
LEAP: Efficient and Automated Test Method for
NLP Software

Mingxuan Xiao
College of Computer and Information

Hohai University
Nanjing, China

xiaomx@hhu.edu.cn

Yan Xiao
School of Cyber Science and Technology

Shenzhen Campus of Sun Yat-sen University
Shenzhen, China

xiaoy367@mail.sysu.edu.cn

Hai Dong
School of Computing Technologies

RMIT University
Melbourne, Australia

hai.dong@rmit.edu.au

Shunhui Ji
College of Computer and Information

Hohai University
Nanjing, China

shunhuiji@hhu.edu.cn

Pengcheng Zhang*

College of Computer and Information
Hohai University
Nanjing, China

pchzhang@hhu.edu.cn

Abstract—The widespread adoption of DNNs in NLP software
has highlighted the need for robustness. Researchers proposed
various automatic testing techniques for adversarial test cases.
However, existing methods suffer from two limitations: weak
error-discovering capabilities, with success rates ranging from
0% to 24.6% for BERT-based NLP software, and time inef-
ficiency, taking 177.8s to 205.28s per test case, making them
challenging for time-constrained scenarios.

To address these issues, this paper proposes LEAP, an auto-
mated test method that uses LEvy flight-based Adaptive Particle
swarm optimization integrated with textual features to generate
adversarial test cases. Specifically, we adopt Levy flight for
population initialization to increase the diversity of generated test
cases. We also design an inertial weight adaptive update operator
to improve the efficiency of LEAP’s global optimization of high-
dimensional text examples and a mutation operator based on the
greedy strategy to reduce the search time.

We conducted a series of experiments to validate LEAP’s
ability to test NLP software and found that the average success
rate of LEAP in generating adversarial test cases is 79.1%,
which is 6.1% higher than the next best approach (PSOattack).
While ensuring high success rates, LEAP significantly reduces
time overhead by up to 147.6s compared to other heuristic-based
methods. Additionally, the experimental results demonstrate that
LEAP can generate more transferable test cases and significantly
enhance the robustness of DNN-based systems.

Index Terms—NLP Software Testing, Particle Swarm Opti-
mization

I. INTRODUCTION

In the field of NLP, Deep Neural Networks (DNNs) (e.g.,
ELMo [1], BERT [2], GPT [3], T5 [4]) have been developing

rapidly in recent years. These networks are capable of ex-

tracting semantic, structural, and other information from text

and have been widely integrated as new software components

in safety-critical systems like market monitoring [5], code

review [6], and intelligence analysis [7]. Such systems are

referred to as DNN-based systems. To address issues caused

by malicious inputs, the software engineering (SE) community

*Corresponding author.

Fig. 1. Subtle perturbed text (red) misleads military intelligence analysis
systems to judge text labels from “Battlefield Situation” to “Replenishment
Method”.

has proposed various techniques, including test coverage [8]–

[10], fuzz testing [11]–[13], and automated user interface test-

ing [14]–[16]. However, unlike software development methods

that follow lifecycle frameworks [17], [18], DNN-based sys-

tems do not require developers to design the system’s rules.

Instead, they rely on DNNs learning from large amounts of

data to make decisions, which makes it challenging to ensure

the robustness of DNN-based systems using traditional soft-

ware testing methods. Moreover, recent studies [19], [20] have

shown that DNN-based systems have significant robustness

pitfalls due to the uninterpretability of such systems and the

complexity of training data, as demonstrated by the following

scenario.

As shown in Fig. 1, the military intelligence analysis system

is crucial to military information construction. It must classify

a vast amount of text quickly to enhance intelligence analysis

effectiveness and reduce command information loop cycles.

However, when minor perturbations are added to the original

intelligence, the system incorrectly classifies the text label

as “Replenishment Method” instead of “Battlefield Situation.”

This error can result in valuable information being overlooked

in the intelligence database, leading to missed fighting op-

portunities. Therefore, generating as many adversarial texts

as possible as test cases is crucial to improving military

intelligence analysis capabilities and advancing subsequent

1136

2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE)

2643-1572/23/$31.00 ©2023 IEEE
DOI 10.1109/ASE56229.2023.00052

20
23

 3
8t

h
IE

EE
/A

CM
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 A
ut

om
at

ed
 S

of
tw

ar
e

En
gi

ne
er

in
g

(A
SE

) |
 9

79
-8

-3
50

3-
29

96
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

AS
E5

62
29

.2
02

3.
00

05
2

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 18,2023 at 02:27:06 UTC from IEEE Xplore. Restrictions apply.

strategic deployments. Since it is difficult to manually write

numerous test cases for the DNN under test, which we refer to

as the victim model, in this paper, inspired by fuzz testing, we

explore the potential of generating adversarial test cases [19]

in a heuristic manner to deceive DNNs’ decision-making.

This approach facilitates efficient detection of defects and

vulnerabilities in NLP software.

We summarize the challenges faced by existing work as

follows:

(1) Enhancing the ability to detect errors for DNN-based
systems is the most urgent issue. The testing process builds

confidence in the system’s quality by identifying and resolving

defects. However, existing white-box and greedy strategy-

based testing methods [21]–[23] generate adversarial test cases

based on a fixed perturbation paradigm, resulting in a low

success rate of 0.4% to 15.2% on the commonly used AG’s

News dataset [24] for toxic text detection tasks. Although

heuristic testing methods [25], [26] generate more successful

test cases with a success rate of up to 70.5% by iterating mul-

tiple times in an ample perturbation space, there is still room

for improvement. Fig. 1 illustrates the perturbation strategies

of two existing works, including synonym replacement [25]

and character deletion [27], which may generate syntactic

errors when the replaced word has different part-of-speech

tags or meanings. Such perturbations can be easily detected

by syntactic-checking tools in software systems, leading to the

generated test cases incapable of revealing errors in the system.

A low success rate generates numerous invalid test cases,

making testing methods difficult to work on small datasets.

(2) The existing methods take too much time to generate
test cases. Take the military software testing scenario in Fig.

1 as an example – the rapid change of the battlefield situation

requires the test methods to generate test cases quickly [28].

Once the time limit of testing the victim model is exceeded,

the generated test cases by the test method are useless for the

improvement of the robustness of the victim model even if they

can mislead the system’s decision. Although current heuristic

testing methods [25], [26] can generate more successful test

cases, the time of generating test cases for text sequences of

length up to 250 is 58.53s (IMDB [29]) and 177.81s (AG’s

News [24]) on average, making them impractical for time and

query-constrained scenarios.

To this end, we propose LEAP, an automated black-box

testing method that employs PSO [30] to search for adversarial

test cases in NLP discriminative models. To increase the

diversity of the population and improve the attack success rate

of the test case, LEAP first generates the initial population

using Levy flight and Brownian motion based on synonyms

for each word, prepared using WordNet [31]. Next, as stated

in the existing work [32] that the exponentially increasing

perturbation space and complex search process require the

search algorithm to have nonlinear search capability. Inspired

by Shi et al.’s work [33], we design a new adaptive inertia

weight update strategy for LEAP to optimize the search path in

an exponentially growing text space, which makes the search

process more efficient. If LEAP fails to find any successful

adversarial test case after each round of updating particles, a

greedy mutation is performed to accelerate convergence.

In this paper, we investigate the ability of LEAP to generate

adversarial test cases for three victim models on three datasets,

including the classical LSTM model [34] and the two popular

pre-trained models, BERT [2] and DistilBERT [35], with

metrics including attack success rate [36], change rate [36],

and perplexity score [37]. We compared LEAP against differ-

ent types of baselines, including gradient-based (i.e., A2T),

greedy-based (i.e., Checklist and PRUTHI), and heuristic-

based (i.e., PSOattack and IGA). Our results show that LEAP-

generated test cases have the highest attack success rates with

an average value of 79.1% against 73.0% for the next best ap-

proach (PSOattack). Furthermore, LEAP consumes lower time

overhead than other heuristic-based methods by 2.14s˜147.57s.

It thus can efficiently detect defects in the system. In addition,

we conducted a transferability test, adversarial training, and an

ablation study to further evaluate the performance of LEAP.

We also assessed the naturalness of LEAP’s test cases and

found that it generates less modified and more natural test

cases in most cases, as evidenced by the lower perplexity

scores [37].

The contributions of this paper include the following:

• We propose a new automated testing method, LEAP,

which uses Levy flight [38] along with Brownian motion

to reasonably extend the perturbation range and improve

the quality of adversarial test cases. During the itera-

tive search in the perturbation space, LEAP utilizes the

proposed adaptive algorithm and greedy mutation for

planning the search path to reduce the time overhead and

query count. Our implementation and all raw data are

open-source1.

