
IEEE TRANSACTIONS ON RELIABILITY 1

PonziFinder: Attention-Based Edge-Enhanced Ponzi
Contract Detection

Yingying Chen , Bixin Li , Yan Xiao , and Xiaoning Du

Abstract—Ponzi contracts are fraudulent investment scams that
promise high returns with little risk to investors. However, existing
methods for detecting Ponzi contracts have several limitations. For
example, they struggle to deal with the class imbalance problem,
and their analysis of function call transactions is inadequate, re-
sulting in redundant features. To tackle the challenges of detecting
Ponzi contracts, we present PonziFinder, a novel approach that
leverages convolutional-based edge-enhanced graph neural net-
work and attention mechanism for the classification of contract
transaction graphs. In contrast to previous methods, we not only
consider transaction value and timestamp but also analyze trans-
action input to standardize and sort transactions. We extract node
and edge features that capture the unique characteristics of Ponzi
contracts. The edge feature, reflecting interaccount correlation, en-
hances the propagation and updating of node features for effective
Ponzi contract detection. To prevent oversmoothing of node embed-
ding caused by the shallow transaction graph and extract important
account node information, we introduce an attention-based global
layerwise aggregation mechanism (ALGA) for generating the final
contract graph representation for classification. Moreover, we op-
timize the node feature set and use an effective strategy based on
undersampling and ensemble learning to address the issue of class
imbalance. Experimental results show that PonziFinder can detect
all types of Ponzi contracts (100%) with 97% accuracy when there
is sufficient transaction data, outperforming other models. The
analysis of input values and the ALGA mechanism are experimen-
tally shown to improve accuracy by 4% and 2%, respectively. In
summary, PonziFinder is a novel and effective method for detecting
Ponzi contracts. Our approach addresses the limitations of existing
methods and demonstrates significant improvements in accuracy
and efficiency.

Index Terms—Graph neural network (GNN), imbalanced data
classification, Ponzi contracts, undersampling.

I. INTRODUCTION

E THEREUM is a decentralized, global software platform
that operates on blockchain technology. Its ability to sup-

port smart contracts enables it to function as a programmable
data-sharing platform [1]. Once a smart contract is deployed, it

Manuscript received 3 May 2023; revised 18 September 2023 and 18 De-
cember 2023; accepted 21 February 2024. This work was supported by the
Key Research and Development Program of Jiangsu Province under Grant
BE2021002-3. Associate Editor: H. K. T. Ng. (Corresponding author: Bixin
Li.)

Yingying Chen and Bixin Li are with the School of Computer Sci-
ence and Engineering, Southeast University, Nanjing 211189, China (e-mail:
bx.li@seu.edu.cn).

Yan Xiao is with the School of Cyber Science and Technology, Shenzhen
Campus of Sun Yat-sen University, Shenzhen 518107, China.

Xiaoning Du is with Monash University, Clayton, VIC 3800, Australia.
Digital Object Identifier 10.1109/TR.2024.3370734

cannot be modified. Therefore, any errors or pitfalls in deployed
smart contracts can cause cryptocurrency loss. The security
issues of smart contracts are primarily divided into code security
and contract security. Code security focuses on smart contracts
that are vulnerable to attackers due to code or other designs, such
as reentrancy [2], timestamp dependence [3], and others [4].
On the other hand, contract security focuses on fraudulent
events introduced into the blockchain domain, such as Ponzi
schemes [5] and Honeypot [6]. Given the increasing prevalence
of traditional scams, contract security is in urgent need of being
addressed.

A Ponzi scheme is a classic form of fraud that has migrated
to the blockchain ecosystem in smart contracts. Due to the
close-source nature of most smart contracts, stakeholders find
it challenging to comprehend the execution logic of smart con-
tracts thoroughly. The unique execution mechanism of smart
contracts offers numerous advantages to contract creators, in-
cluding no maintenance costs after the implementation of smart
contracts, operator anonymity, and stakeholder confidence in
continuous repayment because smart contracts are automatically
executed and cannot be terminated [7]. Shockingly, statistics
reveal that Ponzi schemes operating through Bitcoin raised over
$7 million between September 2013 and September 2014 [5].
The emergence of Ponzi contracts has resulted in significant
losses to stakeholders and poses a severe threat to blockchain
security.

To address this issue, researchers have proposed three kinds
of methods to detect Ponzi contracts as follows.

1) Code Feature-Based Methods: mainly focus on analyzing
Ponzi contracts with representative structures and logic
from the perspective of source code or bytecode using ma-
chine learning [8], [9], [10], [11] and and other traditional
methods [12], [13], [14], [15].

2) Transaction Feature-Based Methods: use transaction in-
formation for Ponzi contract detection, commonly em-
ploying transaction network analysis using GNNs [16] or
analyzing transaction data by calculating the Gini coeffi-
cient [17].

3) Combined Feature-Based Methods: consider the combi-
nation of code features and transaction features, typically
extracting code features by calculating the opcode fre-
quency, extracting transaction features based on historical
contract transaction information, and using machine learn-
ing methods for automatic detection [7], [18], [19], [20].
In addition, some works also combine bytecode features
to improve detection accuracy [21].

1558-1721 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on March 22,2024 at 11:52:17 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0009-0001-8330-096X
https://orcid.org/0000-0001-9916-4790
https://orcid.org/0000-0002-2563-083X
https://orcid.org/0000-0003-3728-9541
mailto:bx.li@seu.edu.cn


2 IEEE TRANSACTIONS ON RELIABILITY

However, code feature-based methods can only target Ponzi
contracts with representative structures and logics, making it
challenging to deal with contracts that vary greatly in code
implementation. Combined feature-based methods utilize code
features and transaction features in a simple way, neglecting
the structural information of the transaction network. In con-
trast, transaction feature-based methods often analyze historical
transaction information of contracts and effectively detect Ponzi
contracts. Recent studies attempt to construct transaction flow
graphs using historical transaction information of contracts and
extract suitable node features based on GNN algorithms for clas-
sification. However, they lack in-depth mining and analysis of
transaction information and have some drawbacks, 1) including
redundant and inadequate extracted features, for example, five
features of minimum, maximum, sum, mean, and variance are
extracted only for the amount of income, 2) only taking edge
as the transmission medium of information, and 3) ignoring
the importance of edges in the transaction network. Moreover,
the large difference in the number of Ponzi contracts and non-
Ponzi contracts makes it challenging to solve the imbalanced
data classification problem, which remains a focus of current
research. Therefore, Ponzi contract detection methods still need
improvement to cope with undiscovered Ponzi contracts with
diverse implementations.

To address the limitations of existing methods, we propose a
novel method called PonziFinder, which models the detection
problem as a graph classification task and starts by crawling
and preprocessing the historical transaction data for each con-
tract in the dataset. Unlike existing methods that rely on code
implementation, PonziFinder considers only real transaction
records, allowing for more accurate detection by analyzing the
topology of the transaction network. We extract node and edge
features based on the unique characteristics of Ponzi contracts
and construct a contract transaction graph using contract and
external accounts as nodes and transactions as connecting edges.
We also select an optimal node feature set to improve model
efficiency. Our observation of Ponzi contract transactions reveals
that 68.5% of them only call functions with no amount, and
their originators are often Ponzi contract beneficiaries, such
as the contract creator. We extract this information as an edge
feature to enhance account node features, as beneficiaries are
more likely to be associated with Ponzi contracts. We then
use convolutional-based edge-enhanced graph neural network
(EGNN(C)) to propagate and update node information through
transaction edges. In each convolution layer, we apply Set2Set to
aggregate informative node representations using attention. The
resulting representations are then fed into the attention-based
global layerwise aggregation mechanism (ALGA) to obtain the
final graph representation for classification. To address the class
imbalance problem, we provide single-model and multimodel
approaches based on undersampling and ensemble learning.

The contributions of this article are summarized as follows.
1) We analyze the input, timestamp, and value data of the

contract transactions and perform specialized preprocess-
ing tailored to the characteristics of Ponzi contracts. This
preprocessing improves the quality of the data and enables
the model to better identify Ponzi contracts.

2) We distinguish between transfer and nontransfer trans-
actions and calculate their sums as transaction edge fea-
tures, which enhances the account node information and
improves the model’s ability to detect Ponzi contracts.

