 71.51/57.58 74.86/75.50 37.16/50.05 38.26/28.40 27.17/44.98
CF 77.09/79.97 45.28/85.28 73.70/76.51 52.69/55.70 04.44/36.95 40.96/39.94

bright

MT 58.77/73.70 60.23/81.83 89.00/88.11 21.66/49.96 38.30/46.43 57.01/67.57
FT 78.62/84.70 74.14/73.45 73.79/76.82 40.18/59.94 49.54/33.03 33.02/41.62
CF 77.04/95.39 44.77/86.90 77.00/82.71 55.20/79.80 04.34/37.69 46.65/60.06

contrast

MT 58.71/71.73 73.74/83.43 88.38/84.39 20.37/49.90 31.87/48.71 58.90/69.68
FT 74.82/81.98 71.77/70.30 79.33/75.79 38.70/57.32 41.12/31.23 30.39/41.46
CF 72.73/89.78 41.73/82.51 69.22/79.95 50.02/70.45 03.44/32.64 39.19/53.08

zoom

MT 67.43/85.15 66.85/77.19 75.24/82.75 03.97/54.38 03.82/43.96 32.92/56.41
FT 81.28/83.77 70.67/70.10 81.56/83.05 44.66/57.68 33.30/31.66 37.57/51.03
CF 88.25/94.35 47.60/90.11 88.92/91.11 64.49/74.78 05.87/40.93 53.71/56.82

rotation

MT 55.31/74.18 59.15/63.03 71.61/72.35 4.75/19.04 4.99/18.67 15.12/22.18
FT 36.13/76.53 55.62/58.36 79.44/76.77 3.45/44.18 12.04/11.01 8.87/34.09
CF 59.13/73.93 56.38/64.82 53.14/75.73 3.00/16.22 8.36/11.39 10.01/20.08

shear

MT 53.75/90.17 62.33/78.37 57.91/74.29 7.90/68.14 6.70/23.86 19.64/46.70
FT 25.14/86.44 60.77/70.23 71.25/74.27 4.17/51.14 9.89/20.54 11.34/60.84
CF 57.64/67.77 60.89/77.64 61.33/84.75 4.59/26.87 3.69/29.88 7.26/64.12

Mean

MT 60.58/77.37 63.86/78.17 76.69/80.05 12.05/48.59 14.61/39.64 38.16/51.80
FT 61.66/80.55 67.41/66.67 76.71/77.03 28.05/53.39 30.69/25.98 24.73/45.67
CF 71.98/83.53 49.44/81.21 70.55/81.79 38.33/53.97 5.02/31.58 32.96/49.02

MT, FT, and CF stand for MNIST, FMNIST, and CIFAR-10, respectively.

Runtime Configuration. We conducted all experiments on a
Linux server with Intel i9-10900X (10-core) CPU @ 3.70GHz, one
RTX 2070 SUPER GPU, and 64GB RAM, running Ubuntu 18.04.

4.2 Results and Analyses
We now present results that answer our four research questions.

RQ1. Distribution Analyzer.
We discuss the results on detecting out-of-distribution as well

deviating-distribution data respectively.

Detection of Out-of-distribution Data. Table 1 presents the AUROC
and TNR@TPR95 of the distribution analyzer (Siamese) and Gen-
eralized ODIN (G-ODIN) to detect out-of-distribution data from
in-distribution and deviating data. The out-of-distribution data here
is totally differently data (as is done in existing work [23]) and ex-
tremely transformed data (blur, bright, contrast, zoom, rotation, and
shear). This is why the results in Table 1 are different from previous
work (which focuses on detecting data that is totally differently
from in-distribution data).

Table 1 shows that, Siamese outperforms G-ODIN in most of the
cases except for FMNIST on VGG-16. We can see that both tech-
niques have similar AUROC on FMNIST. Themain reason is that the
Siamese model cannot distinguish well between the deviating data

and out-of-distribution data (MNIST). When FMNIST data is con-
trasted, e.g., trouser, it will be similar to digit "1". For other settings,
Siamese achieves good performance on both different datasets and
extremely transformed data, significantly outperforming G-ODIN.
Overall, Siamese achieves 78.49% AUROC against 66.54% for G-
ODIN. Its performance over G-ODIN has a statistical significance:
𝑝-value < 10E-3, with a large effect size of 0.491.

Detection of Deviating-distribution Data. Table 2 compares the per-
formance of G-ODIN, SelfChecker, and our distribution analyzer
in detecting deviating data from in-distribution data on three DL
models and three datasets with six transformations.

The distribution analyzer (Siamese) significantly outperforms
G-ODIN and SelfChecker (𝑝-value < 10E-5 and 10E-6) with large ef-
fect sizes of 0.633 and 1. Except for CIFAR-10 on ConvNet, Siamese
outperforms G-ODIN. The reason it fails is that ConvNet is too
simple a DNN for CIFAR-10 on which Siamese cannot learn infor-
mative embeddings. But G-ODIN decomposed the softmax score
to distinguish confident inputs from unconfident ones, which is
hardly affected by the model architecture [23].

In all other settings, Siamese achieves both high AUROC (av-
eragely 87.33% against 70.58% of G-ODIN) and TNR@TPR95 (av-
eragely 54.23% against 31.54% of G-ODIN) that is harder to reach.
That means that Siamese can recognize more in-distribution data
with the 95% recall of deviating data, which is important for the
downstream reflection process. Given by the threshold search from
validation dataset, Siamese can correctly detect on average 75.53%
of deviating data. SelfChecker has bad performance since it is con-
strained by the assumption that the testing instance conforms to
the distribution of training dataset. But the deviating testing data
here share similar semantics with the training data but are far away
distribution-wise.

Figure 8 visualizes the separation between three types of data
on MNIST with two labels ("2" and "7"). This is generated from the
learned embeddings from Siamese network and then mapped into
hyperspace by t-SNE [53], which is a dimension-reduction tech-
nique to project high-dimensional data into visible two-dimensional
data.

We can see that the three types of data are distant from each
other and that the distance between in-distribution and deviating
data is shorter than the distance between in-distribution and out-
of-distribution data.

Result 1: the distribution analyzer effectively detects out-of-
distribution and deviating data with 78.49% and 87.33% AUROC.
G-ODIN is second-best with 66.54% and 70.58% AUROC.

RQ2. Reflector Accuracy.
Figure 9 compares the classification accuracies of the subject

model𝑀 , SelfChecker, and the reflector on deviating data generated
by unseen transformations. All six kinds of deviating data have not
been seen by these models.

We find that the reflector achieves higher accuracy than𝑀 and
SelfChecker. The poor performance of SelfChecker is predictable
since the deviating data does not strictly conform to the distribution
of the training data. The reflector uses a quadruplet network that
learns an embedding to pull instances with the same label closer
together and push instances with different labels further apart.