• We conducted extensive experiments comparing LEAP

with state-of-the-art automated testing methods for DNN-

based NLP models. LEAP generated test cases with

higher attack success rates while consuming less time.

• We evaluated the effectiveness of adversarial test cases

in improving the robustness of DNN-based systems.

The experimental results show that adversarial training

using LEAP’s test cases can substantially (9.5%˜13.2%)

enhance the robustness of most victim models.

II. BACKGROUND

A. Problem Definition

As a fundamental aspect of testing techniques for DNN-

based NLP systems, the test data of a test case comprises

a perturbed text sequence, and the expected result is the

predicted label of the original text. LEAP performs automated

testing on DNNs embedded in NLP software to generate

adversarial examples as perturbed sequences of the test cases.

The notion of adversarial testing was introduced by Szegedy et

al. [19]. In this test method, a tester adds subtle perturbations

ε to the original data x, which can be digested by a machine

learning model (i.e., the victim model) f , but is difficult for

1https://github.com/lumos-xiao/LEAP

1137

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 18,2023 at 02:27:06 UTC from IEEE Xplore. Restrictions apply.

humans to perceive. This results in an adversarial example

that can cause the victim model to produce erroneous results

that differ from the original output f(x). This paper focuses on

generating test cases using black-box adversarial test methods,

which only manipulate the inputs to the model.

LEAP uses the requirements of non-target adversarial test-

ing as the objective function to find more test cases and test

the DNNs more adequately. Specifically, given an original text

segment Tori in the dataset and the corresponding adversarial

test case Tadv , the optimization problem of LEAP can be

defined as
argmin

Tadv∈C(Tori)

‖Tori, Tadv‖

s.t. F (Tori) �= F (Tadv)
(1)

where ‖a, b‖ denotes the difference between two pieces of text

segments a and b, such as change rate, embedding distance,

etc; F denotes the victim model; C denotes LEAP’s constraint

on the quality of the adversarial test cases, here including

the stop word filter [39] and the maximum change rate limit,

because an excessive change rate affects the semantics and

naturalness of the generated cases.

B. Particle Swarm Optimization

PSO is a population collaborative-based search algorithm

developed by Kennedy and Eberhart [30] in 1995. It simulates

the foraging behavior of a flock of birds, where each individual

is called a particle. It has been successfully applied in many

fields, such as economic management [40], information sci-

ence [41], engineering technology [42] and emotional binary

classification in NLP [43]. In the original PSO, the particles

simulate the solution of the optimization problem in the search

space. The fitness value of a particle is evaluated according

to its position, usually in terms of the objective function or

optimization problem, and the particle velocity is a vector

indicating the direction and distance it will move. The PSO

process is described as follows:

(1) Initialization. A random population of particles is gener-

ated, and the initialization involves randomly generating each

particle’s position and velocity vector.

(2) Evolutionary iteration. Each particle searches the entire

solution space by updating its velocity and position according

to its optimal position lBest so far and the optimal position

gBest of the population. When the particle population position

is updated, the particle’s optimal position and the population’s

optimal position are also updated.

(3) Iteration termination. When the iteration termination

condition is met, the algorithm stops searching, and the last

optimal position searched is the optimal solution.

In the evolutionary iteration, the updated equation for the

velocity vnd of the n-th particle in d directions is

vnd = wvnd +c1 ∗r1 ∗ (lBestnd − xn
d)+c2 ∗r2 ∗ (gBestnd − xn

d)
(2)

The position update equation of the particle is

xn
d = xn

d + vnd (3)

Dataset
(1) Synonym

Vocabulary

Original Text
(2) Initial

Population

(3) Improved

Levy Flight

(4) Evaluate Fitness Function; Record gBest, lBest

(5) Adaptive Update Particles

(6) Greedy Mutation

(7) Termination

Conditions

Adversarial Test Case

Yes

No

Establish the transformation space

Search test cases based on PSO

Fig. 2. Overview of LEAP.

where xn
d denotes the d-th dimension of the n-th particle in

the current population; w is the inertia weight; c1 and c2 are

learning factors; r1 and r2 are random numbers uniformly

distributed in the range of [0,1].

The setting of control parameters tremendously influences

the performance of PSO [33]. The parameters c1 and r1
indicate the degree of influence of particles by lBest, i.e.,

how the particles assess their own information sharing and

cooperation with other particles in the current population; c2
and r2 indicate the degree of influence of other particles by

gBest, i.e., how the particles assess the information sharing

and cooperation of other particles. The inertia weight deter-

mines the succession to the current velocity of the particle [44].

For the iteration termination, there are two general termina-

tion conditions: (1) the current iteration number t reaches the

preset maximum iteration number; or (2) there are individuals

in the population that satisfy the accuracy requirements of the

optimization problem.

III. DESIGN OF LEAP

Fig. 2 overviews the proposed LEAP, which aims to gen-

erate adversarial test cases using actual examples from the

test dataset. (1) It begins by counting all the words in the

dataset and using a synonym lexicon called WordNet [31] to

find synonyms for each word. (2) It then selects an original

text sequence from the dataset and replaces a word with its

synonym to obtain the initial position. The initial velocity (3)

is obtained through a modified Levy flight. The initial position

and velocity together determine the initial population of par-

ticles. Next, LEAP (4) performs an iterative search, using the

confidence score of the victim model as the fitness function.

It then (5) adaptively updates the velocity and position of the

particles. LEAP also (6) performs greedy mutation based on

the change rate and fitness score. Suppose the best individual

1138

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 18,2023 at 02:27:06 UTC from IEEE Xplore. Restrictions apply.

in the population (7) satisfies the termination conditions, which

include successfully changing the prediction of the original

text and reaching the maximum number of iterations. In such

a case, the output is an adversarial test case. Otherwise, the

iteration continues.

The depiction of LEAP is divided into two parts: 1) estab-

lishing the transformation space and 2) searching test cases

based on PSO.

A. Establishing the transformation space

To heuristically search for adversarial test cases, LEAP first

defines the search space. Given that the original text Tori={w1,

w2, ..., wn} contains n words, LEAP generates potential test

cases T ′
ori by replacing a word wi in Tori with its synonym

w′
i, and multiple T ′

oris for each original text Tori constitute

the search space of the test dataset together. LEAP focuses on

generating semantically correct test cases and therefore uses

WordNet to construct a synonym vocabulary for each word

in the dataset. WordNet is a broad-coverage English lexical-

semantic network where nouns, verbs, adjectives, and adverbs

are respectively organized into a network of related words,

with each set of synonyms representing a basic semantic

concept and various relations connecting these sets.

The process of generating a synonym vocabulary in LEAP

using WordNet is superior to other methods, such as using

word embedding [25], language model [39], and HowNet [26],

this is because:

• The word embedding method can find many candidate

words by changing the embedding distance threshold

to ensure diversity in the search space. However, it

also introduces low-quality substitutions, such as lexical

errors.

• The method using language models to build the search

space produces fluent sentences because these models

(especially pre-trained models [2], [3]) are obtained

from large text datasets and contain contextual semantic

knowledge. However, they are prone to syntactic errors

because linguistic features such as syntax and semantics

are ignored.

• HowNet [45] is an extensive dictionary that uses “se-

meme” to describe words and semantics. Different from

WordNet, it only considers synonymy and positive and

negative colors in semantic relations, ignoring the sum-

mary of related words, such as antonyms of words. The

search space established using HowNet is too small,

reducing the population diversity of PSO and thereby

affecting the algorithm’s ability to find higher-quality test

cases.

We thus use WordNet to generate a synonym vocabulary for

LEAP. The output of WordNet is a list of candidate words that

are the synonym of each word wi in the original text Tori.

B. Searching test cases based on PSO

The respective synonym vocabulary for each word in the

original text forms the search space of LEAP, which ap-

proaches automated testing as a combinatorial optimization

Algorithm 1 Search Process in LEAP

Input: Tori: Original text, max iters: Max iteration, pop size: Number
of the population in each iteration.

Output: Tadv : Adversarial test case.
1: Tpop←Levy-Initialization(Tori) via Eq.7;
2: if Tadv in Tpop then
3: return Tadv

4: end if
5: gBest=max{Tpop};
6: lBest=copy{Tpop};
7: while not exceed max iters do
8: Adaptively set inertia weight ω via Eq.8;
9: for n in pop size do

10: Update the velocity and position of particle n;
11: end for
12: Evaluate current population;
13: Greedy-Mutation based on change rate via Eq.11;
14: for n in pop size do
15: if fit(n)>fit(lBest) then
16: lBest=popn;
17: end if
18: end for
19: if fit(lBest)>fit(gBest) then
20: gBest=lBest;
21: end if
22: Evaluate current population;
23: end while
24: return Tadv←gBest

problem and uses our improved PSO to find adversarial test

cases that satisfy the objective function and constraints within

the search space. We improve PSO since the original one is

only suitable for continuous search spaces, but the perturbation

space for the NLP test case generation task is discrete, LEAP

thus updates PSO by probability according to the scalar shift

discussed in Section III-B2 inspired by [26]. In addition, it

improves PSO using Levy flight and adaptive methods to

generate higher-quality adversarial test cases with less time

overhead. Algorithm 1 outlines the search process. Next, we

detail this algorithm.

