
Enhancing Valid Test Input Generation with
Distribution Awareness for Deep Neural Networks

Jingyu Zhang1, Jacky Keung1, Xiaoxue Ma1, Xiangyu Li2, Yan Xiao3, Yishu Li1, and Wing Kwong Chan1

1Department of Computer Science, City University of Hong Kong, Hong Kong, China,

{jzhang2297-c, xiaoxuema3-c, yishuli5-c}@my.cityu.edu.hk

{jacky.keung, wkchan}@cityu.edu.hk
2 Department of Electrical and Computer Engineering, McGill University, Montreal, Canada,

xiangyu.li3@mail.mcgill.ca
3 School of Cyber Science and Technology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China,

xiaoy367@mail.sysu.edu.cn

Abstract—Comprehensive testing is important in improving
the reliability of Deep Learning (DL)-based systems. Various
Test Input Generators (TIGs) have been proposed to generate
misbehavior-inducing test inputs. However, the lack of validity
checking in TIGs often results in the generation of invalid inputs
(i.e., out of the learned distribution), leading to unreliable testing.
To save the effort of manually checking the validity and improve
test efficiency, it is important to assess the effectiveness and
reliability of automated validators.

In this study, we comprehensively assess four automated
Input Validators (IVs). Our findings show that the accuracy
of IVs ranges from 49% to 77%. Distance-based IVs generally
outperform reconstruction-based and density-based IVs for both
classification and regression tasks.

Based on the findings, we enhance existing testing frameworks
by incorporating distribution awareness through joint optimiza-
tion. The results demonstrate our framework leads to a 2% to
10% increase in the number of valid inputs, which establishes our
method as an effective technique for valid test input generation.

Index Terms—Input Validation, Anomaly Detection, Deep
Learning, Software Testing

I. INTRODUCTION

With the rapid development of deep learning (DL), many

software applications have integrated deep neural networks

(DNNs) to improve their performance. Despite the notable

achievements of DL-based models across various domains

[1]–[3], research has indicated their vulnerability to malicious

attacks, necessitating comprehensive testing [4]–[7]. Thorough

testing of a DL system requires diverse and valid test inputs

which can trigger model misbehavior. While plenty of Test

Input Generators (TIGs) [4]–[6], [8]–[11] have been proposed

to efficiently generate error-inducing inputs, most of them fall

short in checking the validity of the generated test inputs.

Input validation is a fundamental concept in software test-

ing. In traditional software engineering, developers must create

valid test cases to effectively evaluate the functional logic

of the software and ensure compliance with specifications.

When an invalid test case is encountered, the software will

handle the input with errors and exhibit unexpected behavior.

In such cases, the functional logic cannot be adequately tested,

rendering those test cases ineffective [12]–[14]. Generally,

the enforcement built of input validation in software systems

ensures only valid inputs are accepted for processing [13].

For DNNs, trained models are expected to generalize be-

yond the training data but within the valid input distribution

[15]. However, DNNs often struggle to clearly distinguish

between valid and invalid inputs, and they may still make

predictions (possibly erroneous) for invalid inputs. For exam-

ple, MNIST classifiers can predict digit labels for grayscale

cat images with the same shape as MNIST samples, but

these images are not meaningful in testing such classifiers.

In DL testing, this brings difficulty in generating test inputs

to effectively and correctly test the generalized behavior of a

DNN. Unfortunately, research has demonstrated that existing

TIGs may occasionally produce invalid inputs [7], [15]–[17].

To perform input validation for DNNs, expert labelling

provides the most accurate but time-consuming assessment.

To alleviate this burden, automated Input Validators (IVs)

have been leveraged to automatically validate the input sam-

ple, sometimes referred to as anomaly detectors or out-of-

distribution detectors [18], [19]. Different IVs identify invalid

inputs (i.e., anomalies) through various methodologies. A

straightforward method is to model the in-distribution density

and classify out-of-distribution data as invalid, termed as

density-based methods [20]–[23]. Another category, dubbed

reconstruction-based methods, relies on the quality of the

reconstructed image, such that hard-to-reconstruct samples

are deemed invalid [24]–[28]. Distance-based methods cal-

culate the feature-space distance [29]–[31] between the in-

distribution (valid) and out-of-distribution (invalid) data.