3) We present the design of PonziFinder, including the core
EGNN(C) model with the Set2Set graph-level feature ex-
traction module to extract global features of the smart con-
tract graph. We also adopt the ALGA to overcome the node
feature oversmoothing problem that arises from the shal-
low trading graphs. Our experimental results demonstrate
that our model achieves the best overall performance,
with precision exceeding 95%, and accuracy and F1-score
exceeding 97%, while achieving a recall of 100%.

The rest of this article is organized as follows. In Section II,
we give a brief introduction of some background knowledge. A
detailed description of our method is presented in Section III.
Experimental results and analysis are shown in Section IV. The
power of PonziFinder is demonstrated in Section V through
recent Ponzi contracts. We summarize existing work related to
Ponzi contracts detection and compare them with our method in
Section VI. Finally, Section VII concludes this article.

II. BACKGROUND KNOWLEDGE

This section briefly introduces some key background knowl-
edge involved in this study, including Ethereum and smart
contracts, transaction and input data, Ponzi contracts, taxonomy
of Ponzi schemes, and graph neural networks.

A. Ethereum and Smart Contract

Ethereum is an open-source public blockchain platform that
executes contract programs written in a Turing-complete byte-
code language.

Currently, smart contracts in Ethereum are mainly written in
Solidity, consisting of functions, user-defined modifiers, events,
and data. To be executed in Ethereum virtual machine (EVM),
the source code of a smart contract must be compiled into
bytecode. Once deployed on the blockchain, the bytecode is
transparent to all developers and the execution of the smart
contract is fully compliant with the prerequisite logic and is not
even interfered with by the creator. All methods can be called
by anyone, except those marked as internal or private [2].

B. Transaction and Input Data

Users can send transactions to the Ethereum network in order
to: 1) create a new contract; 2) invoke functions of the contract;
3) transfer ether to contracts or to other users [5].

Input data are a part of the transaction, representing the func-
tion and argument to the invoked smart contract. In particular,
the input data used in the contract creation transaction represent
the constructor argument. Generally, input data have a basic
structure of function identifier and parameters, and its raw and
parsed forms are shown in Fig. 1. Function identifier is the
function selector, which is the first 4 B of the Keccak hash
of a function signature, and is used as a unique identifier for
the function. Parameters represent the parameter input of the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on March 22,2024 at 11:52:17 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: PONZIFINDER: ATTENTION-BASED EDGE-ENHANCED PONZI CONTRACT DETECTION 3

Fig. 1. Two forms of a transaction input data. (a) Raw form of a transaction
input data. (b) Parsed form of a transaction input data.

corresponding function, generally a parameter occupies 32 B,
with the high bit complemented by zero.

C. Ponzi Contracts

A Ponzi scheme is a typical fraudulent investment activity
named after the originator of a massive scam. U.S. Securities
and Exchange Commission [22] defines Ponzi scheme fraud in
general as “A Ponzi scheme is an investment fraud that involves
the payment of purported returns to existing stakeholders from
funds contributed by new stakeholders. Ponzi scheme organizers
often solicit new stakeholders by promising to invest funds in
opportunities claimed to generate high returns with little or no
risk. With little or no legitimate earnings, Ponzi schemes require
a constant flow of money from new stakeholders to continue.
Ponzi schemes inevitably collapse, most often when it becomes
difficult to recruit new stakeholders or when a large number of
stakeholders ask for their funds to be returned.”

Today, many Ponzi schemes use smart contracts to disguise
themselves because smart contracts are self-executing and can-
not be terminated, which will mislead stakeholders into believ-
ing that they are guaranteed continuous repayment. More im-
portantly, promoters can remain anonymous on the blockchain.
We call these Ponzi schemes as smart Ponzi schemes, and the
corresponding smart contract as Ponzi contracts.

Fig. 2 shows an example of a Ponzi contract code. The creator
of the contract charges a 10% fee to subsequent investors and
can withdraw the money via collectFees(). When the balance of
the contract is sufficient, it will give the early investors a 1.5×
return. When the user transfers the contract or calls the contract
function, the initiator, receiver, transaction amount, transaction
time, and other information will be stored in Ethereum as a
transaction. As shown in the annotations of Fig. 2, similar
information extraction on those transaction data can help us
detect Ponzi contracts.

D. Taxonomy of Ponzi Schemes

According to the existing work [5], most Ponzi contracts can
be roughly classified into four categories as follows.

1) Tree-Shaped Schemes: A tree structure is used to record
the addresses of users. When a user joins the scheme, he
needs to specify a user as the inviter who becomes his
parent node. If no inviter is indicated, the parent will be
the root node. The money of the new user is distributed
among his ancestors, and the distribution logic is that the
closer the ancestor, the larger his share. So if the node has
more descendants, he will get more money.

Fig. 2. Example of Ponzi contracts.

2) Chain-Shaped Schemes: They are a special case of tree-
shaped schemes, where each node of the tree has exactly
one child. These scams usually promise to redeem a certain
multiple of funds when the user raises enough money from
later stakeholders.

3) Waterfall Schemes: Similar to the chain scheme, but with
a different logic for currency allocation. Each new in-
vestment is poured along the investor chain so that each
investor can get his share.

4) Handover Schemes: Only the address of the last user is
stored, and when a new investor joins the scheme the entry
toll is increased. Only one investor will be receiving money
at a time, and once he is paid, he hands over the privilege
to the next user.

E. Graph Neural Networks

In recent years, GNNs have been extensively studied in vari-
ous fields. The downstream tasks of graph neural network (GNN)
are generally divided into node-level tasks and graph-level tasks.
Node-level tasks include node classification and link prediction.
Graph-level tasks include graph generation and graph classifi-
cation.

The existing GNN methods are divided into two categories as
follows: 1) Spectral-based methods, which use the Fourier trans-
form and convolution theorem to define the graph convolution
from the spectral domain, such as graph convolutional network
(GCN) [23]. 2) Spatial-based methods, which implement the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on March 22,2024 at 11:52:17 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE TRANSACTIONS ON RELIABILITY

Fig. 3. Overview of PonziFinder. (a) Data preprocessing. (b) Feature extraction and transaction graph construction. (c) Ponzi contract detection.

graph convolution by defining the aggregation function in the
node domain, such as graph attention network (GAT) [24]. With
the application of GNN, researchers have proposed graph iso-
morphism network (GIN) [25] for graph isomorphic problems,
self-attention graph pooling (SAGPool) [26] for optimization of
graph pooling, and EGNN [27] networks for graphs with edge
features.

For graphs with edge features, there has been a lot of research.
EGNN [27] constructs formulations different from GCN and
GAT, thus enabling them to exploit multidimensional edge fea-
tures and achieve better performance in denoising. R-GCN [28]
further considers the type and direction of edges based on GCN,
and used different weight matrices for different types of edges.
However, since there is only one type of transaction edge,
R-GCN is not suitable for our scheme. Therefore, we choose
EGNN to enhance the classification performance of Ponzi con-
tracts using the number of transactions as the correlation between
accounts.

III. DESIGN OF PONZIFINDER

We propose a novel approach, PonziFinder, for detecting
Ponzi contracts by modeling it as a contract transaction graph
classification task using EGNN(C) [27] and Set2Set [29]. Our
method enables comprehensive learning of both local and global
structure information within the contract graph. To capture the
characteristics of Ponzi contracts’ transaction flow, we conduct
special preprocessing on the transaction data and extract useful
node and edge features. Specifically, we treat trading edges as
a reflection of the correlation degree between account nodes,
rather than just a medium of information transmission. By uti-
lizing EGNN(C) in this context, we demonstrate its potential for
application in the field of Ponzi contract detection. Our approach
represents an innovative and effective method for addressing this
problem.

The overview of our proposed method is depicted in Fig. 3,
which consists of three phases.

1) Data Preprocessing Phase: We crawl transaction data for
each contract from the Ethereum platform and perform opera-
tions, such as filtering and sorting. We assume that each sample
has sufficient transaction data.

2) Feature Extraction and Transaction Graph Construction
Phase: We extract node features and edge features from trans-
action records, taking into account the characteristics of Ponzi
contracts. We then construct an undirected graph for each

contract, with contract accounts and external accounts as nodes
and transactions between accounts as connecting edges.