1) Population initialization based on Levy flight:
The main task of population initialization is to determine the

initial velocity and position of the particles to perform the

search. To achieve this, LEAP uses the confidence of the

victim model as the fitness of the particles, since the aim of

an adversarial test method is to create inputs that can fool the

model into making incorrect predictions with high confidence.

By using confidence as the fitness function, the optimization

algorithm can search for inputs that are most likely to be

misclassified. LEAP generates the initial position based on

the fitness score. Specifically, for each word wi in the original

input text sequence Tori, LEAP replaces only one word with

its synonym at a time to minimize the modification of Tori.

This generates a series of new sequences to construct the

search space corresponding to the current input. LEAP then

traverses the search space to find the example with the highest

fitness score, which flips the original prediction. The replaced

synonym word in LEAP is designated as the best neighbor

of the original word. For an original sequence Tori, the new

sequences generated from Tori by replacing different words

with their synonym have different fitness values. LEAP thus

1139

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 18,2023 at 02:27:06 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Comparison of Levy flight and Brownian motion. x represents the
number of steps performed and y represents the step length. Obviously, the
search area covered by Levy flight (in range [-40, 40]) is much broader than
Brownian motion (in range [-1, 1]).

uses these fitness values as probabilities associated with each

new sequence. Based on the probabilities, it randomly selects a

word in Tori and uses the best neighbor of this word to replace

it. The replaced text is the initial position of the particle.

In [26] that uses PSO to search for adversarial test cases,

the velocity of the particles is initialized using Brownian

motion [46], which focuses on local search. However, the

search space for the NLP test case generation task increases

exponentially as the number of words in the input case

increases. This search process is prone to get stuck in local op-

tima. To address this issue, LEAP uses Levy flight to initialize

the velocity of the particles (Lines 1-6). Levy flight is a random

wandering mode proposed by French mathematician Paul

Pierre Levy in 1930s [38], in which the steps follow the Levy

distribution and can move in multidimensional space with

isotropic random directions. Fig. 3 illustrates the difference

between Levy flight and Brownian motion. Within 500 steps,

the step length of Brownian motion mainly bounces around the

current point in a small area, while Levy flight has a wandering

characteristic that combines short walks and long jumps. This

means that Levy flight has a higher probability of taking long

steps than normal random walks. In the context of NLP, this

can be useful for exploring a larger potential search space,

which can improve the chances of finding effective adversarial

test cases. Specifically, Levy flight allows the population to

explore a wider range of input space, leading to more diverse

populations. A diverse population increases the chances of

finding effective adversarial test cases and helps to avoid local

optima.

The step size of the Levy flight is determined by the Levy

distribution, which is complex and has not been implemented

yet. It is thus usually simulated using the Mantegna algo-

rithm [47] with a step size s calculated by:

s =
μ

|v|1/β (4)

where μ ∼ N
(
0, σ2

μ

)
, v ∼ N

(
0, σ2

v

)
, β usually takes the

value 1.5, and

σμ =

⎧⎨
⎩

Γ(1 + β) sin
(

πβ
2

)
Γ
[
(1+β)

2

]
β2 (β−1)

2

⎫⎬
⎭

1/β

(5)

σv = 1 (6)

LEAP randomly generates the Brownian motion’s step size,

and each particle’s initial velocity is obtained by combining

Levy flight and Brownian motion. The assignment formula is:

vinit =

{
levy (β, σv) , levy (β, σv) > rand (vmin, vmax)
rand (vmin, vmax) , others

(7)

It is observed that the step size of Brownian motion is broader

than that of Levy flight, which almost occurs when both values

are small. The minor oscillation feature of Brownian motion

makes it have better local search capability, so the value

generated by Brownian motion is used in this case. The rest

of the cases use the step size generated by the Levy flight

to enhance the global search capability of LEAP and thus

generate better-quality adversarial test cases.

2) Adaptive update particles:
If there are no test cases in the initial population of LEAP

that can test successfully, the population will be iterated, with

the velocity of the particles being adaptively updated first,

and then the particles being shifted according to the velocity

(Lines 8-11). Balancing global and local search by adjusting

the step size is vital for the success and efficiency of the iter-

ative search in heuristic algorithms. PSO uses inertia weights

to balance global and local search capabilities, with larger

weights contributing to global search and smaller weights

contributing to local search. Changing the inertia weights

allows for dynamic adjustment of the search capability. The

existing method [26] uses a linearly decreasing inertia weight

to dynamically adjust the search process so that PSO has more

global search capability at the beginning and more local search

capability near the end of the run. However, the search space

increases exponentially with the number of replaced words,

which means that the search process of LEAP is non-linear

and requires tremendous time overhead. Besides, the method

of linearly decreasing inertia weights has a linear transition

of search capability from global to local search, resulting

in it easily falling into the saddle of high-dimensional text

space later in the search. Therefore, the inertia weights should

be nonlinear and change dynamically to provide a better

dynamic balance between global and local search capabilities

and achieve better performance.

ωi
n =

⎧⎨
⎩ωmin +

(fitin−fitimin)(fit
i
max−fitimin)

fitimean −fitimin
, fitin < fitimean

levy (β, σv) ∈ (ωmean , ωmax) , others

(8)

LEAP uses a new adaptive inertia weight update method, as

shown in Equation 8, where ωmin and ωmax are hyperparam-

eters. Suppose the fitness score of the n-th particle in the i-th
generation is less than the average value of all fitness scores. In

that case, this particle can be considered far from the actual

value or stuck in a local search. Then, its inertia weight is

adaptively adjusted based on the fitness score. Otherwise, the

inertia weight is the value generated by Levy flight, ensuring

that the search process has certain randomness and explores

1140

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 18,2023 at 02:27:06 UTC from IEEE Xplore. Restrictions apply.

a larger perturbation space. After obtaining the new inertia

weights, the velocity is updated according to Equation 9.

vnd = ωnvnd+vmax (1− ωn)
[
I
(
lBesti, xi

n

)
+ I

(
gBest, xi

n

)]
(9)

In order to search the discrete perturbation space, where

I(a, b) =

{
1, a = b
−1, a �= b

(10)

The update of the position is similarly divided into two

steps. In the first step, a new move probability P1 is introduced

by which a particle determines whether to move to its individ-

ual best position; in the second step, each particle determines

whether to move to the global best position with another

move probability P2. The change of each position dimension

depends on softmax(vnd). P1 and P2 are hyperparameters

that change with iteration to improve the search efficiency by

adjusting the balance between local and global search.

3) Greedy mutation:
In biology, genetic mutations result in differences among

individuals within a population, in terms of their structure

and function. To simulate this process and ensure population

diversity, LEAP introduces a mutation operator to the original

PSO algorithm (Line 13). To prevent excessive modification of

the text, LEAP generates variation probabilities based on the

change rate (C-rate) of the current particle from the original

text, as shown in Equation 11.

pmutation = 1− γ · C-rate (11)

Randomness is ensured by comparing the mutation prob-

ability with a random number in the range [0,1). If the

generated random value is less than pmutation, greedy mutation

is performed on the particle: the words in the text sequence

are replaced one by one to find the perturbed position that

makes the greatest improvement in the fitness score, and then

the original particle is replaced using the perturbed text. Next,

LEAP updates gBest and lBest by fitness score, and gBest is

output as an adversarial test case when the iteration terminates.

IV. EXPERIMENT SETUP

We have conducted a series of experiments on three text

classification datasets and three deep learning models to vali-

date the performance of LEAP in generating test cases. We

have made LEAP and all raw data publicly available. All

experiments were conducted on an Ubuntu 18.04.5 LTS server

with NVIDIA RTX A4000, a 12-core 2.20GHz processor

Intel(R) Xeon(R) Gold 5320, and 32GB physical memory.

We conducted three repetitions of experiments and averaged

the experiment results for each metric. Similar to many well-

acknowledged studies [25], [26], [48], [49], the victim models

were tested on a set of 1,000 randomly selected examples in

each experiment. Therefore, it is believed that this experimen-

tal scale is sufficient to cover different input data types and

ensure the representativeness and credibility of the experiment

results.