A few testing techniques [7], [17] embedded an IV into

their testing framework, aiming to automatically detect invalid

inputs. Dola et al. [16] and Riccio et al. [15] examined the

performance of reconstruction-based IVs and combined them

with existing testing frameworks. Studying a single type of

IV leads to two questions: (1) Does the results generalize
to other IVs? (2) Do we select the right combination of
TIG and IV for the DNN models under test? (i.e., can the
selected IV accurately detect invalid inputs)? Our solution:
We include the assessment of four IVs across three types

1095

2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC)

2836-3795/24/$31.00 ©2024 IEEE
DOI 10.1109/COMPSAC61105.2024.00148

20
24

 IE
EE

 4
8t

h
An

nu
al

 C
om

pu
te

rs
, S

of
tw

ar
e,

 a
nd

 A
pp

lic
at

io
ns

 C
on

fe
re

nc
e

(C
O

M
PS

AC
) |

 9
79

-8
-3

50
3-

76
96

-8
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
CO

M
PS

AC
61

10
5.

20
24

.0
01

48

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 05,2025 at 10:54:43 UTC from IEEE Xplore. Restrictions apply.

(i.e., reconstruction-based, density-based, and distance-based)

to evaluate the compatibility across all combinations of TIGs

and IVs, and incorporate the best IV into the testing frame-

work. The improvement in the number of valid inputs by

our enhanced framework can reach up to 10% by human

assessment.

We summarize the key contributions of this paper as

follows:

(1) We systematically assess the effectiveness and reliability

of four IVs with human-annotated validity labels. Our sug-

gestion is to employ feature-based IVs on complex datasets.

Compared with existing work, we further involve human

evaluations for distance-based and density-based IVs.

(2) Building upon our empirical findings, we enhance

the existing testing framework by incorporating distribution

awareness through eight different joint optimizations. The

results have demonstrated a 2% to 10% increase in the number

of valid inputs by human assessment.

II. BACKGROUND AND RELATED WORK

A. Overview of Input Validation

The typical workflow of test input validation, as shown in

Figure 1, consists of two phases: 1) test input generation;

2) test input validation. By feeding seed inputs, TIGs can

generate misbehavior-inducing test inputs. To effectively and

efficiently reveal the generalization errors of DNNs under test,

each generated test input should be assessed for validity, by

either automated IVs or domain experts.

B. Existing TIGs

Diverse TIGs [4]–[7], [11] has been proposed to produce

misbehavior-inducing inputs to the DL system under test.

Some works [4], [5], [11] applied pixel-level perturbations

to the original inputs based on the gradients computed with

respect to a testing objective. Some [6], [32], [33] also con-

ducted perturbation in the feature space, craving to generate

more diverse inputs.

C. Existing IVs

An input is deemed invalid if it is anomalous or an outlier

to the data distribution learned from training. Although an

invalid input satisfies the acceptable input tensor shape of a

DNN model, it might be semantically irrelevant to the given

task. Due to the scarcity of representative anomalous data,

a common practice [15], [16] is to apply semi-supervised

learning, which utilizes the information from normal (valid)

data only [18]. Semi-supervised techniques can be generally

categorized into three types [19], [34]: statistical density-

based, reconstruction-based, and distance-based methods. Sta-
tistical Density-based Methods explicitly estimate a statisti-

cal probabilistic model for valid data and identify low-density

data as invalid. Reconstruction-based Methods rely on the

reconstruction of images, which first maps the original input

image to the latent space and then reconstructs the original

input by finding an inverse mapping for the latent vector. A

valid sample is expected to produce a good reconstruction with

low reconstruction errors. Distance-based Methods classify

a sample as invalid if the sample is located far away from

the valid data in the feature space. To assess the validity of

test inputs generated by testing techniques, Dola et al. [16],

Zhang et al. [7], and et al. [17] utilized different types of

IVs to validate the test inputs. Recently, Riccio et al. [15]

conducted an empirical study to examine the effectiveness and

reliability of reconstruction-based IVs, however, their results

lack generalization to other types of IVs. We bridge the

gap by performing a systematic effectiveness assessment for

reconstruction-based, density-based, and distance-based IVs

with human-annotated labels.