3) Ponzi Contract Detection Phase: We use the EGNN(C)
model to update the information of each account node by propa-
gating it through transaction edges. For each EGNN(C) layer, we
aggregate all node representations using Set2Set. Subsequently,
we apply the ALGA to extract the final representation of the
entire contract graph. By learning information about the flow
of funds in accounts associated with contracts, PonziFinder can
automatically detect Ponzi contracts.

We will now provide more details on each of these three
phases.

A. Data Preprocessing

Algorithm 1 describes the process of preprocessing the smart
contract transaction data. We crawl the transaction records of
each contract in the dataset on the real Ethereum platform.
The inputs to Algorithm 1 are a set of contract addresses and
their first-order transaction data table. Valid transactions that are
screened according to is Error value is not 1 (Line 2). To optimize
the model’s detection speed and reduce information redundancy,
we conduct special sorting and numbering of transaction records
and related accounts based on the essential characteristics of
Ponzi schemes.

1) Data Normalization: To prevent data overflow caused by
the large values in the “value” and “timestamp” fields of the
transaction records, we perform data normalization on each
contract’s transactions. Specifically, we first calculate the max-
imum transaction amount (max) for each contract and then
reduce all “value” fields in that contract’s transaction records to
1/max of the original value (Line 3). Next, we normalize all the
“timestamp” data in the transaction records of each contract by
mapping the values between 0 and 1 (Line 4). This preprocessing
step ensures that the data are in a suitable range for further
analysis and prevents computational errors.

2) Transaction Sorting: To improve the efficiency of Ponzi
contract detection, we prioritize transactions with fund flows and
accounts with monetary interactions over nonmonetary transac-
tions in the contract transaction history. Furthermore, we per-
form innovative analysis of the input value in the contract trans-
action, inspired by the transaction data of some Ponzi contracts.
As shown in Fig. 4, the input data of a transaction of the Ponzi
contract 0x4fb663c1616bfe80b5b6d5a214efa81d5a121801 is a
string, where 0x5926651d represents the function selector,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on March 22,2024 at 11:52:17 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: PONZIFINDER: ATTENTION-BASED EDGE-ENHANCED PONZI CONTRACT DETECTION 5

Algorithm 1: Contract Transaction Data Preprocessing.

Fig. 4. Example of “input”: A function call taking the account address as an
argument.

followed by the parameters of the function. In this specific case,
the address of 0x3ecfceb33aa98d6f56a9bb3b3e5dbf5b83fca
706 account is added to the investors list of the contract in
this transaction by function call, indicating that the account did
not invest but received payment. We consider this type of input
data to be of significant importance in detecting Ponzi contracts.
Therefore, we further prioritize function call transactions with
parameters among nonmonetary transactions. Specifically, we
rank the contract creation transaction first in the transaction set
of each contract (Line 5). Next, we filter out transactions with
no amounts and sort the remaining ones by “timestamp” order
(Lines 6–8). Nonmonetary transactions with function parame-
ters are then sorted by “timestamp” and added after the monetary
transaction records (Lines 9–11). Finally, all the remaining
transactions are sorted last by “timestamp” (Lines 12–14).

This approach helps to reduce the amount of irrelevant data
and ensure that the model focuses on the most relevant informa-
tion for detecting Ponzi contracts.

3) Account Numbering: The account nodes are assigned a
number based on their first participation time in the sorted
transactions, with the earliest participant assigned the smallest
number (Lines 23–28). In addition, for function call transactions
where an account address appears as a parameter in the input
data, we extract the address and add it to the transaction network
as a node. This new node is then inserted into the execution
position of the transaction (Lines 18–22), which prioritizes
accounts that have a special relationship with the contract.

After preprocessing the transaction data of all contracts in
the dataset, we proceed with feature extraction and transaction
graph construction.

B. Feature Extraction and Transaction Graph Construction

There are two kinds of features to be extracted based on
the characteristics of Ponzi contracts including node and edge
features.

1) Node Feature Extraction: We initially extract the following
12 account node features around the essential characteristics
of Ponzi contracts “using the funds of recent stakeholders to
generate revenue for early stakeholders,” which can be traced to
the code logic shown in Fig. 2.

1© IfContract: Whether the node is the target contract ac-
count (1: yes; 0: no). The trading behavior of the contract
account provides useful information for Ponzi contract
detection.

2© IfCreator: Whether the node is the contract creator ac-
count (1: yes; 0: no). The creator of the contract is often
the beneficiary of a Ponzi scheme, whose trading practices
require special attention.

3© ValueOut: The total amount of value transferred out of this
node. For the external account, this reflects the amount

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on March 22,2024 at 11:52:17 UTC from IEEE Xplore.  Restrictions apply. 



6 IEEE TRANSACTIONS ON RELIABILITY

invested in the contract account. For the contract account,
this represents the amount of money it sends out to other
accounts.

4© ValueIn: Total revenue amount for this node. For the exter-
nal account, this reflects the amount of collection received
from the contract account. For the contract account, this
represents the amount of investment received.

5© IfProfit: Whether the total revenue amount of this node
is greater than the total transfer-out amount (1: yes; 0:
no). In the transaction records of Ponzi contracts, contract
creators and early investors often gain profits, while other
investors often suffer heavy losses.

6© AbusoluteBalance: The difference between the revenue
and expenditure of this node (|ValueIn - ValueOut|).
The absolute value of the difference between income and
expenditure is supplementary information on whether it
is profitable or not.

7© NumOut: Number of outgoing transfers for this node.
For external accounts, the number of outward transfers
reflects the number of investments in contracts. For con-
tract accounts, the number of outward transfers reflects
the number of remittances to other accounts.

8© NumIn: Number of incoming transfers for this node. For
external accounts, it represents the number of times rev-
enue is received from the contract account. For contract
accounts, it represents the number of times the contract
is invested.

9© IfReceiveMoreTimes: Whether the number of incoming
transfers is greater than outgoing transfers for this node
(1: yes; 0: no). In Ponzi contracts, later investors may not
receive a transfer from the contract or receive returns less
than they invest, which can help identify a Ponzi contract.

10© FirstTime: The first transaction time of this node. In Ponzi
contracts, accounts are more likely to make a profit if they
enter contracts early, especially the creators and partners
of the contract.

11© LastTime: The last transaction time of this node. Trading
time plays an important role in Ponzi contracts because
the investment time can have a big impact on the return.

12© LifeTime: Transaction time difference for this node (Last-
Time - FirstTime). Contract creators and early in-
vestors tend to have a long lifetime in contract transac-
tions because they always receive contract payouts. On
the contrary, the late investment may receive little or
no transfer from the contract, the lifetime is relatively
short.

In the transaction graph of a Ponzi contract, the contract
account often appears to display frequent outward transfer and
has small income and expenditure differences because it requires
timely payment to the contract creator and early investors. Con-
tract creator and early investor accounts tend to have a small
number of investments, but frequently receive transfers, and
have a long life cycle. Late-stage investor accounts tend to show
little or even no return after investment and short life cycles. In
contrast, relevant accounts tend not to have such differences in
behavior based on transaction time in the transaction graph of
non-Ponzi contracts.

In addition, an optimal node feature set {IfContract, ValueIn,
IfProfit, NumOut, IfReceiveMoreTimes, FirstTime} is found
for our scheme through experiments to improve efficiency, as
discussed in Section IV-E.

2) Edge Feature Extraction: We extract the edge feature as
the total number of transactions between two account nodes
(TotalTimes). Different from NumOut and NumIn in the node
feature, TotalTimes includes transactions without transaction
amounts that are only used to call the function, which reflects
the degree of association between accounts.

3) Transaction Graph Construction: We construct the undi-
rected graph structure based on contract history transactions,
taking contract accounts and external accounts as nodes and
transactions between accounts as connecting edges.

C. Ponzi Contract Detection

In this subsection, we present our PonziFinder in four steps.
The process is illustrated in Fig. 5, where the red nodes represent
the target contracts, the yellow nodes represent the contract
creators, the blue nodes represent other accounts that have
transactions with the target contracts, and the shade of blue
indicates the transaction time.

Next, we will describe some important steps of the detection
phase.

1) Input: Suppose the transaction graphs of K contracts in the
dataset are {Graph1, Graph2,..., GraphK}. Given the transaction
graph Graphk of a contract k, the inputs to the model are the
node feature matrix Xk ∈ RN×F and the edge feature matrix
Ek ∈ RN×N .N represents the number of nodes in the graph (in
our experiments, we specify the same N for all contract graphs)
and F represents the number of node features. In addition, the
node and edge features are obtained from the first two phases of
PonziFinder discussed in Section III-B and III-C.