A. Hyperparameters

LEAP is a heuristic testing method based on PSO, and

the selection of hyperparameters significantly influences its

performance. Among them, the population size (pop size)
determines the coverage of the discrete text space, and the

maximum number of iterations (max iters) affects the com-

putational cost required for the search process. The inertia

weight (ω) and acceleration coefficients (P1, P2) jointly de-

termine the breadth and depth of the search; overly large

or small values of these hyperparameters may cause LEAP

to get trapped in local optima. By parameter tuning, we set

the number of individuals in the particle swarm to 60, the

maximum number of iterations to 20, and the hyperparameters

ωmin, ωmax, P1, P2 and γ 0.2, 0.8, 0.8, 0.2 and 1, respectively.

B. Datasets

IMDB2 [29]. A dataset for emotional binary classification

containing 50,000 positive and negative movie reviews was

grabbed from online sources. The average length of each

sequence is 215.63 words. It is divided into two parts, namely

25,000 training reviews and 25,000 test reviews. Their polar-

ization characterizes these movie reviews.

AG’s News3 [24]. This dataset quotes 496,835 news ar-

ticles from more than 2,000 news sources in the 4 cate-

gories of AG’s News Corpus (World, Sports, Business, and

Science/Technology) in the title and description fields. We

concatenate the title and description fields of each news article

and use the dataset organized by kaggle4, in which each

category contains 30,000 training examples and 1,900 test

examples. Each example contains an average of 43 words.

Poem Sentiment(POEM)5 [50]. This dataset contains

3,085,117 lines of poetry from hundreds of Project Gutenberg

books, which can be used for tasks such as sentiment classi-

fication. Each line has a corresponding Gutenberg ID (1,191

unique values) from Project Gutenberg. These text segments

are divided into four categories, with an average length of 8

words per segment.

C. Victim models

To evaluate the test performance of LEAP on different

DNN-based systems, we choose BERT [2] and its concise

scheme Distil-BERT [35], thus verifying the performance

of researchers’ most common NLP models. We also report

experimental results on a LSTM for text classification [34],

which is widely used as a classical deep learning model with

excellent performance before the advent of pre-trained models.

By parameter tuning, the number of hidden layer neurons of

TextBiRNN was set to 150; the dropout ratio was set to 0.1,

and the maximum sequence length was set to 250. All these

models have been pre-trained on BookCorpus [51], a dataset

consisting of 11,038 unpublished books and English Wikipedia

2https://s3.amazonaws.com/fast-ai-nlp/imdb.tgz
3https://s3.amazonaws.com/fast-ai-nlp/ag news csv.tgz
4https://www.kaggle.com/amananandrai/ag-news-classification-dataset
5https://github.com/google-research-datasets/poem-sentiment

1141

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 18,2023 at 02:27:06 UTC from IEEE Xplore. Restrictions apply.

(excluding lists, tables, and titles). We also finetuned the bert-

base-uncased6, distilbert-base-uncased7 models published by

Hugging Face for each dataset.

D. Baselines

We investigated the recent works in terms of the testing

framework [36], [52], degree of automation [53], [54], and

application scenario [27], [39], [48], [55]. Among these, we

selected the testing framework Textattack [36], which does not

require manual intervention, and conducted experiments in the

context of soft-label black-box testing. To compare LEAP with

different fully automated testing methods, we implemented

four popular black-box testing methods and one state-of-the-

art white-box testing method. Specifically, these methods are:

1) IGA proposed by Wang et al. [25]: the fitness function

consists of confidence and alienation rate. Using single-point

crossover, the text of the two parents is randomly cut to merge

into a new text segment. Allowing to replace the words that

have been replaced before, to a certain extent, avoids falling

into the trap of local optima.

2) PSOattack proposed by Zang et al. [26]: a word-level au-

tomated testing method which reforms in two steps – reducing

search space and searching for adversarial test cases through

designing a word substitution method based on sememes,

and presenting a search algorithm based on particle swarm

optimization.

3) CheckList proposed by Ribeiro et al. [21]: inspired

by principles of behavioral testing in software engineering,

CheckList guides users in what to test by providing a list of

linguistic capabilities. To break down potential capability fail-

ures into specific behaviors, CheckList introduces different test

types and then implements multiple abstractions to generate

adversarial test cases.

4) PRUTHI proposed by Pruthi et al. [22]: explores adver-

saries which perturb sentences with four types of character-

level edits: (1) Swap: swapping two adjacent internal charac-

ters of a word. (2) Drop: removing an internal character of

a word. (3) Keyboard: substituting an internal character with

adjacent characters of QWERTY keyboard (4) Add: inserting

a new character internally in a word.

5) A2T proposed by Yoo et al. [23]: the component of this

method is designed to generate adversarial test cases with

lower computational cost, which is accelerated by making two

key choices when constructing the test: (1) DistilBERT seman-

tic textual similarity constraint, and (2) a cheaper gradient-

based word importance ranking white-box method.

E. Evaluation measures

We choose five evaluation indicators for the experiment:

1) Success rate (S-rate) [36] of generated adversarial test

cases among all targeted text segments. In this experiment, its

formula can be expressed as follows:

S-rate =
Nadv

N
(12)

6https://huggingface.co/bert-base-uncased
7https://https://huggingface.co/distilbert-base-uncased

where, Nadv is the number of adversarial test cases that test

victim models successfully, and N is the total number of input

examples (N = 1,000 in our experiment) for the current test

method.

2) Change rate (C-rate) [36], which represents the average

proportion of the changed words in the original text. C-rate

can be expressed as:

C-rate =
1

Nadv

Nadv∑
k=1

diff Tk

len (Tk)
(13)

where diff Tk represents the number of words replaced in the

input text Tk and len(∗) represents the sequence length. C-rate

is an indicator designed to measure the difference in content

between the generated test cases and the original examples.

3) Perplexity (PPL) [37], an indicator used to assess the

fluency of textual test cases. Perplexity is defined as the

exponentiated average negative log-likelihood of a sequence.

If we have a tokenized sequence X=(x0,x1,. . . ,xt), then the

perplexity of X is,

PPL(X) = exp

{
−1

t

t∑
i

log pθ (xi | x<i)

}
(14)

where log pθ (xi | x<i) is the log-likelihood of the i-th token

conditioned on the preceding tokens x<i according to the

language model [56]. Intuitively, given the language model

for computing PPL, the more fluent the test case, the less

confusing it is.

4) Time overhead (T-O) [36], which refers to the average

time it takes for a test method to generate a successful test

case.

5) Query number (Q-N) [36], which indicates the average

number of times a population-based method needed to query

the victim model when generating a test case. The query

number and the time overhead together reflect the efficiency

of the testing method.

We use C-rate and PPL to quantitatively measure the

naturalness and similarity between adversarial test cases and

original ones, as both are easier to reproduce than human

evaluation. Regarding time overhead and query number, we

compare LEAP with IGA and PSOattack, which are also

heuristic testing methods, considering that non-heuristic test

methods [21]–[23] generate test cases much faster due to the

different search strategies. However, the experimental results

in Section V show that the quality of test cases generated by

such methods is much inferior to that of heuristic methods.

F. Definition of robustness

IEEE [57] defines the robustness in software engineering as

“degree to which a system, product or component performs

specified functions under specified conditions for a speci-

fied period of time”. Similar to [58], we define robustness

as follows: denoting the input as x and the relevant gold

label for the main task as y, assuming that a model f is

trained on (x, y) ∼ D. Now given the adversarial test case

(x′, y′) ∼ D′ �= D, we can measure the robustness of the

1142

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 18,2023 at 02:27:06 UTC from IEEE Xplore. Restrictions apply.

model by the prediction results of f on (x′, y′). Compared

to the raw prediction accuracy on D, the less the model’s

prediction accuracy on D′ drops, the fewer test cases the model

misclassifies, the more robust it is.

V. EXPERIMENT RESULTS AND ANALYSIS

In this section, we present five research questions and

discuss the experimental results.

RQ1: How is the quality of the generated test cases by
LEAP for different victim models and datasets?

To evaluate LEAP, we compare its success rate, change

rate, and perplexity with other baselines. Table I shows the

comparison results on different datasets and victim models.

Compared to all the baselines, LEAP achieves higher suc-

cess rates for each dataset and victim model, especially on

the multi-categorical and long-series dataset, i.e., AG’s News.