III. EMPIRICAL STUDY

Our pre-study analysis aims to identify effective IVs in

validating test inputs generated by distinct TIGs. Our findings

in this section offer empirical evidence to enhance the existing

testing framework. We have studied four automated IVs and

three TIGs, all of which are representative in the realm of DL

testing and anomaly detection research.

A. Empirical Setup

The pipeline of our empirical setup is summarized in Figure

1. Initially, we randomly select 100 seed images from the

dataset and pass them to each TIG to generate test inputs.

The generated test inputs are then assessed by domain experts

and IVs for validity identification. Binary validity labels (0 =

invalid, 1 = valid) provided by human assessors are regarded

as ground truth. With available ground truth, we assess the

trustworthiness of automated validators. All experiments were

performed on machines equipped with Intel Xeon Silver 4210

CPU, and Nvidia GeForce RTX 3090-Ti GPU.

1) Datasets & Models: We evaluate two datasets, MNIST

[35] and Udacity self-driving car challenge dataset [36], each

with one DNN model that achieve competitive performance.

MNIST contains 70000 grayscale images of handwritten digits

from 0 to 9, each with dimension 28 × 28. There are 60000

training images and 10000 test samples. We use a classification

model [6] with 5-layer ConvNet with max-pooling and dropout

layers, which achieves state-of-the-art performance (99.37%

accuracy). Udacity Driving Dataset contains 101,396 training

and 5614 testing RGB images captured by cameras mounted

behind the windshield of a human-driving car. The steering

angle applied by the human driver is also recorded along

with each image frame. We use the competitive DAVE-2

self-driving car model from Nvidia [37] with dropout layers,

achieving 99.1% accuracy1.

2) Human Evaluation: We analyze the validity of each

generated test input from the human perspective. We invite

4 volunteers to complete the questionnaire. We designed the

questionnaire with one question for each image generated

by each testing technique [15]. For the test inputs that two

assessors disagree, we invite a third person to review the

case and provide a majority vote. For the MNIST dataset, we

1we report 1-MSE (Mean Squared Error) as the accuracy.

1096

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 05,2025 at 10:54:43 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Workflow of Input Validation: 1) Test Input Generation from seed inputs; 2) Test Input Validation by automated IVs.

ask the assessors to classify the image with eleven choices,

including classes 0 to 9, “Not a handwritten digit”, and “It is

a digit but belongs to other classes, if yes, please specify” (e.g.,

number 11). The latter two choices indicate the input image

is out of the valid input domain and should not be predicted

by the model. For the Udacity dataset that captures real-world

driving images, we ask whether the generated inputs are likely

to be captured in real-world driving scenarios (e.g., can see

the road clearly and can confidently steer the car under the

given driving condition).

Reproducibility. The implementation and data are avail-

able at https://github.com/InputValidityRepo/InputValidity.

B. Studied TIGs

1) Description: Existing TIGs [4]–[7], [11] have been

proven to efficiently generate a large number of misbehavior-

inducing test inputs. However, they lack assessing the validity

of the generated inputs, which cannot guarantee effective

testing. In this section, we analyze the quality of generated

inputs from three different testing techniques with human

evaluation: DeepXplore [5] with three types of modifications

to images: occlusion by a small rectangle (DO: occl), lighting

effects (DL: light), and occlusion by multiple tiny black

rectangles (DB: black), DLFuzz (DF) [11] and Sinvad (SV)

[6]. Details for each TIG are summarized in Table I. Please

refer to the original papers for further information. To ensure

a fair comparison, for each dataset, we use the same DNN

model under test for all TIGs.

2) Observation: We examine the quality of generated test

inputs with ground truth validity labels. The results are shown

in the last column of Table II. In summary, for the MNIST

dataset, all tested TIGs can produce invalid inputs, in which

SV produces the highest number (48%) of invalid inputs.