2) Passing and Aggregating Node Messages: EGNN(C) [27]
is a convolution-based edge-enhance graph neural network that
can utilize edge features, including those of undirected, directed,
or multidimensional edges.

In our scheme, the edge represents the total number of trans-
actions between accounts, reflecting the degree of correlation
between different account nodes. The EGNN(C) layer enhances
the node features with the edge features, resulting in a more
effective Ponzi contract detection. The input to the network is de-
noted by Xk ∈ RN×F and Ek ∈ RN×N . After passing through
the first EGNN(C) layer,Xk is filtered to produce anN × F new
node feature matrix X1

k . This procedure is repeated for every
subsequent layer. Finally, we get the final representation of the
node XL

k in the L layer.
3) Generating Graph Representation: In the Ponzi contract

transaction graph, the importance of information in different
account nodes varies greatly. For example, the Ponzi contract
account frequently accepts transfers, and the Ponzi contract
creator account calls the contract function many times. Simply
accumulating or averaging the presentation of account nodes
would weaken the expressiveness and lose most information. To
solve this problem, we use Set2Set [29], a graph readout method
based on the attention mechanism, to pool the representation

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on March 22,2024 at 11:52:17 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: PONZIFINDER: ATTENTION-BASED EDGE-ENHANCED PONZI CONTRACT DETECTION 7

Fig. 5. Process of Ponzi contract detection.

of the entire graph. Through Set2Set, we select the informa-
tion of account nodes that are more important for detecting
Ponzi contracts, ensuring that the most critical information is
captured.

Traditionally, graph-level representations are produced by
feeding node embeddings learned by multiple GNN layers to the
global readout. However, as the depth of the network increases,
the node embedding may become oversmoothed, leading to
poor generalization performance of the graph-level output. This
problem is particularly evident in the Ponzi contract graph
detection problem because we focus on the first-order trading
graphs of contracts where the graph’s depth is shallow. Inspired
by [30], we introduce an AGLA that employs a self-attention
mechanism to aggregate the layerwise graph-level features. This
approach effectively extracts and utilizes all depths of global
information.

We apply Set2Set to the output of each EGNN(C) layer.
Typically, we use the node representations Xi

k (where (i =
1, 2, . . .L)) obtained from the previous step as input to Set2Set.
The result is a graph-level representation vector Gi

k for each
layer i. To obtain the final graph-level output, we use a layer-
focused attention mechanism. This mechanism computes an
attention scoreαi

k for each layer i, which reflects the importance
of global features learned at that layer. We then compute the final
aggregated representation Gk of the contract graph k by taking
a weighted average of the layer features.

4) Model Training: The prediction ŷk of the smart contract k
is generated by inputting Gk to the fully connected (FC) layer
and the activation function Sigmoid, which is used to determine
whether the smart contract is a Ponzi contract or not.

The output ŷk is then compared with the true label yk of the
smart contract k, and the performance of the model is measured
by calculating the cross-entropy loss.

However, the number of non-Ponzi contracts far exceeds that
of Ponzi contracts in the blockchain, resulting in an imbalanced

data classification problem. Simply classifying all samples as
non-Ponzi schemes will still result in high classification ac-
curacy. Therefore, Ponzi contract detection is essentially an
imbalanced data classification problem.

To address this issue, data resampling techniques, such as
undersampling and oversampling have been proposed [31].
Oversampling methods increase the number of minority class
samples, but random oversampling can lead to overfitting. Syn-
thesizing minority class data [32] is challenging as it is dif-
ficult to ensure that synthetic data are as valid as real data.
This is particularly difficult for the Ponzi contract graph de-
tection problem, since we need to generate not only node
information but also edge information to form the graph
structure.

Simple random undersampling randomly discards majority
class samples, leading to significant loss of information. How-
ever, in Ethereum smart contracts, a large number of duplicate
transaction streams exist. Thus, we manually audit the transac-
tion data in the dataset and design Algorithm 2 to automatically
perform stratified undersampling of non-Ponzi contracts based
on transaction data. After obtaining the valid contract transaction
(Line 3), we calculate the number of accounts interacting with
the contract (Line 4), the total transaction amount of the contract
(Line 5), the sum of the contract income amount (Lines 6–7),
the sum of contract outcome amount (Lines 8–9), and classify
non-Ponzi contracts into following four categories (Lines 10–
25).

1) Only have transactions with the creator.
2) All transactions have no monetary flow.
3) Only receive money and do not transfer outward.
4) Have normal transactions.
Finally, we conduct stratified sampling according to the

undersampling coefficient to obtain the undersampling result
(Line 26), which reduces the loss of data information to some
extent.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on March 22,2024 at 11:52:17 UTC from IEEE Xplore.  Restrictions apply. 



8 IEEE TRANSACTIONS ON RELIABILITY

Algorithm 2: Stratified Undersampling.

After the undersampling is used to balance the sample cate-
gories, the model can be input for learning. As shown in Fig. 5,
after learning all the data in the training set, the loss values
are fed back to the Adam optimizer to update and optimize the
parameters in the model and perform a new round of training.

IV. EVALUATION

We have developed a prototype tool called PonziFinder, which
automates the detection of Ponzi contracts. Our research seeks
to answer the following six questions.
� RQ1: How effective is PonziFinder in comparison to other

representative Ponzi scheme detection methods and GNN
methods? Can the addition of edge features to the transac-
tion graph lead to a significant improvement in detection
accuracy?

� RQ2: Is PonziFinder capable of detecting various types of
Ponzi contracts compared to other methods?

� RQ3: Can preprocessing steps for analyzing trading input
values improve the effectiveness of Ponzi contract detec-
tion? And can the addition of ALGA mechanism at the
graph readout stage enhance the detection performance?

� RQ4: What is the optimal node feature set for our scheme?
� RQ5: How can PonziFinder avoid randomness and mitigate

information loss with the undersampling method we used?
� RQ6: How do we select optimal hyperparameters?
Next, we first present the experimental settings, followed by

answering the above research questions one by one.

A. Experimental Settings

1) Datasets: To ensure the reliability of the dataset labels, we
combine the labeled dataset provided in literature [7] with the
publicly available Ponzi contracts dataset in literature [5], and
filter some data according to the requirements of our method.

The following three types of contracts are removed from our
dataset.

1© Contracts that have no transaction records since created:
We consider contracts that have been created for a long
time without any other transaction information to be al-
most abandoned, so there is no practical point in detecting
them.

2© Non-Ponzi contracts that are highly similar to Ponzi trad-
ing streams: They are usually crowdfunding contracts,
which also generate “money concentrated in the creator’s
account or in a few accounts.” To prevent interference
with the training process, this type is removed from the
dataset. In the future, if such a contract is encountered and
predicted to be a Ponzi contract, PonziFinder will give an
alert based on the contract type “the contract transaction
flow is highly similar to a Ponzi scheme, so if the contract
is an investment contract, you need to be vigilant.”

3© Ponzi contracts where no account interacts with them
financially besides the creator: Contracts of this type
indicate that no other investor has invested in the contract
for a long time. They are almost abandoned and can hardly
cause real harm.

After deleting these three categories of contracts, we conduct
experiments on 2420 non-Ponzi contracts and 113 Ponzi con-
tracts.

2) Implementation Details: All the experiments are conducted
on a computer equipped with an Intel Core i7 CPU at 2.9 GHz,
and 32 GB of Memory. We write about 1800 lines of code to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on March 22,2024 at 11:52:17 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: PONZIFINDER: ATTENTION-BASED EDGE-ENHANCED PONZI CONTRACT DETECTION 9

accomplish the main functions of PonziFinder. The ratio of train
set, validation set, and test set is 6:2:2.

The number of trading accounts associated with each contract
is inconsistent, but we want to build a contract trading graph
classification task, so the number of input nodes should be fixed.
We set the number of input nodes to be maxnode.

Contract transaction records with nodes greater than maxnode
will be truncated. Because the accounts have been specially
sorted during preprocessing, most truncated accounts have no
financial interaction with the contract, which are not very useful
for detecting Ponzi contracts.

Contract transaction records with nodes less than maxnode
will be expanded by 0. This is equivalent to adding virtual nodes
without any information in the graph, so there is no impact on
the transfer and aggregation of node information.