When generating test cases for BERT, LEAP achieves a

success rate of 81.2% compared to the baseline success rates

of 69.6%, 70.0%, 0.4%, 9.6%, and 9.2%, which implies that

LEAP can test more thoroughly against DNN-based systems

with robust performance. In terms of change rate, LEAP

achieves optimal results in only a few cases, with PRUTHI

and CheckList often having better performance because these

two methods have strict restrictions on the modification of

the original text and therefore sacrifice too much performance

in success rate. In the experiments tested on Distil-BERT

finetuned by IMDB, the change rates of Checklist, PRUTHI,

and LEAP are 61.16%, 3.4%, and 11.5%. However, the

success rate of the three is 1.6%, 18.8%, and 91%, respectively,

the disparity of which is significant. In addition, LEAP’s PPL

scores are the lowest for most cases, indicating that LEAP

can generate more fluent and natural test cases. Even though

LEAP’s PPL is not the lowest in a few cases, it guarantees

a sufficiently high success rate. For example, when testing

a bidirectional LSTM trained by Poem Sentiment, LEAP

outperforms PRUTHI by 52.2% in terms of success rate, while

PRUTHI achieves a slightly better PPL score than LEAP.

In addition, Table I shows that the three heuristics of

PSOattack, IGA, and LEAP always have the highest success

rate. Besides, Table II presents test cases generated from

the same testing sequence by the three methods on a BERT

finetuned by AG’s News. It can be seen that the test case

generated by LEAP not only deceives the victim model with

high confidence but also makes minor and more natural

changes to the original text. On the other hand, although LEAP

and PSOattack also chose PSO for the iterative search, the

adversarial test case generated by LEAP shows better text

quality regarding the change rate and PPL score.

Answer to RQ1: LEAP generates higher-quality test

cases for structurally different victim models and datasets

with different characteristics, and it performs exception-

ally well in terms of success rates.

Fig. 4. Results of the time overhead for testing different victim models. The
lower the values are, the more efficient the method is.

RQ2: Can LEAP generate test cases more efficiently?
Apart from the quality of test cases, the efficiency of the

testing method, including time overhead and query number,

is also our main concern. Fig. 4 shows the time overhead

of generating test cases for the long text datasets IMDB and

AG’s News. As we can see, for all victim models, LEAP has

less time overhead per successfully generated test case. On

average, LEAP is 2.14s˜147.57s faster than the best baseline

per generated test case. When testing BERT finetuned by

AG’s News, the time overheads of IGA, PSOattack, and LEAP

are 205.28s/it, 177.81s/it, and 70.17s/it, which indicates that

LEAP is more efficient. The vast majority of the testing

process is spent on querying the victim models [59], so the

reduction in time overhead also indicates that LEAP has fewer

query numbers. We show such results in the repository8 due

to limited space.

Answer to RQ2: In terms of testing efficiency, LEAP

can generate successful test cases with less time overhead

and fewer query numbers, thus saving more testing time.

RQ3: How transferable are the test cases generated by
LEAP?

Figure 5 shows the transferability comparison of LEAP

with the baselines, where we selected one baseline (i.e. IGA

and PRUTHI) with excellent performance from heuristic and

non-heuristic test methods, respectively. Fig. 5(a) shows the

success rate results of transferring the test cases made for

testing Distil-BERT to BERT and vice versa in Fig. 5(b). We

find that, for the victim model finetuned on the three different

types of datasets, the test cases generated by LEAP all exhibit

the highest transferability, and the migrated test cases have

a higher success rate [60]. Taking the IMDB dataset as an

example, the success rates of test cases generated by PRUTHI,

IGA, and LEAP on BERT are 13.4%, 90.8%, and 92.2%,

respectively. The success rates of migration to Distil-BERT

are 8.4%, 35.6%, and 65.6%, and LEAP still maintains the

highest success rate.

8https://github.com/lumos-xiao/LEAP

1143

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 18,2023 at 02:27:06 UTC from IEEE Xplore. Restrictions apply.

TABLE I
PERFORMANCE OF SIX METHODS TO GENERATE TEST CASES. nan IN CHECKLIST REFERS TO THE PREDICTIONS OF ALL GENERATED TEST CASES BEING

THE SAME AS THE ORIGINAL LABELS.

Dataset Baseline BERT Distil-BERT LSTM
S-rate C-rate PPL S-rate C-rate PPL S-rate C-rate PPL

IMDB

PSOattack 0.913 0.174 82.836 0.902 0.166 239.405 0.832 0.025 42.003
IGA 0.908 0.123 49.584 0.892 0.121 58.197 0.799 0.121 44.165

Checklist 0.020 0.224 46.291 0.016 0.611 46.012 0.188 0.407 64.049
A2T 0.246 0.083 270.717 0.304 0.068 45.541 0.668 0.043 39.628

PRUTHI 0.134 0.046 207.779 0.188 0.034 43.227 0.224 0.005 45.263
LEAP 0.922 0.113 43.603 0.910 0.115 42.179 0.860 0.040 36.364

AG’s News

PSOattack 0.696 0.244 690.094 0.644 0.248 800.665 0.692 0.197 343.657
IGA 0.705 0.179 1013.61 0.621 0.168 750.969 0.656 0.165 305.628

Checklist 0.004 0.032 1555.637 0.008 0.029 1677.115 0.036 0.066 445.628
A2T 0.096 0.091 1142.844 0.076 0.090 925.113 0.152 0.077 512.617

PRUTHI 0.092 0.029 1202.431 0.064 0.031 1182.057 0.104 0.031 423.197
LEAP 0.812 0.157 673.893 0.672 0.162 744.605 0.896 0.211 214.954

POEM

PSOattack 0.658 0.196 2176.741 0.640 0.201 620.848 0.595 0.165 616.108
IGA 0.576 0.179 2198.094 0.588 0.200 3921.968 0.499 0.143 523.979

Checklist nan nan nan nan nan nan 0.048 0.051 503.804
A2T 0.100 0.169 718.661 0.165 0.167 729.203 0.141 0.063 552.704

PRUTHI 0.469 0.168 2472.985 0.416 0.162 5795.784 0.129 0.025 448.347
LEAP 0.714 0.161 2076.027 0.681 0.157 991.764 0.651 0.133 489.931

TABLE II
EXAMPLES OF ADVERSARIAL TEST CASES GENERATED BY THREE

METHODS USING BERT AS THE VICTIM MODEL.

(Original Text) Prediction = Sci/Tech. (Confidence = 0.983)

TheStreet.com May Be Up for Sale – Report (Reuters) Reuters - The

Street.com Inc. , the financial news and commentary Web site, may be

up for sale, according to a report in Business Week, sparking a 7 percent

rise in its shares.

(IGA) Prediction = Business. (Confidence = 0.920)

TheStreet.kom May Be Up for Sale – Report (Reuters) Reuters - The

Street.com Inc. , the financial novice and commentary Network site,

may be up for sale, according to a report in Business Week, sparking

a 7 percent rise in its shares.

(PSOattack) Prediction = Business. (Confidence = 0.983)

TheStreet.com May Be Up for Sale – Exposition (Reuters) Reuters -

TheStreet.com Inc. , the fiscal news and critique Web locale, may be up

for monopoly, according to a report in Business Week, sparking a 7 per-

cent rise in its stocks.

(LEAP) Prediction = Business. (Confidence = 0.998)

TheStreet.com May Be Up for Sale – Report (Reuters) Reuters - The

Street.com Inc. ,the financial news and commentary vane site, may be up

for sale, according to a report in job Week, sparking a 7 percent rise in

its shares.

Note: As the text in AG’s News is of moderate length, we use it to
showcase the adversarial test cases. The modified words in the adversarial

test cases are highlighted in red.

Answer to RQ3: Test cases generated by LEAP have

higher transferability, which means that LEAP is able

to uncover more defects in DNN-based systems even

without access to their internal DNN models.

RQ4: Whether the test cases generated by LEAP con-

Fig. 5. The success rates of transferred adversarial test cases on the three
datasets (want ↑)

tribute to enhancing the robustness of the victim model?
For this research question, to simulate the low-resource

scenario, we mixed the adversarial test cases generated from

10% of the original training set with the original training set

according to the experimental setting of [61]. We used the

IMDB with the most extended text length (i.e., 215 words/it)

in our experimental datasets as the original dataset, resulting in

three adversarial training sets as shown in Table III. The suc-

cess rates of all the methods on different adversarial training

datasets decreased, and the success rates on the victim models

finetuned with IMDBLEAP are 3.9%, 77.59%, and 80.4%,

respectively, with the most significant decreases. This implies

that the test cases generated by LEAP improve the model’s

robustness more than the other baselines, since a lower success

rate demonstrates that the victim model correctly classifies

more adversarial test cases. Notably, LEAP still manages to

obtain the highest success rate regardless of which adversarial

training set finetuned victim model is tested, which further

illustrates the excellent performance of LEAP in mining the

defects of DNN-based systems.