RQ2. Reflector Accuracy.
Figure 9 compares the classification accuracies of the subject

modelM , SelfChecker, and the reflector on deviating data generated
by unseen transformations. All six kinds of deviating data have not
been seen by these models.

We find that the reflector achieves higher accuracy thanM and
SelfChecker. The poor performance of SelfChecker is predictable
since the deviating data does not strictly conform to the distribution
of the training data. The reflector uses a quadruplet network that
learns an embedding to pull instances with the same label closer
together and push instances with different labels further apart.
Therefore, unseen deviating data is embedded close to training
samples with similar semantics. Using the labels of these nearby
training samples therefore improves performance.
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Table 2: Performance of three methods on detecting deviating data.

Deviating
AUROC TNR@TPR95

ConvNet VGG-16 ResNet-20 ConvNet VGG-16 ResNet-20

G-ODIN/SelfChecker/Siamese G-ODIN/Siamese

blur

MNIST 74.62/64.47/99.96 59.14/60.19/99.73 71.01/70.10/99.81 19.21/99.99 06.61/55.37 24.33/93.92
FMNIST 93.61/62.62/99.39 85.90/63.20/96.16 78.72/61.68/94.56 66.43/99.97 47.43/59.52 29.90/57.89
CIFAR-10 90.28/64.44/90.61 52.47/64.91/86.16 82.20/64.86/88.35 47.37/32.41 06.12/21.97 21.27/37.26

bright

MNIST 99.95/61.03/99.99 50.14/57.40/99.61 58.08/66.37/97.48 100.0/99.96 03.47/66.31 06.29/86.96
FMNIST 89.13/67.31/99.84 83.24/67.31/91.94 72.65/71.95/97.58 48.97/88.84 48.30/19.94 22.10/88.12
CIFAR-10 88.86/60.78/75.23 57.69/51.24/73.00 73.95/66.28/82.13 45.95/18.08 06.55/13.23 15.02/26.65

contrast

MNIST 99.93/60.12/99.99 66.79/69.29/99.62 55.13/64.17/97.12 100.0/100.0 04.58/61.18 05.39/84.30
FMNIST 90.82/54.90/99.90 76.06/45.69/95.51 71.76/63.97/97.77 55.98/90.46 26.93/29.09 24.01/88.41
CIFAR-10 93.37/58.14/75.87 63.95/56.07/87.35 85.32/64.15/89.39 64.07/16.24 11.33/29.13 24.64/35.79

zoom

MNIST 83.33/45.87/99.67 68.41/44.76/98.47 88.42/64.15/97.42 30.39/98.91 04.00/71.80 51.83/86.69
FMNIST 80.63/59.24/95.45 65.76/67.02/86.04 63.94/59.88/88.54 32.10/68.60 07.42/33.36 14.55/49.09
CIFAR-10 80.34/49.88/73.46 42.54/45.82/76.82 62.34/60.67/76.42 31.56/15.05 03.79/17.27 13.55/17.20

rotation

MNIST 76.12/51.29/96.62 71.77/53.36/70.16 70.58/61.38/85.99 9.98/83.19 3.31/30.05 56.66/49.80
FMNIST 29.94/40.83/90.96 74.23/47.31/72.21 41.09/50.52/71.93 39.07/55.43 19.54/20.31 18.50/23.09
CIFAR-10 55.65/49.35/55.10 54.48/50.27/60.19 78.88/57.04/72.46 53.41/13.22 44.84/38.88 56.20/54.42

shear

MNIST 65.22/57.46/98.97 66.47/49.84/77.04 73.50/61.59/98.88 14.99/96.19 5.51/38.62 54.50/94.79
FMNIST 26.15/51.28/96.27 75.88/50.17/74.04 42.39/57.31/71.87 25.37/80.87 20.47/23.80 18.88/18.45
CIFAR-10 61.75/45.17/60.73 58.94/46.82/66.69 87.66/60.31/89.21 60.49/22.05 51.06/51.80 78.79/74.60

Mean

MNIST 83.20/56.71/99.20 63.79/55.81/90.77 69.45/64.63/96.12 45.76/96.37 4.58/53.89 33.17/82.74
FMNIST 68.38/56.03/96.97 76.85/56.78/85.98 61.76/60.89/87.04 44.65/80.70 28.35/31.00 21.32/54.18
CIFAR-10 78.38/54.63/71.83 55.01/52.52/75.04 78.39/62.22/82.99 50.48/19.51 20.62/28.71 34.91/40.99
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Figure 8: Visualization of the feature embedding learned by
the Siamese network.
Therefore, unseen deviating data is embedded close to training
samples with similar semantics. Using the labels of these nearby
training samples therefore improves performance.

Result 2: the reflector can improve 9the accuracy of the subject
models by 47.34% on unseen deviating data.

RQ3. InputReflector Performance.
To show the effectiveness of InputReflector, Table 3 presents

the accuracies of the subject model𝑀 ,𝑀 with data augmentation
(𝑀 +𝐴𝑢𝑔), SelfChecker, and InputReflector on the in-distribution
and deviating testing data from both seen (blur) and unseen transfor-
mations (bright, contrast, zoom, rotation, and shear). Both𝑀 +𝐴𝑢𝑔
and InputReflector use the "blur" version of the training data.

The size of augmented data is the same as that of the original
training dataset.𝑀 +𝐴𝑢𝑔 enhances the original training data with
the blurry version of the data to retrain 𝑀 . InputReflector uses
blurry training data to train the auxiliary models, i.e., Siamese and
Quadruplet network, instead of retraining M.

InputReflector significantly outperforms 𝑀 and SelfChecker
(both 𝑝-value < 10E-6) with large effect sizes of 1, and is com-
parable to𝑀 +𝐴𝑢𝑔. As we can see, SelfChecker cannot significantly
improve 𝑀’s accuracy since it has poor performance providing
alternative predictions for deviating data. Both data augmentation
(average 79.71%) and InputReflector (average 80.09%) improve 𝑀
accuracy. The difference in their accuracies is not significant, indi-
cating that InputReflector has similar generalization ability as data
augmentation.

Result 3: InputReflector and data augmentation have similar
generalization ability with accuracies of 80.09% and 79.71%, re-
spectively. Both significantly outperform𝑀 and SelfChecker. In-
putReflector can additionally detect out-of-distribution data.

RQ4. InputReflector PerformancewithAdversarialDataAug-
mentation.

Not all data used in data augmentation can enhance 𝑀 . For
example, the accuracy of 𝑀 will degrade when using adversarial
examples for data augmentation.

To show the sensitivity of 𝑀 + 𝐴𝑢𝑔 + 𝐴𝑑𝑣 and InputReflector
+ 𝐴𝑑𝑣 on adversarial/poisonous data, we include both adversarial

RQ3. InputReflector Performance.
To show the effectiveness of InputReflector, Table 3 presents

the accuracies of the subject modelM ,M with data augmentation
(M +Auд), SelfChecker, and InputReflector on the in-distribution
and deviating testing data from both seen (blur) and unseen transfor-
mations (bright, contrast, zoom, rotation, and shear). BothM +Auд
and InputReflector use the "blur" version of the training data.