Since the nodes are specially numbered during preprocessing,
maxnode changes have little effect on the experimental results.
We set maxnode to 212, which is the maximum number of
accounts in the dataset that have monetary transactions with
Ponzi contract accounts. The N in the node feature matrix
Xk ∈ RN×F we mentioned in Section III-D will be unified as
the maxnode here.

Other parameter settings are shown as follows. The number
of EGNN(C) layers is 2, the learning rate is initialized to 0.0005,
the number of hidden units is 64, the dropout rate is set to 0.2,
the weight decay coefficient is 5e-4, and the undersampling rate
is 5%.

3) Evaluation Metrics: In order to accurately evaluate the
performance of our proposed method, we use six metrics: 1)
Precision, 2) Recall, 3) Accuracy, 4) F1-score, 5) TimeCost, and
8) Stdev. The formulas for the first four indicators are shown as
follows:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

F1− score = 2× Precision × Recall
Precision + Recall

(4)

where TP represents the number of Ponzi contracts that are
correctly identified, TN represents the number of non-Ponzi
contracts that are correctly identified, FP represents the number
of non-Ponzi contracts that are misjudged as Ponzi contracts, and
FN represents the number of Ponzi contracts that are detected
as non-Ponzi contracts.

In addition, TimeCost refers to the average time to detect
whether a contract is a Ponzi contract and includes the en-
tire process from data preprocessing to model detection. Stdev
stands for standard deviation and reflects the distribution of the
difference between the predicted value of the model and the
actual label value. A smaller standard deviation may indicate
that the model fits the data more consistently.

TABLE I
PERFORMANCE COMPARISON WITH EXISTING METHODS AND OTHER GNN

ALGORITHMS

B. Comparison With Existing Methods and Other GNN
Algorithms (RQ1)

On the test set, we compare PonziFinder with advanced meth-
ods in existing studies, and other GNNs, to demonstrate whether
our method has an advantage in the Ponzi contracts detection
task. The compared methods are summarized as follows.

1) PCD-ICNN [9]: A Ponzi contract detection method
based on code features via an improved convolutional
neural network.

2) RFPonzi [7]: A Ponzi contract detection method based
on combined features using random forest [33].

3) DNNPonzi [34]: A Ponzi contract detection method
based on combined features using deep neural network.

4) PSD-OL [18]: A Ponzi scheme detection method based
on combined features via oversampling-based long short-
term memory (LSTM) [35] for smart contracts.

5) PSD-TN [16]: A Ponzi scheme detection method based
on transaction features in the Ethereum transaction net-
work.

6) GAT: Graph attention network [24], introducing the at-
tention mechanism to GNNs based on the spatial domain.

7) GCN: Graph convolutional network [23], implementing
layer convolution based on graph Laplacian.

8) EGNN(A): Attention-based edge-enhanced GNN [27],
which can more fully exploit the undirected, directed,
and multidimensional edge features.

9) GCN-SAGPool: Self-attention graph pooling [26] is a
graph pooling method that uses a self-attention mech-
anism to selectively retain important nodes in a graph,
typically based on GCN.

10) GIN: Graph isomorphism network [25], having a strong
representation learning ability and the ability to deal with
graph isomorphism.

1) Results and Analyses: From the experimental results shown
in the Table I, it can be seen that although PCD-ICNN [9]
has high Precision, there are relatively more missing reports.
RFPonzi [7] and PSD-OL [18] methods take longer to detect
Ponzi contracts because they need to combine code information
with transaction information . The experimental results in [7]
showed that the addition of transaction features does not improve
the effect well, so it is speculated that the reason for their

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on March 22,2024 at 11:52:17 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE TRANSACTIONS ON RELIABILITY

TABLE II
PONZI TYPES

higher underreporting may be that there are still problems with
extracted transaction features. Although DNNPonzi [34] is fast,
it does not have good detection ability because of poor model
fitting. The detection ability of PSD-TN [16] method is weak
because of the problematic feature extraction and the neglect of
transaction edge importance.

We perform graph-level classification based on GAT, GCN,
EGNN(A), GCN-SAGPool, and GIN using the 12 node features
and one edge feature extracted in our scheme. It can be seen
that PonziFinder is most suitable for Ponzi contract detection
problems compared to other models. It is worth mentioning
that by comparing GCN and PonziFinder as well as GAT and
EGNN(A), we can conclude that adding edge features help
detect Ponzi contracts.

Answer to RQ1: Compared with existing methods and
other graph neural network methods, the accuracy of Ponz-
iFinder is relatively higher and takes less time. The exper-
imental results reveal that adding edge features help detect
Ponzi contracts.

C. Comparison of the Ability to Detect Different Types of
Ponzi Contracts (RQ2)

The purpose of this experiment is to compare the effectiveness
of the models in detecting different types of Ponzi contracts.
However, the test set is relatively small because there are few
real Ponzi contracts on Ethereum. Moreover, when we count the
number of Ponzi contracts in each category in the test set, we
find that many categories are absent. In addition, a smaller test
set weakens the difference in the fitting effect of different models
on the train set and validation set. Therefore, since the previous
experiment has already validated the model’s effectiveness in
detecting new data, we utilize all Ponzi contracts in the dataset
to further test the ability of each model to detect various types
of Ponzi contracts.

Based on the existing work [5], we can classify existing Ponzi
contracts into four categories: Tree-shaped schemes, Chain-
shaped schemes, Waterfall schemes, and Handover schemes.
There are also other Ponzi schemes with variable forms of
realization that cannot be categorized.

We refer to publicly available information from paper [5] to
count the number of different Ponzi contract types in our dataset.
The results are shown in Table II. We input these data into each
model separately to test the ability of detection for different
classes of Ponzi contracts.

1) Results and analyses: The experimental results in Table III
show that PonziFinder can not only detect all four types of Ponzi
contracts, but also has good detection ability for other types

TABLE III
PONZI TYPE COMPARISION

TABLE IV
ABLATION EXPERIMENTS FOR INPUT VALUE ANALYSIS

TABLE V
ABLATION EXPERIMENTS FOR AGLA

with variable implementation forms. In the previous experiment,
EGNN(A) and GIN, which have the same Recall value of 100%,
can only detect 95% of the Ponzi contracts in the unclassified
“Others” when inputting all Ponzi contracts in the dataset. There-
fore, PonziFinder has stronger fitting ability compared to other
models and is truly able to detect all classes of Ponzi contracts.

Answer to RQ2: When the transaction records are suffi-
cient, PonziFinder can detect all types of Ponzi contracts.

D. Ablation Experiment (RQ3)

1) Input Value Analysis: In Section III-B, we analyze the trans-
action input values and extract useful parameters of the function
call transaction. To evaluate the effectiveness of this approach
in detecting Ponzi contracts, we conducted ablation experiments
where we isolated the input value analysis method from other
treatments. The goal was to determine whether the input value
analysis method can improve data quality and enhance Ponzi
contract detection.

2) Attention-Based Global Layerwise Aggregation Mecha-
nism: In Section III-D, we introduced the ALGA mechanism
to generate the final graph-level representation. To evaluate the
effectiveness of this mechanism, we conducted ablation exper-
iments while controlling other treatments in the experiment,
solely focusing on AGLA.

3) Results and Analyses: Experimental results presented in
Table IV demonstrate that incorporating input value analysis
enhances the data quality, leading to a significant improvement
in detection precision. On the other hand, as shown in Table V,
the AGLA mechanism effectively mitigates the problem of
oversmoothing of node embeddings in shallow contract graphs,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on March 22,2024 at 11:52:17 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: PONZIFINDER: ATTENTION-BASED EDGE-ENHANCED PONZI CONTRACT DETECTION 11

TABLE VI
IMPORTANCE RANK OF NODE FEATURES

TABLE VII
PERFORMANCE OF DIFFERENT NODE FEATURE SET

resulting in increased detection of Ponzi contracts and a consid-
erable improvement in recall rate.

Answer to RQ3: Incorporating input value analysis in data
preprocessing improves Precision by 3.8%. And including
Attention-Based Global Layerwise Aggregation mechanism
improves Recall by 4.3%.

E. Optimal Node Feature Set (RQ4)

We initially extracted 12 node features, but we noticed that
some information they expressed was duplicated. In order to
further improve operation speed, we simplify the model by
reducing the number of node features to carry out experiments.
A preliminary importance ranking of 12 node features obtained
by observing the trading characteristics of real Ponzi contracts
is performed in Table VI. And we try to remove the feature with
the lowest importance and perform the experiment each time.