We use the change rate to measure the quality of test

cases. The adversarially trained victim models, especially

1144

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 18,2023 at 02:27:06 UTC from IEEE Xplore. Restrictions apply.

TABLE III
PERFORMANCE COMPARISON OF TEST METHODS ON BERT AFTER

ADVERSARIAL TRAINING.

Baseline Indicator IMDB IMDBPRU IMDBIGA IMDBLEAP

PRU
THI

S-rate 0.134 0.081 0.076 0.039
C-rate 0.046 0.036 0.037 0.053

T-O(s/it) 5.164 4.052 5.858 4.599

IGA
S-rate 0.908 0.904 0.848 0.776
C-rate 0.123 0.137 0.162 0.166

T-O(s/it) 33.195 26.387 58.124 69.357

LEAP
S-rate 0.922 0.918 0.909 0.804
C-rate 0.112 0.132 0.146 0.161

T-O(s/it) 29.383 25.632 41.766 54.431

those finetuned using IMDBLEAP , force the test method to

increase the original text’s perturbation to generate successful

test cases. As shown in Table III, when testing the victim

model finetuned by IMDBPRU and IMDBIGA, the change

rate of PRUTHI becomes lower instead. We believe this is

because PRUTHI increases the perturbation on the original

text to generate mostly failed test cases, which leads to an

excessive decrease in the success rate compared to the one

on the original training set. In addition, we observed that

models finetuned by the adversarial training sets significantly

increased the time overhead of the test methods, with the

models finetuned using IMDBLEAP increasing the most. This

also indicates that testing tools have the most difficulty to find

successful adversarial test cases for the model finetuned with

LEAP-generated test cases, which on the other hand indicates

LEAP can improve the robustness of victim models.

Answer to RQ4: The training set with test cases gener-

ated by LEAP significantly reduces the success rate, case

quality, and efficiency of the test methods. Therefore, the

adversarial test cases generated by LEAP are efficacious

for improving the robustness of the victim model.

RQ5: Does each of the method components proposed in
this paper improve the quality of the generated test cases
and the testing efficiency of LEAP?

We finetuned BERT as the victim model on three datasets,

ablating each component of LEAP that is different from

the most similar existing work PSOattack to investigate its

effectiveness. Table IV shows the experimental results using

1000 test examples. Since the test set of POEM only contains

104 examples, we sampled the test set 10 times using different

random seeds with 100 examples each time. On the IMDB

dataset, LEAP only improves the success rate by 0.9% com-

pared to PSOattack. However, LEAP is nearly twice as fast as

PSOattack in terms of time overhead. On AG’s News, LEAP

shows significant improvement in all the metrics. In particular,

the use of Levy flight for population initialization and adaptive

update operator increases the success rate by 11.6%, reduces

the change rate by 8.66%, and decreases the time overhead by

107.64s. On POEM, the use of the greedy variation operator

reduces the success rate of LEAP by 0.3%, which is because

the introduction of the greedy strategy increases the risk of the

search algorithm falling into local optima in high-dimensional

TABLE IV
RESULTS OF ABLATION STUDY ON LEVY FLIGHT-BASED POPULATION

INITIALIZATION, ADAPTIVE UPDATE PARTICLES (adaptive), AND GREEDY

MUTATION (greedy).

Dataset Testing method S-rate C-rate T-O(s/it)

IMDB

PSOattack 0.913 0.173 58.533
w/o adaptive,greedy 0.916 0.135 44.026

w/o greedy 0.916 0.118 34.785
LEAP 0.922 0.113 29.380

AG’s News

PSOattack 0.696 0.244 177.811
w/o adaptive,greedy 0.712 0.178 123.042

w/o greedy 0.778 0.158 99.688
LEAP 0.812 0.157 70.174

POEM

PSOattack 0.658 0.196 1.457
w/o adaptive,greedy 0.690 0.189 1.930

w/o greedy 0.711 0.169 1.835
LEAP 0.714 0.161 1.426

text data. However, it effectively reduces the change rate by

0.8% and the time overhead by 0.41s. Overall, despite the

datasets being from different domains with different textual

features, LEAP’s improved strategy achieves better test results

than PSOattack.

Answer to RQ5: Compared to the most similar existing

work, LEAP’s components are effective in generating

high-quality test cases more efficiently.

VI. THREATS TO VALIDITY

Our experimental results demonstrate LEAP’s effectiveness.

However, we also acknowledge some threats to validity.

Internal validity. The main threat comes from the setting

of hyperparameters in the experiments, such as population size

and the maximum number of iterations. To mitigate the threat,

we use the same hyperparameters for all experiments on each

dataset, and try to choose the same hyperparameters as the

existing method PSOattack to show the validity of our method.

External validity. Our experiments focused on testing

DNNs in an English environment, which may threaten the

generality of LEAP for other languages. But applying LEAP

on DNNs in other languages requires only minor input adjust-

ments. We mitigate this threat by evaluating our approach on

three kinds of datasets and three types of NLP models. This

makes us confident that LEAP will work across a variety of

NLP applications.

VII. RELATED WORK

Testing AI Software. The development of Artificial Intel-

ligence (AI) software has been gaining momentum in recent

years, with a growing need for effective testing strategies to

ensure their reliability and performance. Automated testing

techniques have been widely used by software professionals

due to their efficiency, cost-effectiveness and reusability. In the

field of Computer Vision (CV), a large number of automated

testing techniques have been proposed [62]–[64]. The primary

difference between NLP and CV software is that the feature

space of text data is discrete, and any modifications to the

original example are more likely to result in errors in semantics

1145

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 18,2023 at 02:27:06 UTC from IEEE Xplore. Restrictions apply.

and sentence fluency, which can be easily detected [20].

Morris et al. [36] decomposed the testing process into four

components: goal function, constraint list, transformation, and

search method, and unified them within the Python framework

TextAttack. Tan et al. [52] demonstrated the incorporation

of adversarial attacks as reliability tests into the reliability

testing framework DOCTOR, presenting a method to enhance

accountability in existing efforts. Overall, there are three

main types of DNN-based automated testing methods for

AI software: 1) white-box testing methods [23], [65] based

on internal information such as DNN gradients, 2) greedy

methods [21], [22] that modify the text at each specific index

to minimize the original DNN prediction, and 3) heuristic

methods [25], [26] that heuristically search for the optimal

option among potential test cases.

Testing NLP Software. In the field of NLP, Ribeiro et

al. [53] utilized large-scale language models and human feed-

back to generate adaptive unit tests for victim models. Wu

et al. [54] developed Errudite, an interactive tool that utilizes

domain-specific language to facilitate precise error grouping

and analysis. In contrast, our paper focuses on automating the

testing of NLP software, taking into account time and cost

constraints. Based on the minimum perturbation units used in

applications, related works are divided into three aspects:

1) Sentence-level method. Sentence-level testing methods

are more flexible in terms of perturbation, and the modified

sentence can be inserted in any part of the text when the

semantics and syntax are correct. It is executed by adding

ordered words of a certain length. Sentence-level methods

are widely used in Q&A [66], [67] and machine understand-

ing [68], [69] systems, but have yet received more research

in text classification [70]. Since the sentence-level method

modifies the entire sentence with a substantial impact on

the semantics of the paragraph [71], the naturalness of the

generated test cases is particularly affected. Even if the test is

successful, it is often incomprehensible to humans. In contrast,

our method only modifies individual words of the original text

with controlled modification restrictions, thus ensuring better

naturalness.

2) Char-level method. Char-level methods aim to modify

a few characters within a word to generate test cases that

cause DNNs to make decisions incorrectly [72], [73]. Given

that the modifications typically involve spelling errors, Li et

al. [27] generated adversarial test cases by inserting, swapping,

and deleting specific characters, combined with the Jacobian

matrix of the victim model. Since character-level methods

are prone to produce misspelled words [74], today’s splendid

spell-checking tools can easily detect such perturbations. In

contrast, LEAP plans the perturbation space utilizing a lexical

network to produce a synonym dictionary, and the potential

perturbations are all actual words, so there is no problem with

misspellings.

3) Word-level method. Word-level methods perturb text by

inserting, deleting, and replacing whole words, which is signif-

icantly better than other methods in naturalness and transfer-

ability, and therefore has gained the most attention [75], [76].

Li et al. [39] utilized pre-trained language models as masked

models to generate substitute words, considering contextual

information. Jin et al. [48] employed word importance ranking

and cosine similarity between word vectors for synonym

replacement. Ye et al. [55] formulated a hard-label scenery

as an optimization problem based on gradient perturbation

metrics in word embedding space, generating test cases with

smaller query budgets and higher semantic similarity. LEAP

is a word-level testing method that uses PSO to determine the

words to be replaced and redesigns the internal arithmetic of

PSO by combining the features of NLP test cases. This allows

our method to guarantee the same high success rate as other

heuristic testing methods while requiring less time overhead

and fewer queries.