Techniques using pixel-level perturbations (DeepXplore with

its variants and DF) tend to produce fewer invalid inputs. For

Udacity, all test inputs generated by DO, DB, and DF are valid,

TIGs Access Description Objectives

DeepXplore [5]
White-box

Pixel-level Neuron Coverage
(DO, DL, DB) perturbations Misbehaviors

DLFuzz (DF) [11] White-box
Pixel-level Neuron Coverage

perturbations Misbehaviors

SINVAD (SV) [6] Black-box
Feature-level

Misbehaviors
perturbations

TABLE I: Summary of studied TIGs

TABLE II: TIG Effectiveness: Input Validation results (unit:

% of valid) with automated and human validators. For each

IV, we highlight the best TIG in bold.

MNIST Udacity

T
IG

D
A

IV

D
ee

p
S

V
D

D

D
ee

p
K

N
N

P
C

N
N

H
u
m

an

D
A

IV

D
ee

p
S

V
D

D

D
ee

p
K

N
N

P
C

N
N

H
u
m

an

DO 2 32 81 25 96 95 100 97 76 100
DL 86 95 60 86 99 89 80 74 93 75
DB 100 90 60 99 80 79 100 98 90 100
DF 26 91 85 0 92 63 100 85 0 100
SV 100 98 81 14 52 100 100 98 25 0

while none for SV. We found that the test inputs generated by

SV are excessively blurred, as depicted in Figure 2(b). This

may attributed to the amplified distortions brought by feature-

level perturbation.

Finding 1: All examined TIGs can generate invalid inputs.

With human assessment, SINVAD produces the highest

number of invalid inputs for both datasets.

C. Studied IVs

1) Description: We explore the effectiveness of Pixel-

CNN++ [20], reconstruction-based DAIV [16], distance-based

1097

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 05,2025 at 10:54:43 UTC from IEEE Xplore. Restrictions apply.

(a) MNIST (b) Udacity

Fig. 2: Invalid test inputs for MNIST and Udacity datasets.

DeepKNN [29] and DeepSVDD [31]. Following the estab-

lished setting in the previous work [15], [16], we train all the

IVs on the training set of each dataset, which is regarded as

valid data by construction.

In this section, we provide a formulated description of

each IV, followed by our experimental observations to the

question: Which IV is Better? Specifically, with the ground

truth labels provided by human assessment, for each IV, we

compute True Positive (TP, valid for both automated and

human validators), False Positive (FP, valid for automated

IV but invalid for humans), True Negatives (TN, invalid for

both automated and human validators), False Negatives (FN,

invalid for automated IV but valid for humans), and Accuracy

(Acc = TP+TN
TP+TN+FP+FN).

Notations: For the formulated description in Table III, for

PixelCNN++, p denotes the estimated probability density for

the test input sample x; i denotes all sub-pixels in x. For DAIV,

p denotes the reconstruction probability for x. For DeepKNN,

zktrain is the normalized feature vector of the test input’s k-

th nearest neighbor in the training data; z is the normalized

feature vector for x; we set k = 50 for MNIST and k = 100
for Udacity. For DeepSVDD, c is the hypersphere center, φ is

the feature encoder.

2) Observation: We analyze the accuracy of each IV by

comparing it with manual labels. IV Effectiveness and rec-
ommendations: Table IV provides the results of TP, FP, TN,

FN, and Accuracy for measuring whether automated IVs reach

an agreement with humans. For MNIST, on average of all

generated test cases, DeepKNN achieves the highest accuracy

(72%). Similarly, distance-based DeepSVDD takes the second

spot. For Udacity, the average accuracy indicates that feature-

based IVs (DeepSVDD and DeepKNN) outperform DAIV and

PixelCNN++. Specifically, DeepSVDD reaches the highest

accuracy under 4 out of 5 cases with an average of 77%.