The size of augmented data is the same as that of the original
training dataset.M +Auд enhances the original training data with
the blurry version of the data to retrain M . InputReflector uses
blurry training data to train the auxiliary models, i.e., Siamese and
Quadruplet network, instead of retraining M.

InputReflector significantly outperforms M and SelfChecker
(both p-value < 10E-6) with large effect sizes of 1, and is com-
parable toM +Auд. As we can see, SelfChecker cannot significantly
improve M’s accuracy since it has poor performance providing
alternative predictions for deviating data. Both data augmentation
(average 79.71%) and InputReflector (average 80.09%) improve M
accuracy. The difference in their accuracies is not significant, indi-
cating that InputReflector has similar generalization ability as data
augmentation.
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(a) blur (b) bright

(c) contrast (d) zoom

(e) rotation (f) shear

M SelfChecker Reflector

Figure 9: Accuracy of three methods (original modelM , Self-
Checker, and Reflector) on unseen deviating input.
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Table 2: Performance of three methods on detecting deviating data.

Deviating
AUROC TNR@TPR95

ConvNet VGG-16 ResNet-20 ConvNet VGG-16 ResNet-20

G-ODIN/SelfChecker/Siamese G-ODIN/Siamese

blur

MNIST 74.62/64.47/99.96 59.14/60.19/99.73 71.01/70.10/99.81 19.21/99.99 06.61/55.37 24.33/93.92
FMNIST 93.61/62.62/99.39 85.90/63.20/96.16 78.72/61.68/94.56 66.43/99.97 47.43/59.52 29.90/57.89
CIFAR-10 90.28/64.44/90.61 52.47/64.91/86.16 82.20/64.86/88.35 47.37/32.41 06.12/21.97 21.27/37.26

bright

MNIST 99.95/61.03/99.99 50.14/57.40/99.61 58.08/66.37/97.48 100.0/99.96 03.47/66.31 06.29/86.96
FMNIST 89.13/67.31/99.84 83.24/67.31/91.94 72.65/71.95/97.58 48.97/88.84 48.30/19.94 22.10/88.12
CIFAR-10 88.86/60.78/75.23 57.69/51.24/73.00 73.95/66.28/82.13 45.95/18.08 06.55/13.23 15.02/26.65

contrast

MNIST 99.93/60.12/99.99 66.79/69.29/99.62 55.13/64.17/97.12 100.0/100.0 04.58/61.18 05.39/84.30
FMNIST 90.82/54.90/99.90 76.06/45.69/95.51 71.76/63.97/97.77 55.98/90.46 26.93/29.09 24.01/88.41
CIFAR-10 93.37/58.14/75.87 63.95/56.07/87.35 85.32/64.15/89.39 64.07/16.24 11.33/29.13 24.64/35.79

zoom

MNIST 83.33/45.87/99.67 68.41/44.76/98.47 88.42/64.15/97.42 30.39/98.91 04.00/71.80 51.83/86.69
FMNIST 80.63/59.24/95.45 65.76/67.02/86.04 63.94/59.88/88.54 32.10/68.60 07.42/33.36 14.55/49.09
CIFAR-10 80.34/49.88/73.46 42.54/45.82/76.82 62.34/60.67/76.42 31.56/15.05 03.79/17.27 13.55/17.20

rotation

MNIST 76.12/51.29/96.62 71.77/53.36/70.16 70.58/61.38/85.99 9.98/83.19 3.31/30.05 56.66/49.80
FMNIST 29.94/40.83/90.96 74.23/47.31/72.21 41.09/50.52/71.93 39.07/55.43 19.54/20.31 18.50/23.09
CIFAR-10 55.65/49.35/55.10 54.48/50.27/60.19 78.88/57.04/72.46 53.41/13.22 44.84/38.88 56.20/54.42

shear

MNIST 65.22/57.46/98.97 66.47/49.84/77.04 73.50/61.59/98.88 14.99/96.19 5.51/38.62 54.50/94.79
FMNIST 26.15/51.28/96.27 75.88/50.17/74.04 42.39/57.31/71.87 25.37/80.87 20.47/23.80 18.88/18.45
CIFAR-10 61.75/45.17/60.73 58.94/46.82/66.69 87.66/60.31/89.21 60.49/22.05 51.06/51.80 78.79/74.60

Mean

MNIST 83.20/56.71/99.20 63.79/55.81/90.77 69.45/64.63/96.12 45.76/96.37 4.58/53.89 33.17/82.74
FMNIST 68.38/56.03/96.97 76.85/56.78/85.98 61.76/60.89/87.04 44.65/80.70 28.35/31.00 21.32/54.18
CIFAR-10 78.38/54.63/71.83 55.01/52.52/75.04 78.39/62.22/82.99 50.48/19.51 20.62/28.71 34.91/40.99
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Figure 8: Visualization of the feature embedding learned by
the Siamese network.
Therefore, unseen deviating data is embedded close to training
samples with similar semantics. Using the labels of these nearby
training samples therefore improves performance.

Result 2: the reflector can improve 9the accuracy of the subject
models by 47.34% on unseen deviating data.

RQ3. InputReflector Performance.
To show the effectiveness of InputReflector, Table 3 presents

the accuracies of the subject model𝑀 ,𝑀 with data augmentation
(𝑀 +𝐴𝑢𝑔), SelfChecker, and InputReflector on the in-distribution
and deviating testing data from both seen (blur) and unseen transfor-
mations (bright, contrast, zoom, rotation, and shear). Both𝑀 +𝐴𝑢𝑔
and InputReflector use the "blur" version of the training data.

The size of augmented data is the same as that of the original
training dataset.𝑀 +𝐴𝑢𝑔 enhances the original training data with
the blurry version of the data to retrain 𝑀 . InputReflector uses
blurry training data to train the auxiliary models, i.e., Siamese and
Quadruplet network, instead of retraining M.

InputReflector significantly outperforms 𝑀 and SelfChecker
(both 𝑝-value < 10E-6) with large effect sizes of 1, and is com-
parable to𝑀 +𝐴𝑢𝑔. As we can see, SelfChecker cannot significantly
improve 𝑀’s accuracy since it has poor performance providing
alternative predictions for deviating data. Both data augmentation
(average 79.71%) and InputReflector (average 80.09%) improve 𝑀
accuracy. The difference in their accuracies is not significant, indi-
cating that InputReflector has similar generalization ability as data
augmentation.

Result 3: InputReflector and data augmentation have similar
generalization ability with accuracies of 80.09% and 79.71%, re-
spectively. Both significantly outperform𝑀 and SelfChecker. In-
putReflector can additionally detect out-of-distribution data.

RQ4. InputReflector PerformancewithAdversarialDataAug-
mentation.