VIII. CONCLUSION

In this paper, we propose LEAP, a black-box testing method

for DNN-based NLP systems that efficiently generates ad-

versarial test cases. To address the problems of low data

utilization and high time overhead in current testing methods,

we design new components for discrete text data, including

initializing populations using Levy flight, adaptively updating

particles, and employing a greedy mutation approach. We

evaluate the performance of LEAP using three datasets, three

advanced deep learning models, and five baselines. The ex-

perimental results demonstrate that the average success rate of

adversarial test cases generated by LEAP is 79.1%, surpassing

other baselines, and that the time overhead is reduced by

2.14s˜147.57s compared to other heuristic-based methods. We

also investigate the value of adversarial test cases generated

by LEAP in enhancing the robustness of victim models.

For future work, we plan to enhance the scalability of

LEAP to encompass a broader range of NLP downstream

tasks and accommodate more complex perturbation scenarios,

including character-level or sentence-level modifications. To

achieve this, we will explore modular granularity settings and

adaptive search algorithms as potential solutions.

ACKNOWLEDGMENT

This work is supported by the National Natural Science

Foundation of China under Grants 62272145 and U21B2016.

REFERENCES

[1] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, “Deep contextualized word representations,” in
Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), (New Orleans, Louisiana), pp. 2227–
2237, Association for Computational Linguistics, June 2018.

[2] J. D. M.-W. C. Kenton and L. K. Toutanova, “Bert: Pre-training of deep
bidirectional transformers for language understanding,” in Proceedings
of NAACL-HLT, pp. 4171–4186, 2019.

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[4] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, P. J. Liu, et al., “Exploring the limits of transfer learning
with a unified text-to-text transformer.,” J. Mach. Learn. Res., vol. 21,
no. 140, pp. 1–67, 2020.

1146

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 18,2023 at 02:27:06 UTC from IEEE Xplore. Restrictions apply.

[5] H. Liu and Z. Long, “An improved deep learning model for predicting
stock market price time series,” Digital Signal Processing, vol. 102,
p. 102741, 2020.

[6] T. H. Le, H. Chen, and M. A. Babar, “Deep learning for source code
modeling and generation: Models, applications, and challenges,” ACM
Computing Surveys (CSUR), vol. 53, no. 3, pp. 1–38, 2020.

[7] S. Cho, W. Shin, N. Kim, J. Jeong, and H. P. In, “Priority determination
to apply artificial intelligence technology in military intelligence areas,”
Electronics, vol. 9, no. 12, p. 2187, 2020.

[8] S. Lee, S. Cha, D. Lee, and H. Oh, “Effective white-box testing of deep
neural networks with adaptive neuron-selection strategy,” in Proceedings
of the 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis, pp. 165–176, 2020.

[9] S. Sparks, S. Embleton, R. Cunningham, and C. Zou, “Automated
vulnerability analysis: Leveraging control flow for evolutionary input
crafting,” in Twenty-Third Annual Computer Security Applications Con-
ference (ACSAC 2007), pp. 477–486, IEEE, 2007.

[10] A. Kolchin and S. Potiyenko, “Extending data flow coverage to test
constraint refinements,” in Integrated Formal Methods: 17th Interna-
tional Conference, IFM 2022, Lugano, Switzerland, June 7–10, 2022,
Proceedings, pp. 313–321, Springer, 2022.

[11] J. Guo, Y. Jiang, Y. Zhao, Q. Chen, and J. Sun, “Dlfuzz: Differential
fuzzing testing of deep learning systems,” in Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pp. 739–
743, 2018.

[12] C. Lemieux and K. Sen, “Fairfuzz: A targeted mutation strategy for
increasing greybox fuzz testing coverage,” in Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing, pp. 475–485, 2018.

[13] X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao,
B. Li, J. Yin, and S. See, “Deephunter: a coverage-guided fuzz testing
framework for deep neural networks,” in Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
pp. 146–157, 2019.

[14] Z. Yu, F. Fahid, T. Menzies, G. Rothermel, K. Patrick, and S. Cherian,
“Terminator: Better automated ui test case prioritization,” in Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
pp. 883–894, 2019.

[15] N. Yousaf, F. Azam, W. H. Butt, M. W. Anwar, and M. Rashid,
“Automated model-based test case generation for web user interfaces
(wui) from interaction flow modeling language (ifml) models,” IEEE
Access, vol. 7, pp. 67331–67354, 2019.

[16] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Humanoid: A deep learning-
based approach to automated black-box android app testing,” in 2019
34th IEEE/ACM International Conference on Automated Software En-
gineering (ASE), pp. 1070–1073, IEEE, 2019.

[17] M. A. Cusumano and S. A. Smith, “Beyond the waterfall: Software
development at microsoft,” 1995.

[18] A. M. Dima and M. A. Maassen, “From waterfall to agile software:
Development models in the it sector, 2006 to 2018. impacts on company
management,” Journal of International Studies, vol. 11, no. 2, pp. 315–
326, 2018.

[19] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus, “Intriguing properties of neural networks,” in
2nd International Conference on Learning Representations, ICLR 2014,
2014.

[20] B. Liang, H. Li, M. Su, P. Bian, X. Li, and W. Shi, “Deep text
classification can be fooled,” in IJCAI, 2018.

[21] M. T. Ribeiro, T. Wu, C. Guestrin, and S. Singh, “Beyond accuracy:
Behavioral testing of nlp models with checklist (extended abstract),” in
Thirtieth International Joint Conference on Artificial Intelligence IJCAI-
21, 2021.

[22] D. Pruthi, B. Dhingra, and Z. C. Lipton, “Combating adversarial
misspellings with robust word recognition,” in Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics,
pp. 5582–5591, 2019.

[23] J. Y. Yoo and Y. Qi, “Towards improving adversarial training of nlp
models,” in Findings of the Association for Computational Linguistics:
EMNLP 2021, pp. 945–956, 2021.

[24] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional net-
works for text classification,” Advances in neural information processing
systems, vol. 28, pp. 649–657, 2015.

[25] X. Wang, H. Jin, and K. He, “Natural language adversarial attacks and
defenses in word level,” arXiv preprint arXiv:1909.06723, 2019.

[26] Y. Zang, F. Qi, C. Yang, Z. Liu, M. Zhang, Q. Liu, and M. Sun,
“Word-level textual adversarial attacking as combinatorial optimization,”
in Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, (Online), pp. 6066–6080, Association for
Computational Linguistics, July 2020.

[27] J. Li, S. Ji, T. Du, B. Li, and T. Wang, “Textbugger: Generat-
ing adversarial text against real-world applications,” arXiv preprint
arXiv:1812.05271, 2018.

[28] C. Hagen and J. Sorenson, “Delivering military software affordably,”
Defense AT&L, vol. 42, no. 2, pp. 30–34, 2013.

[29] A. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning word vectors for sentiment analysis,” in Proceedings of the
49th annual meeting of the association for computational linguistics:
Human language technologies, pp. 142–150, 2011.

[30] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-
ings of ICNN’95-international conference on neural networks, vol. 4,
pp. 1942–1948, IEEE, 1995.

[31] G. A. Miller, “Wordnet: A lexical database for english,” Commun. ACM,
vol. 38, p. 39–41, nov 1995.

[32] Z.-H. Zhan, J. Zhang, Y. Li, and H. S.-H. Chung, “Adaptive particle
swarm optimization,” IEEE Transactions on Systems, Man, and Cyber-
netics, Part B (Cybernetics), vol. 39, no. 6, pp. 1362–1381, 2009.

[33] Y. Shi and R. C. Eberhart, “Fuzzy adaptive particle swarm optimization,”
in Proceedings of the 2001 congress on evolutionary computation (IEEE
Cat. No. 01TH8546), vol. 1, pp. 101–106, IEEE, 2001.

[34] P. Liu, X. Qiu, and X. Huang, “Recurrent neural network for text
classification with multi-task learning,” in Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelligence, pp. 2873–
2879, 2016.

[35] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter,” 2019.

[36] J. Morris, E. Lifland, J. Y. Yoo, J. Grigsby, D. Jin, and Y. Qi, “Textattack:
A framework for adversarial attacks, data augmentation, and adversarial
training in nlp,” in Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations,
pp. 119–126, 2020.

[37] F. Jelinek, R. L. Mercer, L. R. Bahl, and J. K. Baker, “Perplexity—a
measure of the difficulty of speech recognition tasks,” The Journal of
the Acoustical Society of America, vol. 62, no. S1, pp. S63–S63, 1977.