If the F1-score of the experimental results does not decrease, it
indicates that the feature is redundant. However, if the F1-score
decreases, we attempt to remove the higher ranked feature,
conduct further experiments, and update the importance ranking
table. If the removal of all features in a top-down traversal
does not identify a feature to simplify, the current feature set is
considered the optimal feature set obtained by this deletion order.

1) Results and Analyses: Experimental results in Table VII
show that removing the features rank in the bottom 6 of the
final importance ranking will not affect the experimental results.
When the number of node features is reduced to 6, the F1-score
value of the model decreases regardless of which feature is
deleted. We also note that when the number of features is

TABLE VIII
PERFORMANCE OF MULTIMODELS

reduced, the time taken by the model to detect Ponzi contracts is
further reduced, which means that feature reduction can greatly
improve model efficiency. The optimal node feature set obtained
by initial importance deletion order is {IfContract, ValueIn,
IfProfit, NumOut, IfReceiveMoreTimes, FirstTime}.

Answer to RQ4: The optimal node feature set we found for
our scheme to improve the detection efficiency is { IfContract
, ValueIn , IfProfit , NumOut , IfReceiveMoreTimes ,
FirstTime }.

F. Undersampling (RQ5)

This experiment is conducted on the test set. In previous ex-
periments, the undersampling is performed only once and most
non-Ponzi contracts are discarded. To reduce the randomness
and make full use of the information in the dataset, we optimize
our scheme based on the idea of ensemble learning. Specifically,
after setting aside the same test set as the previous experiments,
we repeatedly stratify the data extraction for non-Ponzi contracts
to obtain samples with a similar number of Ponzi contracts, and
those are then combined and trained. After training M models,
we use maximum voting, an integration method, to combine
the model results. We consider a contract to be a Ponzi scheme
when half or more results of models represent Ponzi contracts.
The experimental results are shown in Table VIII.

1) Results and Analyses: The experimental results demon-
strate that combining two models results in a slight decrease in
accuracy due to the misreporting of different contracts by the two
models. The accuracy of the combined results fluctuates until
nine models are used, after which the accuracy reaches 100%.
However, using all nine models may be time-consuming. Thus,
we propose a method to meet different demands for accuracy
and speed. For instance, if users want a quick detection to avoid
potential Ponzi schemes, a lightweight single-model approach
can be used. On the other hand, for more accurate detection
regardless of time, a multimodel approach can be employed to
reduce both false positives and false negatives.

Answer to RQ5: By combining the idea of stratified un-
dersampling and ensemble learning, PonziFinder reduces the
information loss and improves the effectiveness of the Ponzi
contract detection.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on March 22,2024 at 11:52:17 UTC from IEEE Xplore.  Restrictions apply. 



12 IEEE TRANSACTIONS ON RELIABILITY

Fig. 6. Training and validation loss and accuracy affected by epoches. (a) Loss
affected by epoches. (b) Accuracy affected by epoches.

Fig. 7. Testing acuuracy affected by number of hidden units.

G. Hyperparameter Selection (RQ6)

In order to optimize the model performance as much as
possible, control-variable method is used to select the relatively
optimal combination of hyperparameters.

1) Impact of Epochs: In this experiment, we set the initial
epoch value to 1000. Other parameters are described in Section
IV-A. The training loss and validation loss as the epoch changes
are shown in Fig. 6(a), and the training accuracy and validation
accuracy as the epoch changes are shown in Fig. 6(b).

Through many experiments, the effect of PonziFinder is found
to stabilize before 800 epoch and the validation loss will be
minimized. As the epoch continues to increase, although the
training loss decreases, the validation loss gradually increases,
indicating that the model is overfitting. So the epoch is finally
set to 800.

2) Impact of the Number of Hidden Units: If there are too
few hidden units in the network, the model will be underfitted.
Conversely, too many hidden units can lead to overfitting. we
keep other parameters unchanged, and change the number of
hidden units within {8, 16, 32, 64, 128}. Fig. 7 shows the testing
accuracy under different number of hidden units.

When the number of hidden units is relatively small, the test-
ing accuracy increases with the number of hidden units. When
the number of hidden units reaches 128, the testing accuracy
is found to greatly decrease caused by overfitting after manual
analysis, so 64 is finally selected as the number of hidden units.

3) Impact of Learning Rate: A high learning rate may cause
the model effect to fluctuate during training. Low learning

Fig. 8. Testing acuuracy affected by learning rate.

Fig. 9. Testing accuracy affected by the number of EGNN(C) layers.

rate takes longer to train. In order to find the most suitable
learning rate, we set the value as the following {0.1, 0.05,
0.01, 0.005, 0.001, 0.0005, 0.0001} and conduct a comparative
experiment. Referring to the experiment part in [27], we set
the minimum learning rate to 0.0001. Other parameters remain
unchanged.

As can be seen from Fig. 8, when the learning rate is small, the
effect of PonziFinder on the testing set is unstable due to large
fluctuations. When the learning rate reaches 0.0005, the model
with better effect can be trained stably. The reason why we prefer
0.0005 to 0.0001 is that when the learning rate is 0.0001, even if
the epoch is set to 1000, the model’s loss curve is still unstable.
But with a learning rate of 0.0005, the model stabilizes within
800 epoch.

4) Impact of the Number of EGNN(C) Layers: If the number of
EGNN(C) layers is too small, the model can only extract simple
information in transaction graph, resulting in poor detection
ability. But when the EGNN(C) layer deepens, oversmoothing
occurs and the representation of different nodes will be weak-
ened. We, respectively, adopt the EGNN(C) layer number as {1,
2, 3} and conduct experimental comparison. Other parameters in
the experiment remain unchanged. As shown in Fig. 9, when the
number of EGNN(C) layers is set to 2, the effect of PonziFinder
will be optimal.

5) Results and Analyses: As can be seen from the experimental
results in Figs. 6–9, the hyperparameters we selected can make
PonziFinder reach the optimal level.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on March 22,2024 at 11:52:17 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: PONZIFINDER: ATTENTION-BASED EDGE-ENHANCED PONZI CONTRACT DETECTION 13

TABLE IX
BASIC INFORMATION OF 167 NEWLY COLLECTED PONZI CONTRACTS

Answer to RQ6: In order to select the optimal combination
of hyperparameters for PonziFinder as much as possible,
we use the control-variable method to carry out numerous
experiments on important hyperparameters.

V. CASE ANALYSIS

Considering that our dataset used in Section V only includes
Ponzi contracts before 2017, in order to demonstrate the power
of PonziFinder in detecting Ponzi contracts and understand the
development of Ponzi contracts in recent years, we refer to a
recent research [36] and collect a new dataset containing 318
Ponzi contracts from Xblock.1 After comparing the dataset used
in section V, we remove the duplicate Ponzi contracts. A total
of 167 Ponzi contracts deployed in 2018 and 2019 remain in the
newly collected dataset, and their basic information are shown
in Table IX.

The first two lines in Table IX indicate that these contracts
only have transactions with the creator after they are created, and
the third line represents that although there are other accounts
interacting with the contract, there is no transaction amount.
PonziFinder does not consider these Ponzi contracts, because
they do not produce actual fraud facts.

The remaining 130 Ponzi contracts are tested using
PonziFinder, and the results show that PonziFinder is
able to successfully label 128 Ponzi contracts with an
accuracy of 98.5%. The two undetected Ponzi contracts
are 0xDdDC5B65208287168BB640E8B303eaAaFE2Ea95F
and 0xaa6eaE4Fb91DF553291160f41888CB0cf1f20948.

A manual review of the transaction data and contract codes
for the two contracts finds that their codes are nearly identical,
with the same contract name “FiveForty” and a similar warning
“This is a Ponzi scheme” in the comments of codes, suggesting
that both are deployed by researchers for testing. A snippet of
the smart contract “FiveForty” is shown in Fig. 10.