Intuitively, for image data with higher complexity, it is more

difficult to directly model the distribution on pixel space

(PixelCNN++) or reconstruct the image (DAIV). Another

interesting phenomenon is that all IVs except for PixelCNN++

perform poorly on Sinvad, with only 0% to 1% accuracies.

Finding 2: The average accuracy of IVs ranges from 49%

to 77%. Generally, we suggest using feature-based IVs for

datasets with higher complexity. On average, DeepKNN and

DeepSVDD achieve the best performance for MNIST and

Udacity, respectively.

Algorithm 1 Enhanced Testing Framework by Joint Opt.

Require: X - Seed inputs; obj1 - Original objectives of TIG; obj2 -
Distribution-aware objectives of IV; DNN - DNN under test; hyperpa-
rameters - {lr, γ, t, iters}

1: test suite = {}
2: for x in X do
3: for i=1 to iters do
4: obj = obj1 + γ × obj2
5: G = ∂obj/∂x
6: G = Process(G)
7: x = x+ lr ×G
8: if Misbehavior(DNN,x) and PassValidityCheck(x,t) then
9: test suite.append(x)

10: break
11: end if
12: end for
13: end for

IV. OUR APPROACH AND RESULTS

Based on our findings, we enhance existing white-box

testing techniques to generate valid inputs for DNN testing

by incorporating distribution awareness, which prevents the

generated input from deviating significantly from the learned

distribution. We examine the quality of generated test cases

by both humans and automated IVs. With the same 100 seed

inputs, the results show that our enhanced framework can

generate up to 10% more valid test inputs.

A. Enhanced Testing Framework

To introduce distribution awareness, we perform joint op-

timization, in which the best IV’s objective is optimized to-

gether with each TIG’s objective (e.g., DAIV for DeepXplore-

blackout for MNIST, as shown in Table IV). It should be

emphasized that this improvement is specifically applicable

to white-box testing techniques that employ gradient-based

optimization, and it does not extend to black-box techniques.

Algorithm 1 elaborates details of the enhanced testing

framework achieved through joint optimization. In the Re-
quire lines. For X , we use the same 100 seed inputs as

described in Section III-A. For obj2, we use probability density

log p(x) for PixelCNN++, reconstruction probability p(x) for

DAIV, negative feature distance −dk(x) between x and train-

ing data for DeepKNN, and negative feature distance −dc(x)
between x and the hypersphere center c for DeepSVDD.

For hyperparameters, we set γ = 0.01, and determine t as

described in Table III. lr and iters values are set as in the

original TIG works. We begin by initializing the test suite to

store the generated test inputs (Line 1). The generation process

starts with looping over each seed image x in X (Line 2-3).

We construct a joint objective obj by the weighted sum of

obj1 and obj2 (Line 4). We maximize the joint objective and

generate a new test input by performing gradient ascent, note

that the gradients G are processed by domain constraints, if

any. (Line 5-7). We add the generated input to the test suite if

it is confirmed valid by the selected IV (ValidityCheck) and

causes model misbehavior (Line 8-10).

1098

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 05,2025 at 10:54:43 UTC from IEEE Xplore. Restrictions apply.

IVs (type) Description Formulae (Notations) Validity Threshold t

PixelCNN++ [20] Statistically models probability
log p =

∑
i log p(xi|x<i)

valid if log p ≥ t, Set t at where 95% valid
(Density-based) distribution for valid data otherwise invalid test data are correctly classified

DAIV [16] Trains a probabilistic detector that
p = 1

L

∑L
l=1 pθ(x|μzl , σzl)

valid if p ≥ t, Use a self-defined invalid dataset
(Reconstruction-based) maximizes the likelihood of valid data otherwise invalid to pick t with highest F-measure

DeepKNN [29] Compute k-NN distance
dk = ‖z − zktrain‖2

valid if dk ≤ t, Set t at where 95% valid
(Distance-based) on feature space otherwise invalid test data are correctly classified.

DeepSVDD [31] Encode valid data representations
dc = ‖φ(x)− c‖2 valid if dc ≤ t, Set t as the radius of the

(Distance-based) into a DNN-based hypersphere otherwise invalid trained hypersphere.