Not all data used in data augmentation can enhance 𝑀 . For
example, the accuracy of 𝑀 will degrade when using adversarial
examples for data augmentation.

To show the sensitivity of 𝑀 + 𝐴𝑢𝑔 + 𝐴𝑑𝑣 and InputReflector
+ 𝐴𝑑𝑣 on adversarial/poisonous data, we include both adversarial

RQ4. InputReflector Performance with Adversarial Data
Augmentation.

Not all data used in data augmentation can enhance M . For
example, the accuracy of M will degrade when using adversarial
examples for data augmentation.

To show the sensitivity of M + Auд + Adv and InputReflector
+ Adv on adversarial/poisonous data, we include both adversarial
and blurry training data for both methods. We use the Fast Gra-
dient Sign Method (FGSM) [15] to generate adversarial examples,
whose average attack success rate on our subject models is 78.6%
(i.e., 78.6% of the adversarial samples can fool the subject classifier).
Table 4 shows the mean accuracies of M + Auд + Adv and Inpu-
tReflector +Adv on the in-distribution data and the in-distribution
plus deviating data with the six transformations.

As shown in Table 4, the accuracy of InputReflector +Adv is
significantly higher than M and M + Auд + Adv (both p-value <
10E-3) with effect sizes of 0.401 and 0.194 respectively. The low
accuracies ofM +Auд +Adv on in-distribution data indicate that
data augmentation with adversarial examples will harm model
performance even on the normal testing data. Retraining the subject

Table 3: Accuracy of fourmethods on the in-distribution and
deviating testing data.

ConvNet VGG-16 ResNet-20

M/M+Aug/SelfChecker/InputReflector
blur

MT 55.16/99.38/57.19/99.36 55.65/99.55/60.45/99.02 56.65/99.44/55.39/99.40
FT 50.04/93.67/54.30/92.48 51.94/94.41/55.14/91.44 51.40/91.60/52.17/91.57
CF 45.84/78.43/47.29/76.08 46.85/88.59/44.39/88.42 43.91/79.50/50.78/79.20

bright

MT 55.10/93.14/56.09/92.11 52.91/96.49/59.81/95.22 52.59/91.64/60.37/94.43
FT 50.62/75.13/49.82/81.18 51.92/75.32/56.12/77.40 50.53/80.17/60.25/84.65
CF 41.89/64.88/47.94/65.23 45.33/70.99/48.45/77.43 44.84/65.73/46.86/65.14

contrast

MT 55.11/92.76/57.83/90.77 53.12/95.74/58.56/93.83 53.49/92.67/60.06/94.62
FT 50.46/75.73/59.26/80.09 51.90/76.30/58.30/77.10 50.46/80.69/57.95/86.66
CF 41.21/74.87/42.64/75.92 47.82/79.96/49.18/83.14 42.95/72.88/45.83/72.76

zoom

MT 56.54/90.52/57.23/85.92 56.74/84.90/56.38/84.87 51.89/83.32/59.43/90.37
FT 52.49/79.56/51.65/78.49 50.74/84.90/50.28/81.66 48.59/80.59/49.54/81.54
CF 43.86/76.41/49.25/77.06 48.32/86.39/50.03/84.09 44.13/78.38/53.56/78.26

rotation

MT 53.25/80.07/55.78/78.50 53.62/80.95/62.45/80.36 53.59/78.35/55.18/78.25
FT 46.27/66.95/50.91/69.95 47.19/71.07/52.59/69.62 46.63/70.03/48.30/68.94
CF 43.45/56.80/42.16/56.50 47.96/71.65/58.15/71.85 41.51/63.34/52.18/63.50

shear

MT 49.50/83.81/56.32/85.03 49.80/81.24/59.55/80.93 55.34/79.49/60.37/79.68
FT 46.19/67.95/49.03/66.99 47.38/74.72/53.56/76.45 46.50/68.15/45.32/66.80
CF 43.00/59.70/45.87/61.55 46.86/65.74/51.20/65.76 41.37/59.82/46.33/57.07

Mean

MT 54.11/89.95/56.74/88.62 53.64/89.81/59.53/89.04 53.93/87.49/58.47/89.46
FT 49.35/76.50/52.50/78.20 50.18/79.45/54.33/78.95 49.02/78.54/52.26/80.03
CF 43.21/68.51/45.86/68.72 47.19/77.22/50.23/78.45 43.12/69.94/49.26/69.32

MT, FT, and CF stand for MNIST, FMNIST, and CIFAR-10, respectively.

model with adversarial samples is known to compromise the model
generalizability [3, 4, 19, 49, 55]. The retrained model with data
augmentation usually overfits those adversarial samples and suffers
from low accuracy on testing dataset.

By contrast, InputReflector’s accuracy on in-distribution data is
robust to adversarial examples. However, the generalization ability
of both methods is reduced, as indicated by the lower accuracies
on in-distribution and deviating data (as compared to using blurry
training data as augmentation). InputReflector’s robustness is aided
by sample mining, which is used in both Siamese and Quadruplet
networks, and which filters out many adversarial examples. FGSM
was proposed in 2014, and there are more powerful adversarial
sample generation techniques (i.e., with higher attack success rates)
[7, 64]. With more advanced adversarial examples, the advantage
of InputReflector over data augmentation will increase, since data
augmentation overfitting will get worse.
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Figure 9: Accuracy of three methods (original model𝑀 , Self-
Checker, and Reflector) on unseen deviating input.

and blurry training data for both methods. We use the Fast Gra-
dient Sign Method (FGSM) [15] to generate adversarial examples,
whose average attack success rate on our subject models is 78.6%
(i.e., 78.6% of the adversarial samples can fool the subject classifier).
Table 4 shows the mean accuracies of𝑀 +𝐴𝑢𝑔 +𝐴𝑑𝑣 and InputRe-
flector +𝐴𝑑𝑣 on the in-distribution data and the in-distribution plus
deviating data with the six transformations.

As shown in Table 4, the accuracy of InputReflector +𝐴𝑑𝑣 is
significantly higher than 𝑀 and 𝑀 + 𝐴𝑢𝑔 + 𝐴𝑑𝑣 (both 𝑝-value <
10E-3) with effect sizes of 0.401 and 0.194 respectively. The low
accuracies of𝑀 +𝐴𝑢𝑔 +𝐴𝑑𝑣 on in-distribution data indicate that
data augmentation with adversarial examples will harm model
performance even on the normal testing data. Retraining the subject
model with adversarial samples is known to compromise the model
generalizability [3, 4, 19, 49, 55]. The retrained model with data
augmentation usually overfits those adversarial samples and suffers
from low accuracy on testing dataset.