After analysis, we believe that PonziFinder fails to detect them
for two reasons. First, the marketing fund address set in code
cannot be analyzed from the transaction, causing interference
with the results. Both contracts in the code specifies the
address 0x27FE767C1da8a69731c64F15d6Ee98eE8af62E72
as marketing fund address, this causes some disruption
to PonziFinder because there is an account that has not
invested but receives contract transfers in the transaction
data, which could not be analyzed from the function

1Xblock:http://xblock.pro/#/dataset/25

Fig. 10. Snippet of the smart contract “FiveForty.”

parameters in transactions. Second, no user actually loses
money or users have returned more than 86% of the
invested funds, which interferes with the result. The 0xD-
dDC5B65208287168BB640E8B303eaAaFE2Ea95F contract
has no investors except the contract. The sole investor in the
contract 0xaa6eaE4Fb91DF553291160f41888CB0cf1f20948
gets 86% of his money back. Therefore, the two underreported
Ponzi contracts do not actually reflect the characteristics of
fraud in the transaction.

The 98.5% accuracy on the new dataset proves that even
as Ponzi contracts continue to evolve, PonziFinder remains
powerful.

VI. RELATED WORK

Many kinds of research have been conducted to extract fea-
tures for the detection of Ponzi contracts from the following
perspectives: Code-based features, transaction-based features,
and combined features.

1) Code-Based Features: The current research based on code
features for Ponzi contracts detection is mainly divided into
source-code-based and bytecode-based.

The source code of smart contracts has well-defined structural
and semantic information, which can capture the characteris-
tic information of Ponzi contracts more accurately than hand-
crafted features. Chen et al. [8] used a multichannel TextCNN
and transformer to detect Ponzi contracts. But this approach
relies too much on the source code, some of which is not publicly
available in the blockchain.

More approaches used the bytecode feature of smart con-
tracts since the bytecode is compiled from the source code
and can also contain all the information. Lou et al. [9] con-
verted the contract bytecodes to the corresponding image in the
form of a single channel, and finally completed the classifi-
cation using an improved convolutional neural network. Shen
et al. [13] extracted features from the bytecode, then trans-
formed the Ponzi contract detection into an anomaly detec-
tion problem. Chen et al. [12] proposed a new semantic-aware
method based on symbolic execution by identifying investor-
related transfer behaviors and the adopted distribution strate-
gies. Peng et al. [14] used a systematic modeling strategy to
model Ponzi contract detection based on the opcode sequence
feature.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on March 22,2024 at 11:52:17 UTC from IEEE Xplore.  Restrictions apply. 

http://xblock.pro/#/dataset/25


14 IEEE TRANSACTIONS ON RELIABILITY

The code-based methods can realize the early detection of a
Ponzi contract, but Ponzi contracts vary greatly in code imple-
mentation according to the research [5].

Compared with existing methods based on code features,
PonziFinder is able to capture the characteristics of Ponzi con-
tracts “using later stakeholders’ funds to generate revenue for
early stakeholders and operators” more precisely from the trans-
action flow, without the interference of the code implementation
form.

2) Transaction-Based Features: Transactions are the execu-
tion result of a smart contract. Many researchers extract features
from historical transaction information to detect Ponzi contracts.
Jung et al. [17] extracted new transaction features combined
with the Gini coefficient and conducted experiments, which
strengthened the ordinary statistical transaction features, such
as mean and variance. Yu et al. [16] provided a Ponzi contract
detection method based on the GCN model, which used 14
transaction features.

The transaction-based methods can accurately detect the
Ponzi contract according to the actual cash flow of contracts.
However, existing methods have great information loss in ex-
tracting contract transaction features. For example, they solely
rely on counting the number of transfer transactions to detect
Ponzi contracts. However, our observations show that 68.5%
of Ponzi contracts involve nontransfer transactions that serve
as calling functions, and often, the traders are the primary
beneficiaries of Ponzi schemes.

Different from existing methods based on transaction fea-
tures, we build contract transaction graphs and classify contracts
at the graph level to better preserve the original transaction
network. Moreover, we add edge feature extraction to enhance
the transaction network, and optimize the node features to
improve the efficiency of our method. Finally, we innovatively
extract information from input values in contract transactions,
and the experiment indicates that the input value has a positive
effect on Ponzi contracts detection, which makes up for the
current transaction information loss caused by manual feature
extraction.

3) Combined Features: Most of the current studies have
been conducted by combining code features with transaction
features. Specifically, Chen et al. [7] extracted code features by
generating opcodes and calculating their frequencies. Then, they
extracted statistical transaction features from the transaction
history of smart contracts. Finally, the random forest algorithm
was used as a classification model to detect Ponzi contracts [7].
Wang et al. [18] proposed a method to detect smart contracts
by oversampling-based LSTM using opcode and transaction
features. Zhang et al. [21] proposed an improved LightGBM
algorithm using features extracted from opcodes, bytecodes, and
transaction information. Liu et al. [19] constructed a heteroge-
neous information network using transaction features and code
features.

The combined features methods take into account source
code, bytecode, opcode, transaction data, and other useful in-
formation for Ponzi contracts detection, which can realize the
Ponzi contract detection in the early stage and improve the
accuracy. However, most existing methods based on combined

features utilize code features and transaction features in a simple
way, and the detection ability still needs to be improved. Some
experiments [7] even suggest that adding transaction features
has no positive effect on detection results, revealing that these
methods still have room for improvement in dealing with code
features and transaction features.

Compared with existing methods based on combined features,
we only need to analyze the transaction flow information to
achieve high accuracy, and do not need to obtain and analyze the
contract code, bytecode, or other information, which saves time
greatly. Moreover, the experiment proves that our scheme has
great advantages in detecting Ponzi contracts with various forms
when the contract transaction is sufficient. Our approach can
provide a new perspective for utilizing transaction information,
such as combining our extracted contract graph features with its
code features to identify Ponzi contracts more accurately at an
early stage.

VII. CONCLUSION

In this article, we propose a PonziFinder based on the
EGNN(C) model for automatic detection of Ponzi contracts.
This approach enables accurate detection without requiring ac-
cess to the contract’s source code, thereby improving detection
efficiency. We extract node and edge features based on Ponzi
contract characteristics and construct a transaction graph for
each contract. The EGNN(C) model is used to propagate node
information and layerwise graph representations are generated
by aggregating node features with Set2Set. The ALGA mecha-
nism is adopted to extract the final representation of the entire
contract. Finally, we learn the flow of funds to detect Ponzi
contracts.

We conduct comparative experiments with existing methods
and other GNN models, which demonstrate that PonziFinder
significantly outperforms others when contract transaction vol-
ume is sufficient. Furthermore, PonziFinder can detect all four
classic types of Ponzi contracts and all other Ponzi contracts.

Our work has limitations, such as the inability to automatically
detect Ponzi contracts at an early stage. However, this limita-
tion is less impactful since Ponzi schemes rely on constantly
attracting new stakeholders, and if there are no stakeholders,
then the scam collapses. Moreover, we can solve this limitation
by combining it with code information. Our approach has a
deeper mining degree of transaction information compared to
existing methods, which may promote current research progress
on feature combinations.

Our work has significant implications for Ponzi contract
detection. In future work, we will focus on improving Ponz-
iFinder’s detection precision and efficiency.

REFERENCES

[1] Y. Yuan and F. Wang, “Blockchain: The state of the art and future trends,”
Acta Automatica Sinica, vol. 42, pp. 481–494, 2016.

[2] B. Li, Z. Pan, and T. Hu, “ReDefender: Detecting reentrancy vulnerabil-
ities in smart contracts automatically,” IEEE Trans. Rel., vol. 71, no. 2,
pp. 984–999, Jun. 2022.

[3] S. Badruddoja, R. Dantu, Y. He, K. Upadhayay, and M. Thompson,
“Making smart contracts smarter,” in Proc. IEEE Int. Conf. Blockchain
Cryptocurrency, 2021, pp. 1–3.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on March 22,2024 at 11:52:17 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: PONZIFINDER: ATTENTION-BASED EDGE-ENHANCED PONZI CONTRACT DETECTION 15

[4] T. Hu, Z. Li, B. Li, and Q. Bao, “Contractual security and privacy
security of smart contract: A system mapping study,” Chin. J. Comput.,
pp. 2485–2514, 2021.

[5] M. Bartoletti, S. Carta, T. Cimoli, and R. Saia, “Dissecting Ponzi schemes
on Ethereum: Identification, analysis, and impact,” Future Gener. Comput.
Syst., vol. 102, pp. 259–277, Jan. 2020.