TABLE III: Description of studied IVs

TABLE IV: IV Effectiveness: IV vs. human labelling. For each

TIG, we highlight the best IV’s Acc (%) in bold.

IV TIG
MNIST Udacity

TP FP TN FN Acc TP FP TN FN Acc

D
A

IV

DO 2 0 4 94 6 95 0 0 5 95
DL 85 1 0 14 85 64 25 0 11 64
DB 80 20 0 0 80 79 0 0 21 79
DF 24 2 6 68 30 63 0 0 37 63
SV 52 48 0 0 52 0 100 0 0 0

Avg 49 14 2 35 51 60 25 0 15 60

D
ee

p
S

V
D

D DO 30 2 2 66 32 100 0 0 0 100
DL 95 0 1 4 96 69 11 14 6 83
DB 74 16 4 6 78 100 0 0 0 100
DF 83 8 0 9 83 100 0 0 0 100
SV 52 46 2 0 54 0 100 0 0 0

Avg 67 14 2 17 69 74 22 3 1 77

D
ee

p
K

N
N

DO 80 1 3 16 83 97 0 0 3 97
DL 60 0 1 39 61 65 9 16 10 81
DB 54 6 14 26 68 98 0 0 2 98
DF 82 3 5 10 87 85 0 0 15 85
SV 48 33 15 4 63 0 99 1 0 1

Avg 65 9 8 19 72 69 22 3 6 72

P
ix

el
C

N
N

+
+ DO 24 1 3 72 27 76 0 0 24 76

DL 85 1 0 14 85 68 25 0 7 68
DB 79 20 0 1 79 90 0 0 10 90
DF 0 0 8 92 8 0 0 0 100 0
SV 6 8 40 46 46 0 25 75 0 75
Avg 39 6 10 45 49 47 10 15 28 62

TABLE V: Effectiveness of Joint Optimization (% valid). The

positive/negative/equal signs indicate the improved techniques

produce more/fewer/the same number of valid test inputs

compared to the original techniques with the same seed inputs.

Data TIG DAIV DeepSVDD DeepKNN PCNN Human

M
N

IS
T

DO+KNN 3(+) 30(-) 100(+) 30(+) 98(+)
DL+SVDD 83(-) 100(+) 80(+) 83(-) 99(=)
DB+DAIV 100(=) 96(+) 62(+) 100(+) 83(+)
DF+KNN 44(+) 98(+) 100(+) 5(+) 95(+)

U
d
ac

it
y DO+SVDD 93(-) 100(=) 96(-) 78(+) 100(=)

DL+SVDD 84(-) 100(+) 85(+) 93(=) 85(+)
DB+SVDD 82(+) 100(=) 94(-) 91(+) 100(=)
DF+SVDD 80(+) 100(=) 100(+) 0(=) 100(=)

B. Results

Validity Assessments: The validity assessment results are

presented in Table V. Note that all test inputs selected with

the chosen IV are 100% valid due to the ValidityCheck of our

method. Comparing these results to Table II, we observe that

78% of the time, automated IVs agree that joint optimization

is beneficial in generating more or the same number of valid

test inputs. It is also crucial to consider IV’s reliability when

they do not acknowledge the improvement. Human assessors

consistently provide positive feedback (100% of the time), in

which we observe a 2% to 10% increase in the number of

valid test inputs.

Practicability: In our method, for each TIG, we select the

best IV for joint optimization based on our pre-study results on

100 seed inputs. To apply the enhanced framework in practice,

we suggest two ways, the first would be to reduce the number

of seed inputs for pre-study (i.e., selecting only 10 samples can

obtain an initial idea). The second would be directly referring

Finding 2, which suggests applying feature-based IVs for both

datasets. We plan to experimentally validate this assumption

on more datasets in our future work.

Result: Domain experts have consistently (100% of the

time) confirmed the effectiveness of our enhanced frame-

work in valid input generation, demonstrating an up to 10%

increase in the number of valid inputs.

V. CONCLUSION

In this paper, we undertake an empirical study and enhance

the testing framework by incorporating distribution awareness.