By contrast, InputReflector’s accuracy on in-distribution data is
robust to adversarial examples. However, the generalization ability
of both methods is reduced, as indicated by the lower accuracies
on in-distribution and deviating data (as compared to using blurry
training data as augmentation). InputReflector’s robustness is aided
by sample mining, which is used in both Siamese and Quadruplet
networks, and which filters out many adversarial examples. FGSM
was proposed in 2014, and there are more powerful adversarial
sample generation techniques (i.e., with higher attack success rates)

Table 3: Accuracy of fourmethods on the in-distribution and
deviating testing data.

ConvNet VGG-16 ResNet-20

M/M+Aug/SelfChecker/InputReflector

blur

MT 55.16/99.38/57.19/99.36 55.65/99.55/60.45/99.02 56.65/99.44/55.39/99.40
FT 50.04/93.67/54.30/92.48 51.94/94.41/55.14/91.44 51.40/91.60/52.17/91.57
CF 45.84/78.43/47.29/76.08 46.85/88.59/44.39/88.42 43.91/79.50/50.78/79.20

bright

MT 55.10/93.14/56.09/92.11 52.91/96.49/59.81/95.22 52.59/91.64/60.37/94.43
FT 50.62/75.13/49.82/81.18 51.92/75.32/56.12/77.40 50.53/80.17/60.25/84.65
CF 41.89/64.88/47.94/65.23 45.33/70.99/48.45/77.43 44.84/65.73/46.86/65.14

contrast

MT 55.11/92.76/57.83/90.77 53.12/95.74/58.56/93.83 53.49/92.67/60.06/94.62
FT 50.46/75.73/59.26/80.09 51.90/76.30/58.30/77.10 50.46/80.69/57.95/86.66
CF 41.21/74.87/42.64/75.92 47.82/79.96/49.18/83.14 42.95/72.88/45.83/72.76

zoom

MT 56.54/90.52/57.23/85.92 56.74/84.90/56.38/84.87 51.89/83.32/59.43/90.37
FT 52.49/79.56/51.65/78.49 50.74/84.90/50.28/81.66 48.59/80.59/49.54/81.54
CF 43.86/76.41/49.25/77.06 48.32/86.39/50.03/84.09 44.13/78.38/53.56/78.26

rotation

MT 53.25/80.07/55.78/78.50 53.62/80.95/62.45/80.36 53.59/78.35/55.18/78.25
FT 46.27/66.95/50.91/69.95 47.19/71.07/52.59/69.62 46.63/70.03/48.30/68.94
CF 43.45/56.80/42.16/56.50 47.96/71.65/58.15/71.85 41.51/63.34/52.18/63.50

shear

MT 49.50/83.81/56.32/85.03 49.80/81.24/59.55/80.93 55.34/79.49/60.37/79.68
FT 46.19/67.95/49.03/66.99 47.38/74.72/53.56/76.45 46.50/68.15/45.32/66.80
CF 43.00/59.70/45.87/61.55 46.86/65.74/51.20/65.76 41.37/59.82/46.33/57.07

Mean

MT 54.11/89.95/56.74/88.62 53.64/89.81/59.53/89.04 53.93/87.49/58.47/89.46
FT 49.35/76.50/52.50/78.20 50.18/79.45/54.33/78.95 49.02/78.54/52.26/80.03
CF 43.21/68.51/45.86/68.72 47.19/77.22/50.23/78.45 43.12/69.94/49.26/69.32

MT, FT, and CF stand for MNIST, FMNIST, and CIFAR-10, respectively.

[7, 64]. With more advanced adversarial examples, the advantage
of InputReflector over data augmentation will increase, since data
augmentation overfitting will get worse.

Result 4: InputReflector is more tolerant than data augmenta-
tion when considering adversarial examples. InputReflector +𝐴𝑑𝑣
significantly outperforms𝑀 and𝑀 +𝐴𝑢𝑔 +𝐴𝑑𝑣 (both 𝑝-value <
10E-3) with effect sizes of 0.401 and 0.194, respectively.

RQ5. Overhead.
We measured the time consumption of 𝑀 + 𝐴𝑢𝑔, SelfChecker,

and InputReflector during training and deployment. Table 5 shows
that𝑀 +𝐴𝑢𝑔 and InputReflector have similar training times while
SelfChecker has higher overhead since it needs to estimate the
distribution of each layer. For each test instance in deployment,
InputReflector has more time overhead than 𝑀 +𝐴𝑢𝑔 because of
the distance calculation and the search for closest training data.
But, this process is faster than SelfChecker.

Given amore complex dataset with inputs of larger size, the train-
ing time for all techniques will increase. However, the deployment-
time reflection process in InputReflector is not sensitive to the
input size since the time is spent on estimation and calculation of
embedding vectors that have a fixed size.

RQ5. Overhead.
We measured the time consumption of M + Auд, SelfChecker,

and InputReflector during training and deployment. Table 5 shows
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Table 4: Accuracy using adversarial examples as data augmentation.

Accuracy
In-distribution In-distribution+Deviating

ConvNet VGG-16 ResNet-20 ConvNet VGG-16 ResNet-20

M/M+Aug+Adv/InputReflector+Adv M/M+Aug+Adv/InputReflector+Adv
MNIST 98.97/97.46/99.57 99.58/97.54/99.65 99.44/98.31/99.48 53.40/84.60/85.61 53.15/81.44/83.06 54.06/80.85/80.88
FMNIST 92.27/92.08/92.27 94.20/92.20/94.57 92.75/91.34/93.58 48.56/71.69/72.57 49.45/74.42/78.73 48.40/74.61/75.55
CIFAR-10 80.17/76.80/80.71 88.95/87.59/89.31 81.62/75.38/82.96 43.21/65.68/64.80 47.24/71.00/73.00 42.70/62.18/64.81

Table 5: Time overhead.

Time M+Aug Selfchecker InputReflector
Training 41.97m >1h 39.5m
Deployment 0.98s 34.33s 2.86s

thatM +Auд and InputReflector have similar training times while
SelfChecker has higher overhead since it needs to estimate the
distribution of each layer. For each test instance in deployment,
InputReflector has more time overhead than M +Auд because of
the distance calculation and the search for closest training data.
But, this process is faster than SelfChecker.

Given amore complex dataset with inputs of larger size, the train-
ing time for all techniques will increase. However, the deployment-
time reflection process in InputReflector is not sensitive to the
input size since the time is spent on estimation and calculation of
embedding vectors that have a fixed size.
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Table 4: Accuracy using adversarial examples as data augmentation.

Accuracy
In-distribution In-distribution+Deviating

ConvNet VGG-16 ResNet-20 ConvNet VGG-16 ResNet-20

M/M+Aug+Adv/InputReflector+Adv M/M+Aug+Adv/InputReflector+Adv

MNIST 98.97/97.46/99.57 99.58/97.54/99.65 99.44/98.31/99.48 53.40/84.60/85.61 53.15/81.44/83.06 54.06/80.85/80.88
FMNIST 92.27/92.08/92.27 94.20/92.20/94.57 92.75/91.34/93.58 48.56/71.69/72.57 49.45/74.42/78.73 48.40/74.61/75.55
CIFAR-10 80.17/76.80/80.71 88.95/87.59/89.31 81.62/75.38/82.96 43.21/65.68/64.80 47.24/71.00/73.00 42.70/62.18/64.81

Table 5: Time overhead.