[38] P. Lévy, “L’addition des variables aléatoires définies sur une cir-
conférence,” Bulletin de la Société mathématique de France, vol. 67,
pp. 1–41, 1939.

[39] L. Li, R. Ma, Q. Guo, X. Xue, and X. Qiu, “Bert-attack: Adversarial
attack against bert using bert,” in Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP),
pp. 6193–6202, 2020.

[40] S. Phommixay, M. L. Doumbia, and D. Lupien St-Pierre, “Review on
the cost optimization of microgrids via particle swarm optimization,”
International Journal of Energy and Environmental Engineering, vol. 11,
no. 1, pp. 73–89, 2020.

[41] T. Latchoumi, T. Ezhilarasi, and K. Balamurugan, “Bio-inspired weighed
quantum particle swarm optimization and smooth support vector ma-
chine ensembles for identification of abnormalities in medical data,” SN
Applied Sciences, vol. 1, no. 10, pp. 1–10, 2019.

[42] B. Su, Y. Lin, J. Wang, X. Quan, Z. Chang, and C. Rui, “Sewage
treatment system for improving energy efficiency based on particle
swarm optimization algorithm,” Energy Reports, vol. 8, pp. 8701–8708,
2022.

[43] G. Tambouratzis, “Pso optimal parameters and fitness functions in an
nlp task,” in 2019 IEEE Congress on Evolutionary Computation (CEC),
pp. 611–618, IEEE, 2019.

[44] D. Li, W. Guo, A. Lerch, Y. Li, L. Wang, and Q. Wu, “An adaptive
particle swarm optimizer with decoupled exploration and exploitation
for large scale optimization,” Swarm and Evolutionary Computation,
vol. 60, p. 100789, 2021.

[45] Z. Dong and Q. Dong, “Hownet - a hybrid language and knowledge
resource,” in International Conference on Natural Language Processing
and Knowledge Engineering, 2003. Proceedings. 2003, pp. 820–824,
2003.

[46] A. Einstein, Investigations on the Theory of the Brownian Movement.
Courier Corporation, 1956.

1147

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 18,2023 at 02:27:06 UTC from IEEE Xplore. Restrictions apply.

[47] R. N. Mantegna, “Fast, accurate algorithm for numerical simulation of
levy stable stochastic processes,” Physical Review E, vol. 49, no. 5,
p. 4677, 1994.

[48] D. Jin, Z. Jin, J. T. Zhou, and P. Szolovits, “Is bert really robust?
a strong baseline for natural language attack on text classification
and entailment,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 34, pp. 8018–8025, 2020.

[49] M. Alzantot, Y. Sharma, A. Elgohary, B.-J. Ho, M. Srivastava, and
K.-W. Chang, “Generating natural language adversarial examples,” in
Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pp. 2890–2896, 2018.

[50] E. Sheng and D. C. Uthus, “Investigating societal biases in a poetry
composition system,” in Proceedings of the Second Workshop on Gender
Bias in Natural Language Processing, pp. 93–106, 2020.

[51] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba,
and S. Fidler, “Aligning books and movies: Towards story-like visual
explanations by watching movies and reading books,” in Proceedings of
the IEEE international conference on computer vision, pp. 19–27, 2015.

[52] S. Tan, S. Joty, K. Baxter, A. Taeihagh, G. A. Bennett, and M.-Y.
Kan, “Reliability testing for natural language processing systems,” arXiv
preprint arXiv:2105.02590, 2021.

[53] M. T. Ribeiro and S. Lundberg, “Adaptive testing and debugging of nlp
models,” in Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 3253–3267,
2022.

[54] T. Wu, M. T. Ribeiro, J. Heer, and D. S. Weld, “Errudite: Scalable, repro-
ducible, and testable error analysis,” in Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pp. 747–763,
2019.

[55] M. Ye, C. Miao, T. Wang, and F. Ma, “Texthoaxer: budgeted hard-label
adversarial attacks on text,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 36, pp. 3877–3884, 2022.

[56] C. I. Meister and R. Cotterell, “Language model evaluation beyond
perplexity,” in Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing, vol. 1, pp. 5328–5339,
Association for Computational Linguistics, 2021.

[57] I. ISO and N. IEC, “Iso/iec,” IEEE International Standard-Systems and
software engineering–Vocabulary, pp. 1–541, 2017.

[58] X. Wang, H. Wang, and D. Yang, “Measure and improve robustness
in nlp models: A survey,” in Proceedings of the 2022 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 4569–4586, 2022.

[59] Z. Yang, J. Shi, J. He, and D. Lo, “Natural attack for pre-trained models
of code,” in 2022 IEEE/ACM 44th International Conference on Software
Engineering (ICSE), (Los Alamitos, CA, USA), pp. 1482–1493, IEEE
Computer Society, may 2022.

[60] T. Wang, X. Wang, Y. Qin, B. Packer, K. Li, J. Chen, A. Beutel, and
E. Chi, “Cat-gen: Improving robustness in nlp models via controlled
adversarial text generation,” in Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP),
pp. 5141–5146, 2020.

[61] D. Li, Y. Zhang, H. Peng, L. Chen, C. Brockett, M.-T. Sun, and W. B.
Dolan, “Contextualized perturbation for textual adversarial attack,” in
Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, pp. 5053–5069, 2021.

[62] Z. Yuan, J. Zhang, Y. Jia, C. Tan, T. Xue, and S. Shan, “Meta gradient
adversarial attack,” in 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 7728–7737, IEEE Computer Society, 2021.

[63] J. Rony, E. Granger, M. Pedersoli, and I. B. Ayed, “Augmented la-
grangian adversarial attacks,” in 2021 IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pp. 7718–7727, IEEE, 2021.

[64] P. Zhang, B. Ren, H. Dong, and Q. Dai, “Cagfuzz: coverage-guided
adversarial generative fuzzing testing for image-based deep learning
systems,” IEEE Transactions on Software Engineering, 2021.

[65] J. Ebrahimi, A. Rao, D. Lowd, and D. Dou, “Hotflip: White-box
adversarial examples for text classification,” in Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), pp. 31–36, 2018.

[66] W. C. Gan and H. T. Ng, “Improving the robustness of question
answering systems to question paraphrasing,” in Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics,
pp. 6065–6075, 2019.

[67] E. Wallace, P. Rodriguez, S. Feng, I. Yamada, and J. Boyd-Graber, “Trick
me if you can: Human-in-the-loop generation of adversarial examples for
question answering,” Transactions of the Association for Computational
Linguistics, vol. 7, pp. 387–401, 2019.

[68] J. Lin, J. Zou, and N. Ding, “Using adversarial attacks to reveal the
statistical bias in machine reading comprehension models,” inProceed-
ings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 2: Short Papers), pp. 333–342, 2021.

[69] Y. Wang and M. Bansal, “Robust machine comprehension models via
adversarial training,” in Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Papers), pp. 575–581,
2018.

[70] Y. Xu, X. Zhong, A. J. Yepes, and J. H. Lau, “Grey-box adversarial
attack and defence for sentiment classification,” inProceedings of the
2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 4078–
4087, 2021.

[71] J.-t. Huang, J. Zhang, W. Wang, P. He, Y. Su, and M. R. Lyu, “Aeon: A
method for automatic evaluation of nlp test cases,” inProceedings of the
31st ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2022, (New York, NY, USA), p. 202–214, Association
for Computing Machinery, 2022.

[72] S. Eger, G. G. Şahin, A. Rücklé, J.-U. Lee, C. Schulz, M. Mesgar,
K. Swarnkar, E. Simpson, and I. Gurevych, “Text processing like humans
do: Visually attacking and shielding nlp systems,” inProceedings of
NAACL-HLT, pp. 1634–1647, 2019.

[73] J. Ebrahimi, D. Lowd, and D. Dou, “On adversarial examples for
character-level neural machine translation,” inProceedings of the 27th
International Conference on Computational Linguistics, pp. 653–663,
2018.

[74] X. Yang, W. Liu, D. Tao, and W. Liu, “Besa: Bert-based simulated
annealing for adversarial text attacks.,” in IJCAI, pp. 3293–3299, 2021.

[75] D. Lee, S. Moon, J. Lee, and H. O. Song, “Query-efficient and
scalable black-box adversarial attacks on discrete sequential data via
bayesian optimization,” in International Conference on Machine Learn-
ing, pp. 12478–12497, PMLR, 2022.

[76] L. Yuan, X. Zheng, Y. Zhou, C.-J. Hsieh, and K.-W. Chang, “On the
transferability of adversarial attacks against neural text classifier,” in
Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 1612–1625, 2021.

1148

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 18,2023 at 02:27:06 UTC from IEEE Xplore. Restrictions apply.