Our investigation reveals that the current TIGs can generate

invalid inputs, and the average accuracy of automated IVs

ranges from 49% to 77%.

Based on these findings, we improve the current testing

framework by integrating IVs’ distribution-aware objectives

to generate more valid inputs. The results demonstrate a 2%

to 10% increase in the number of valid inputs, as assessed

by human evaluation. In future work, we aim to extend our

approach to other fields to enhance the completeness and

understand the generalizability of our findings.

ACKNOWLEDGEMENT

This work is supported in part by the General Research

Fund of the Research Grants Council of Hong Kong and the

research funds of the City University of Hong Kong (6000796,

9229109, 9229098, 9220103, 9229029).

REFERENCES

[1] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” in 2012 IEEE conference on com-
puter vision and pattern recognition. IEEE, 2012, pp. 3642–3649.

1099

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 05,2025 at 10:54:43 UTC from IEEE Xplore. Restrictions apply.

[2] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural
networks for acoustic modeling in speech recognition: The shared views
of four research groups,” IEEE Signal processing magazine, vol. 29,
no. 6, pp. 82–97, 2012.

[3] D. Ciresan, A. Giusti, L. Gambardella, and J. Schmidhuber, “Deep neural
networks segment neuronal membranes in electron microscopy images,”
Advances in neural information processing systems, vol. 25, 2012.

[4] H. Zhou, W. Li, Z. Kong, J. Guo, Y. Zhang, B. Yu, L. Zhang, and C. Liu,
“Deepbillboard: Systematic physical-world testing of autonomous driv-
ing systems,” in 2020 IEEE/ACM 42nd International Conference on
Software Engineering (ICSE). IEEE, 2020, pp. 347–358.

[5] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in proceedings of the 26th Symposium
on Operating Systems Principles, 2017, pp. 1–18.

[6] S. Kang, R. Feldt, and S. Yoo, “Sinvad: Search-based image space nav-
igation for dnn image classifier test input generation,” in Proceedings of
the IEEE/ACM 42nd International Conference on Software Engineering
Workshops, 2020, pp. 521–528.

[7] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “Deeproad:
Gan-based metamorphic testing and input validation framework for
autonomous driving systems,” in 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2018,
pp. 132–142.

[8] Z. Kong, J. Guo, A. Li, and C. Liu, “Physgan: Generating physical-
world-resilient adversarial examples for autonomous driving,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 14 254–14 263.

[9] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing
of deep-neural-network-driven autonomous cars,” in Proceedings of the
40th international conference on software engineering, 2018, pp. 303–
314.

[10] Y. Sun, X. Huang, D. Kroening, J. Sharp, M. Hill, and R. Ashmore,
“Deepconcolic: Testing and debugging deep neural networks,” in 2019
IEEE/ACM 41st International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion). IEEE, 2019, pp. 111–
114.

[11] J. Guo, Y. Jiang, Y. Zhao, Q. Chen, and J. Sun, “Dlfuzz: Differential
fuzzing testing of deep learning systems,” in Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2018, pp.
739–743.

[12] J. H. Hayes and J. Offutt, “Input validation analysis and testing,”
Empirical Software Engineering, vol. 11, pp. 493–522, 2006.

[13] H. Liu and H. B. K. Tan, “Covering code behavior on input validation in
functional testing,” Information and Software Technology, vol. 51, no. 2,
pp. 546–553, 2009.

[14] S. Hanna and M. Munro, “Test case generation for semantic-based
user input validation of web applications,” International Journal of Web
Engineering and Technology, vol. 13, no. 3, pp. 225–254, 2018.

[15] V. Riccio and P. Tonella, “When and why test generators for deep
learning produce invalid inputs: an empirical study,” in 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE). IEEE,
2023, pp. 1161–1173.

[16] S. Dola, M. B. Dwyer, and M. L. Soffa, “Distribution-aware testing
of neural networks using generative models,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 2021,
pp. 226–237.

[17] A. Stocco, M. Weiss, M. Calzana, and P. Tonella, “Misbehaviour predic-
tion for autonomous driving systems,” in Proceedings of the ACM/IEEE
42nd international conference on software engineering, 2020, pp. 359–
371.