Time M+Aug Selfchecker InputReflector
Training 41.97m >1h 39.5m
Deployment 0.98s 34.33s 2.86s

Result 5: InputReflector has similar training time as data aug-
mentation, but its inference time per test instance is higher (2.86s
vs 0.98s).

RQ6. Generalizability.
InputReflector is designed to handle unseen deviated samples.

A natural question to ask is how well InputReflector generalizes
from transformations used during training (e.g., blur) to handle
unknown transformations in deployment (e.g., brightening). We
briefly investigate this question by training InputReflector with
blur+zoom inputs to detect and fix contrast+bright+rotate+shear
inputs. Table 6 shows that InputReflector achieves 2.48% higher
accuracy on average than training with blur inputs alone.

These preliminary results indicate that composition of basic
transformations can further improve InputReflector’s transforma-
tion generalizability. From an engineering perspective, we believe
that a production version of InputReflector would need to use a
representative set of transformations so that InputReflector can
handle more types of unseen deviated samples.

5 EVALUATING MODEL TESTING TOOLS
WITH DISTRIBUTION ANALYZER

So far we have shown that InputReflector achieves good perfor-
mance on detecting the failure-inducing inputs and mitigating their
side effects. We now demonstrate that InputReflector is also useful
to evaluate frameworks that generate tests for DL models, such as
RobOT [56], ADAPT [33], DeepXplore [43], and DLFuzz [17]. Specif-
ically, we use InputReflector to detect how the samples generated
with those tools conform to the distribution of the training dataset.
The more different the samples are from the training dataset, the
more diverse they are, thus the higher their quality.

Table 7 shows the performance of Distribution Analyzer in dis-
tinguishing the generated test cases from in-distribution data for
tests generated by the aforementioned DL testing tools. DeepX-
plore and DLFuzz achieve much lower AUROC values (56.22% on
average) than RobOT and ADAPT, indicating that DeepXplore and
DLFuzz do not generate diverse tests. This aligns with the finding
in [56]. On average, RobOT achieves higher AUROC than ADAPT,
but RobOT performs worse on MNIST. An in-depth look reveals
that ADAPT tends to generate more test cases around a seed than
RobOT, while ADAPT generates more diverse test cases for simple
datasets like MNIST.

Table 6: Generalization capacity of InputReflector. Accuracy
on in-distribution and deviating testing data with inputs un-
der contrast/bright/rotate/shear transformations. InputRe-
flector was trained on blur+zoom data.

ConvNet VGG-16 ResNet-20

M/M+Aug/InputReflector

blur

MNIST 55.16/99.44/99.37 55.65/99.60/99.51 56.65/99.50/99.41
FMNIST 50.04/93.32/92.17 51.94/94.28/92.38 51.40/91.81/91.18
CIFAR-10 45.84/78.92/79.37 46.85/89.12/88.75 43.91/77.78/75.34

bright

MNIST 55.10/87.55/92.51 52.91/91.47/92.60 52.59/88.82/92.45
FMNIST 50.62/74.13/74.63 51.92/70.95/76.47 50.53/76.10/77.50
CIFAR-10 41.89/64.72/66.14 45.33/74.08/74.31 44.84/64.44/66.70

contrast

MNIST 55.11/88.38/89.23 53.12/87.77/92.60 53.49/92.85/92.61
FMNIST 50.46/72.58/74.53 51.90/69.39/78.44 50.46/77.43/80.61
CIFAR-10 41.21/75.04/76.14 47.82/80.82/84.25 42.95/72.89/73.24

zoom

MNIST 56.54/99.03/99.18 56.74/89.56/89.53 51.89/98.49/98.33
FMNIST 52.49/93.07/91.24 50.74/92.45/91.17 48.59/91.35/90.55
CIFAR-10 43.86/77.09/75.09 48.32/88.71/86.85 44.13/76.52/73.94

rotate

MNIST 53.25/80.67/81.83 53.62/80.99/80.26 53.59/75.89/76.95
FMNIST 46.27/67.46/62.66 47.19/72.17/72.87 46.63/67.74/70.96
CIFAR-10 43.45/58.04/60.64 47.96/71.26/71.13 41.51/63.64/63.60

shear

MNIST 49.50/86.74/87.78 49.80/81.54/81.25 55.34/79.53/79.40
FMNIST 46.19/71.87/71.03 47.38/74.96/75.98 46.50/60.98/58.16
CIFAR-10 43.00/60.66/61.84 46.86/65.44/66.10 41.37/60.45/60.17

Mean

MNIST 53.60/90.30/91.65 53.51/88.49/89.29 53.77/89.18/89.86
FMNIST 49.08/78.74/77.71 49.71/79.03/81.22 48.50/77.57/78.16
CIFAR-10 43.03/69.08/69.87 47.48/78.24/78.56 42.78/69.29/68.83

Table 8 reports the accuracies of generated test images for the
four testing tools on the subject model𝑀 and InputReflector (IR).
InputReflector achieves the lowest accuracy on RobOT and the

Table 7: Performance of Distribution Analyzer.

AUROC RobOT ADAPT DeepXplore DLFuzz
MNIST 75.34 80.03 70.56 54.18
FMNIST 77.06 72.53 61.18 54.54
CIFAR-10 85.34 50.02 48.64 48.19
Average 79.25 67.53 60.13 52.30

RQ6. Generalizability.
InputReflector is designed to handle unseen deviated samples.

A natural question to ask is how well InputReflector generalizes
from transformations used during training (e.g., blur) to handle
unknown transformations in deployment (e.g., brightening). We
briefly investigate this question by training InputReflector with
blur+zoom inputs to detect and fix contrast+bright+rotate+shear
inputs. Table 6 shows that InputReflector achieves 2.48% higher
accuracy on average than training with blur inputs alone.

These preliminary results indicate that composition of basic
transformations can further improve InputReflector’s transforma-
tion generalizability. From an engineering perspective, we believe
that a production version of InputReflector would need to use a
representative set of transformations so that InputReflector can
handle more types of unseen deviated samples.

5 EVALUATING MODEL TESTING TOOLS
WITH DISTRIBUTION ANALYZER

So far we have shown that InputReflector achieves good perfor-
mance on detecting the failure-inducing inputs and mitigating their
side effects. We now demonstrate that InputReflector is also useful
to evaluate frameworks that generate tests for DL models, such as
RobOT [56], ADAPT [33], DeepXplore [43], and DLFuzz [17]. Specif-
ically, we use InputReflector to detect how the samples generated

Table 6: Generalization capacity of InputReflector. Accuracy
on in-distribution and deviating testing data with inputs un-
der contrast/bright/rotate/shear transformations. InputRe-
flector was trained on blur+zoom data.