[18] J. Yang, R. Xu, Z. Qi, and Y. Shi, “Visual anomaly detection for images:
A survey,” arXiv preprint arXiv:2109.13157, 2021.

[19] J. Yang, K. Zhou, Y. Li, and Z. Liu, “Generalized out-of-distribution
detection: A survey. arxiv,” arXiv preprint arXiv:2110.11334, 2021.

[20] T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma, “Pixelcnn++:
Improving the pixelcnn with discretized logistic mixture likelihood and
other modifications,” arXiv preprint arXiv:1701.05517, 2017.

[21] W. Hu, J. Gao, B. Li, O. Wu, J. Du, and S. Maybank, “Anomaly detection
using local kernel density estimation and context-based regression,”
IEEE Transactions on Knowledge and Data Engineering, vol. 32, no. 2,
pp. 218–233, 2018.

[22] R. Hinami, T. Mei, and S. Satoh, “Joint detection and recounting of
abnormal events by learning deep generic knowledge,” in Proceedings of
the IEEE international conference on computer vision, 2017, pp. 3619–
3627.

[23] L. Zhang, J. Lin, and R. Karim, “Adaptive kernel density-based anomaly
detection for nonlinear systems,” Knowledge-Based Systems, vol. 139,
pp. 50–63, 2018.

[24] J. An and S. Cho, “Variational autoencoder based anomaly detection
using reconstruction probability,” Special lecture on IE, vol. 2, no. 1,
pp. 1–18, 2015.

[25] X. Xia, X. Pan, N. Li, X. He, L. Ma, X. Zhang, and N. Ding, “Gan-based
anomaly detection: A review,” Neurocomputing, vol. 493, pp. 497–535,
2022.

[26] H. Zenati, C. S. Foo, B. Lecouat, G. Manek, and V. R. Chan-
drasekhar, “Efficient gan-based anomaly detection,” arXiv preprint
arXiv:1802.06222, 2018.

[27] S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon, “Ganomaly: Semi-
supervised anomaly detection via adversarial training,” in Computer
Vision–ACCV 2018: 14th Asian Conference on Computer Vision, Perth,
Australia, December 2–6, 2018, Revised Selected Papers, Part III 14.
Springer, 2019, pp. 622–637.

[28] W. Liu, W. Luo, D. Lian, and S. Gao, “Future frame prediction
for anomaly detection–a new baseline,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 6536–
6545.

[29] Y. Sun, Y. Ming, X. Zhu, and Y. Li, “Out-of-distribution detection
with deep nearest neighbors,” in International Conference on Machine
Learning. PMLR, 2022, pp. 20 827–20 840.

[30] T. Dietterich, “A study of distance-based machine learning algorithms,”
Ph.D. dissertation, Ph. D. Thesis, computer Science Dept., Oregon State
University, 1995.

[31] L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui,
A. Binder, E. Müller, and M. Kloft, “Deep one-class classification,”
in International conference on machine learning. PMLR, 2018, pp.
4393–4402.

[32] I. Dunn, H. Pouget, D. Kroening, and T. Melham, “Exposing previously
undetectable faults in deep neural networks,” in Proceedings of the
30th ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2021, pp. 56–66.

[33] I. Dunn, L. Hanu, H. Pouget, D. Kroening, and T. Melham, “Evalu-
ating robustness to context-sensitive feature perturbations of different
granularities,” arXiv preprint arXiv:2001.11055, 2020.

[34] J. Kauffmann, L. Ruff, G. Montavon, and K.-R. Müller, “The clever hans
effect in anomaly detection,” arXiv preprint arXiv:2006.10609, 2020.

[35] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

[36] Udacity, “Using deep learning to predict steering angles.” 2016. [Online].
Available: https://medium.com/udacity/challenge-2-using-deep-learning-
to-predict-steering-angles-f42004a36ff3

[37] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End
to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

1100

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 05,2025 at 10:54:43 UTC from IEEE Xplore. Restrictions apply.