ConvNet VGG-16 ResNet-20

M/M+Aug/InputReflector

blur

MNIST 55.16/99.44/99.37 55.65/99.60/99.51 56.65/99.50/99.41
FMNIST 50.04/93.32/92.17 51.94/94.28/92.38 51.40/91.81/91.18
CIFAR-10 45.84/78.92/79.37 46.85/89.12/88.75 43.91/77.78/75.34

bright

MNIST 55.10/87.55/92.51 52.91/91.47/92.60 52.59/88.82/92.45
FMNIST 50.62/74.13/74.63 51.92/70.95/76.47 50.53/76.10/77.50
CIFAR-10 41.89/64.72/66.14 45.33/74.08/74.31 44.84/64.44/66.70

contrast

MNIST 55.11/88.38/89.23 53.12/87.77/92.60 53.49/92.85/92.61
FMNIST 50.46/72.58/74.53 51.90/69.39/78.44 50.46/77.43/80.61
CIFAR-10 41.21/75.04/76.14 47.82/80.82/84.25 42.95/72.89/73.24

zoom

MNIST 56.54/99.03/99.18 56.74/89.56/89.53 51.89/98.49/98.33
FMNIST 52.49/93.07/91.24 50.74/92.45/91.17 48.59/91.35/90.55
CIFAR-10 43.86/77.09/75.09 48.32/88.71/86.85 44.13/76.52/73.94

rotate

MNIST 53.25/80.67/81.83 53.62/80.99/80.26 53.59/75.89/76.95
FMNIST 46.27/67.46/62.66 47.19/72.17/72.87 46.63/67.74/70.96
CIFAR-10 43.45/58.04/60.64 47.96/71.26/71.13 41.51/63.64/63.60

shear

MNIST 49.50/86.74/87.78 49.80/81.54/81.25 55.34/79.53/79.40
FMNIST 46.19/71.87/71.03 47.38/74.96/75.98 46.50/60.98/58.16
CIFAR-10 43.00/60.66/61.84 46.86/65.44/66.10 41.37/60.45/60.17

Mean

MNIST 53.60/90.30/91.65 53.51/88.49/89.29 53.77/89.18/89.86
FMNIST 49.08/78.74/77.71 49.71/79.03/81.22 48.50/77.57/78.16
CIFAR-10 43.03/69.08/69.87 47.48/78.24/78.56 42.78/69.29/68.83

with those tools conform to the distribution of the training dataset.
The more different the samples are from the training dataset, the
more diverse they are, thus the higher their quality.

Table 7 shows the performance of Distribution Analyzer in dis-
tinguishing the generated test cases from in-distribution data for
tests generated by the aforementioned DL testing tools. DeepX-
plore and DLFuzz achieve much lower AUROC values (56.22% on
average) than RobOT and ADAPT, indicating that DeepXplore and
DLFuzz do not generate diverse tests. This aligns with the finding
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in [56]. On average, RobOT achieves higher AUROC than ADAPT,
but RobOT performs worse on MNIST. An in-depth look reveals
that ADAPT tends to generate more test cases around a seed than
RobOT, while ADAPT generates more diverse test cases for simple
datasets like MNIST.

Table 8 reports the accuracies of generated test images for the
four testing tools on the subject modelM and InputReflector (IR).
InputReflector achieves the lowest accuracy on RobOT and the
highest accuracy on DLFuzz, indicating that the Reflector in Inpu-
tReflector has a harder time mapping RobOT-generated test cases
to the correct nearby samples in the training data. Thus, the tests
generated by RobOT are further from the training data than tests
generated by the other tools.

Repairing Failure-inducing Inputs with Input Reflection ASE 2022, October 10 – 14, 2022, Michigan, United States

Table 8: Accuracy of generated test cases. IR stands for Inpu-
tReflector.

Accuracy RobOT ADAPT DeepXplore DLFuzz

M IR M IR M IR M IR
MNIST 2.40 36.15 0 46.65 0 54.00 0 75.85
FMNIST 4.75 17.80 0 43.08 0 54.20 0 53.90
CIFAR-10 0.10 6.30 0 10.70 0 35.05 0 44.50
Average 2.42 20.08 0 33.48 0 47.75 0 58.08

highest accuracy on DLFuzz, indicating that the Reflector in Inpu-
tReflector has a harder time mapping RobOT-generated test cases
to the correct nearby samples in the training data. Thus, the tests
generated by RobOT are further from the training data than tests
generated by the other tools.

Result 6: InputReflector holds promise as a technique to evalu-
ate model testing tools. Our results reproduce the findings from
previous work [56]: RobOT and ADAPT generate more diverse test
instances than DeepXplore and DLFuzz.

6 RELATEDWORK
Runtime trustworthiness checking. Several SE studies consider
checking a DNN’s trustworthiness in deployment. DISSECTOR by
Wang et al. [54] detects inputs that deviate from normal inputs.
It trains several sub-models on top of the pre-trained model to
validate samples fed into the model. Xiao et al. [63] proposed Self-
Checker to monitor DNN outputs using internal layer features.
SelfChecker triggers an alarm if the internal layer features of the
model are inconsistent with the final prediction and also provides
an alternative prediction. SelfChecker achieves better performance
than DISSECTOR [63]. Both DISSECTOR and SelfChecker assume
that the training and validation datasets come from a distribution
similar to that of the inputs that the model will face in deployment.
For example, SelfChecker cannot detect out-of-distribution data
and provides an alarm constrained by this assumption.
Detection of out-of-distribution data. Several methods [23, 32,
35] have been proposed to detect out-of-distribution data that is
completely different from the training data. ODIN [35] and General-
ized ODIN [23] are based on trained neural network classifiers that
must be powerful enough for the specific dataset. Hsu et al. [23]
introduced a decomposed confidence function to avoid using out-
of-distribution data to train the classifier, as was done by Liang et al.
[35]. The internal representation of DNNmodels given an input has
also been used to detect out-of-distribution data. Mahalanobis [32]
takes hidden layers of the DNN model as representation spaces.
This work used the distance calculation and input pre-processing to
compute the Mahalanobis distance to measure the extent to which
an input belongs to the in-distribution in these spaces. But there is
a hyperparameter in input pre-processing that must be tuned for
each out-of-distribution dataset.

None of these techniques detect deviating data that is between in-
distribution and out-of-distribution data, which is the key feature of
InputReflector. Hsu et al. [23] showed that Generalized ODIN is em-
pirically superior to previous approaches [21, 32, 35]; we therefore
use Generalized ODIN as our baseline to evaluate the performance
of the distribution analyzer in InputReflector.

Data augmentation. To improve DNN model generalization, data
augmentation techniques have been proposed [8, 13, 47, 68]. In a
recent work in this space, Guo et al. [13] augment training data
using mutation-based fuzzing. The authors specifically focus on
improving the robust generalization of DNNs. Our results indicate
that DNNmodel accuracy on normal testing data will degrade if the
training data is augmented with adversarial examples. Moreover,
even an augmented training dataset is ultimately finite, limiting
model generalization.
Evaluating test case generators. There is a wide range of tech-
niques to automatically generate test cases [10, 14, 41, 42], e.g.,
EvoSuite and Randoop. To evaluate these techniques, several stud-
ies have been conducted to compare the quality of automatically
generated and manually written test suites along dimensions such
as code coverage [11], mutation score [1], and test smells [16].

In contrast to program test generators, DNN test generators
[17, 33, 43, 56] have limited measures to evaluate their quality.
Generally, neuron coverage has been shown to be inadequate [18].
To the best of our knowledge, the neuron-based mutation score is
one of the few methods designed for this goal [37]. InputReflector,
from the perspective of distribution analysis, provides a facility to
evaluate DNN test generator. We expect our work in this direction
to contribute to the quality assessment of model testing tools.

7 CONCLUSION
Deployed DNNs must contend with inputs that may contain noise
or distribution shifts. Even the best-performing DNN model in
training may make wrong predictions on such inputs. We presented
an input reflection approach to deal with this issue. Input reflection
identifies the failure-inducing input and fixes it by reflecting it
towards a nearby sample in the training dataset.

We implemented input reflection as part of the InputReflector
tool and evaluated it on several datasets and model variants. On
three popular image datasets with six transformations InputRe-
flector distinguishes unseen problematic inputs with an average
accuracy of 75.53%. Furthermore, by combining InputReflector with
the original DNN, we can increase the average model prediction
accuracy by 30.78% on the in-distribution and deviating testing
dataset. InputReflector can also detect out-of-distribution data that
the original DNN cannot handle. We also demonstrated that In-
putReflector can effectively evaluate the quality of generated test
cases by state-of-the-art model testing tools. We hope that our work
inspires further research into robust handling of deployment-time
inputs to DNNs.
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6 RELATEDWORK
Runtime trustworthiness checking. Several SE studies consider
checking a DNN’s trustworthiness in deployment. DISSECTOR by
Wang et al. [54] detects inputs that deviate from normal inputs.
It trains several sub-models on top of the pre-trained model to
validate samples fed into the model. Xiao et al. [63] proposed Self-
Checker to monitor DNN outputs using internal layer features.
SelfChecker triggers an alarm if the internal layer features of the
model are inconsistent with the final prediction and also provides
an alternative prediction. SelfChecker achieves better performance
than DISSECTOR [63]. Both DISSECTOR and SelfChecker assume
that the training and validation datasets come from a distribution
similar to that of the inputs that the model will face in deployment.
For example, SelfChecker cannot detect out-of-distribution data
and provides an alarm constrained by this assumption.
Detection of out-of-distribution data. Several methods [23, 32,
35] have been proposed to detect out-of-distribution data that is
completely different from the training data. ODIN [35] and General-
ized ODIN [23] are based on trained neural network classifiers that
must be powerful enough for the specific dataset. Hsu et al. [23]
introduced a decomposed confidence function to avoid using out-
of-distribution data to train the classifier, as was done by Liang et al.
[35]. The internal representation of DNNmodels given an input has
also been used to detect out-of-distribution data. Mahalanobis [32]
takes hidden layers of the DNN model as representation spaces.
This work used the distance calculation and input pre-processing to
compute the Mahalanobis distance to measure the extent to which
an input belongs to the in-distribution in these spaces. But there is

Table 7: Performance of Distribution Analyzer.

AUROC RobOT ADAPT DeepXplore DLFuzz
MNIST 75.34 80.03 70.56 54.18
FMNIST 77.06 72.53 61.18 54.54
CIFAR-10 85.34 50.02 48.64 48.19
Average 79.25 67.53 60.13 52.30

Table 8: Accuracy of generated test cases. IR stands for Inpu-
tReflector.

Accuracy RobOT ADAPT DeepXplore DLFuzz

M IR M IR M IR M IR
MNIST 2.40 36.15 0 46.65 0 54.00 0 75.85
FMNIST 4.75 17.80 0 43.08 0 54.20 0 53.90
CIFAR-10 0.10 6.30 0 10.70 0 35.05 0 44.50
Average 2.42 20.08 0 33.48 0 47.75 0 58.08

a hyperparameter in input pre-processing that must be tuned for
each out-of-distribution dataset.

None of these techniques detect deviating data that is between in-
distribution and out-of-distribution data, which is the key feature of
InputReflector. Hsu et al. [23] showed that Generalized ODIN is em-
pirically superior to previous approaches [21, 32, 35]; we therefore
use Generalized ODIN as our baseline to evaluate the performance
of the distribution analyzer in InputReflector.
Data augmentation. To improve DNN model generalization, data
augmentation techniques have been proposed [8, 13, 47, 68]. In a
recent work in this space, Guo et al. [13] augment training data
using mutation-based fuzzing. The authors specifically focus on
improving the robust generalization of DNNs. Our results indicate
that DNNmodel accuracy on normal testing data will degrade if the
training data is augmented with adversarial examples. Moreover,
even an augmented training dataset is ultimately finite, limiting
model generalization.
Evaluating test case generators. There is a wide range of tech-
niques to automatically generate test cases [10, 14, 41, 42], e.g.,
EvoSuite and Randoop. To evaluate these techniques, several stud-
ies have been conducted to compare the quality of automatically
generated and manually written test suites along dimensions such
as code coverage [11], mutation score [1], and test smells [16].

In contrast to program test generators, DNN test generators
[17, 33, 43, 56] have limited measures to evaluate their quality.
Generally, neuron coverage has been shown to be inadequate [18].
To the best of our knowledge, the neuron-based mutation score is
one of the few methods designed for this goal [37]. InputReflector,
from the perspective of distribution analysis, provides a facility to
evaluate DNN test generator. We expect our work in this direction
to contribute to the quality assessment of model testing tools.

7 CONCLUSION
Deployed DNNs must contend with inputs that may contain noise
or distribution shifts. Even the best-performing DNN model in
training may make wrong predictions on such inputs. We presented
an input reflection approach to deal with this issue. Input reflection
identifies the failure-inducing input and fixes it by reflecting it
towards a nearby sample in the training dataset.

We implemented input reflection as part of the InputReflector
tool and evaluated it on several datasets and model variants. On
three popular image datasets with six transformations InputRe-
flector distinguishes unseen problematic inputs with an average
accuracy of 75.53%. Furthermore, by combining InputReflector with
the original DNN, we can increase the average model prediction
accuracy by 30.78% on the in-distribution and deviating testing
dataset. InputReflector can also detect out-of-distribution data that
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the original DNN cannot handle. We also demonstrated that In-
putReflector can effectively evaluate the quality of generated test
cases by state-of-the-art model testing tools. We hope that our work
inspires further research into robust handling of deployment-time
inputs to DNNs.
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