[6] C. F. Torres, M. Steichen, and R. State, “The art of the scam: Demystifying
honeypots in Ethereum smart contracts,” in Proc. 28th USENIX Conf.
Secur. Symp., 2019, pp. 1591–1607.

[7] W. Chen, Z. Zheng, E. C. -H. Ngai, P. Zheng, and Y. Zhou, “Exploiting
blockchain data to detect smart Ponzi schemes on Ethereum,” IEEE Access,
vol. 7, pp. 37575–37586, 2019.

[8] Y. Chen, H. Dai, X. Yu, W. Hu, Z. Xie, and C. Tan, “Improving Ponzi
scheme contract detection using multi-channel TextCNN and transformer,”
Sensors (Basel, Switzerland), vol. 21, 2021, Art. no. 6417.

[9] Y. Lou, Y. Zhang, and S. Chen, “Ponzi contracts detection based on
improved convolutional neural network,” in Proc. IEEE Int. Conf. Serv.
Comput., 2020, pp. 353–360.

[10] L. Bian, L. Zhang, K. Zhao, H. Wang, and S. Gong, “Image-based scam
detection method using an attention capsule network,” IEEE Access, vol. 9,
pp. 33654–33665, 2021.

[11] S. Fan, S. Fu, H. Xu, and X. Cheng, “AL-SPSD: Anti-leakage smart Ponzi
schemes detection in blockchain,” Inf. Process. Manag., vol. 58, 2021,
Art. no. 102587.

[12] W. Chen et al., “Sadponzi: Detecting and characterizing Ponzi schemes in
Ethereum smart contracts,” Proc. ACM Meas. Anal. Comput. Syst., vol. 5,
no. 2, pp. 1–30, Jun. 2021.

[13] X. Shen, S. Jiang, and L. Zhang, “Mining bytecode features of smart
contracts to detect Ponzi scheme on blockchain,” Comput. Model. Eng.
Sci., vol. 127, pp. 1069–1085, 2021.

[14] J. Peng and G. Xiao, “Detection of smart Ponzi schemes using opcode,” in
Blockchain and Trustworthy Systems. Singapore: Springer 2020, pp. 192–
204.

[15] W. Sun, G. Xu, Z. Yang, and Z. Chen, “Early detection of smart Ponzi
scheme contracts based on behavior forest similarity,” in Proc. IEEE 20th
Int. Conf. Softw. Qual., Rel. Secur., 2020, pp. 297–309.

[16] S. Yu, J. Jin, Y. Xie, J. Shen, and Q. Xuan, “Ponzi scheme detection in
Ethereum transaction network,” in Blockchain and Trustworthy Systems.
Singapore: Springer 2021, pp. 175–186.

[17] E. B. Jung, M. L. Tilly, A. Gehani, and Y. Ge, “Data mining-based
Ethereum fraud detection,” in Proc. IEEE Int. Conf. Blockchain, 2019,
pp. 266–273.

[18] L. Wang, H. Cheng, Z. Zheng, A. Yang, and X. Zhu, “Ponzi scheme detec-
tion via oversampling-based long short-term memory for smart contracts,”
Knowl.-Based Syst., vol. 228, no. C., Sep. 2021, Art. no. 107312.

[19] L. Liu, W. T. Tsai, M. Z. A. Bhuiyan, H. Peng, and M. Liu, “Blockchain-
enabled fraud discovery through abnormal smart contract detection on
Ethereum,” Future Gener. Comput. Syst., vol. 128, pp. 158–166, 2021.

[20] Y. Liang, W. Wu, K. Lei, and F. Wang, “Data-driven smart Ponzi scheme
detection,” CoRR, vol. abs/2108.09305, 2021. [Online]. Available: https:
//arxiv.org/abs/2108.09305

[21] Y. Zhang, W. Yu, Z. Li, S. Raza, and H. Cao, “Detecting Ethereum Ponzi
schemes based on improved lightGBM algorithm,” IEEE Trans. Comput.
Social Syst., vol. 9, no. 2, pp. 624–637, Apr. 2022.

[22] U.S. Securities and Exchange Commission, “Ponzi schemes: What you
need to know.” [Online]. Available: https://www.sec.gov/spotlight/enf-
actions-ponzi.shtml

[23] T. Kipf and M. Welling, “Semi-supervised classification with graph con-
volutional networks,” in Proc. Int. Conf. Learn. Representations, 2017,
pp. 1–14.

[24] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio,
“Graph attention networks,” in Proc. Int. Conf. Learn. Representations,
2018, pp. 12–26.

[25] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural
networks?,” in Proc. Int. Conf. Learn. Representations, 2019, pp. 1–17.

[26] J. Lee, I. Lee, and J. Kang, “Self-attention graph pooling,” in Proc. Int.
Conf. Mach. Learn., 2019, pp. 3734–3743.

[27] L. Gong and Q. Cheng, “Exploiting edge features for graph neural net-
works,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019,
pp. 9203–9211.

[28] M. Schlichtkrull et al., “Modeling relational data with graph convolutional
networks,” in Proc. Extended Semantic Web Conf., 2017, pp. 593–607.

[29] O. Vinyals, S. Bengio, and M. Kudlur, “Order matters: Sequence to se-
quence for sets,” in Proc. Int. Conf. Learn. Representations, 2016, pp. 1–11.

[30] W. Liu, M. Gong, Z. Tang, A. K. Qin, K. Sheng, and M. Xu, “Locality
preserving dense graph convolutional networks with graph context-aware
node representations,” Neural Netw., vol. 143, pp. 108–120, 2021.

[31] R. Barandela, J. S. Sánchez, V. García, and F. J. Ferri, “Learning from
imbalanced sets through resampling and weighting,” in Proc. Iberian Conf.
Pattern Recognit. Image Anal., 2003, pp. 80–88.

[32] A. Fernández, S. García, F. Herrera, and N. V. Chawla, “Smote for learning
from imbalanced data: Progress and challenges, marking the 15-year
anniversary,” J. Artif. Int. Res., vol. 61, no. 1, pp. 863–905, Jan. 2018.

[33] L. Breiman, “Random forests,” Mach. Learn., vol. 45, pp. 5–32, 2001.
[34] Y. Zhang and Y. Lou, “Deep neural network based Ponzi scheme contract

detection method,” Comput. Sci., vol. 48, pp. 273–279, 2021.
[35] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

Computation, vol. 9, pp. 1735–1780, 1997.
[36] Z. Zheng, W. Chen, Z. Zhong, Z. Chen, and Y. Lu, “Securing the Ethereum

from smart Ponzi schemes: Identification using static features,” ACM
Trans. Softw. Eng. Methodol., vol. 32, no. 5, pp. 1–28, 2023.

Yingying Chen is currently working toward the M.S.
degree in ponzi scheme detection based on graph neu-
ral networks with the School of Computer Science and
Engineering, Southeast University, Nanjing, China,
under the supervision of Dr. Bixin Li.

Her research interests include blockchain security
and software engineering, etc.

Bixin Li received the Ph.D degree from Nanjing
University, Nanjing, China, in 2001.

He is currently a Full Professor with the School of
Computer Science and Engineering, Southeast Uni-
versity, Nanjing, China, where he is also the header of
the Software Engineering Institute. He is the Chair-
man of the Technology Committee of Software Engi-
neering Standards of Jiangsu Province. His research
interests include program slicing and its application,
software evolution and maintenance, software testing
and verification, software safety, and security tech-

niques etc.

Yan Xiao received the Ph.D. degree in computer
science from the City University of Hong Kong, Hong
Kong, in 2019.

She is currently an Associate Professor with the
School of Cyber Science and Technology, Shenzhen
Campus of Sun Yat-sen University, Shenzhen, China.
Her research interests include trustworthiness of deep
learning system and AI applications in software en-
gineering.

Xiaoning Du received the bachelor’s degree in soft-
ware engineering from Fudan University, Shanghai,
China, in 2014, and the Ph.D. degree in computer
science from Nanyang Technological University, Sin-
gapore, in 2020.

She is currently a Lecturer with Monash Univer-
sity, Clayton, VIC, Australia. She has authored or
coauthored publications in top-tier venues including
International Conference on Software Engineering,
IEEE International Conference on Automated Soft-
ware Engineering, ACM International Conference on

the Foundations of Software Engineering, Conference on Neural Information
Processing Systems, AAAI Conference on Artificial Intelligence, S&P, and
TDSC. Her research interests include the security and quality assurance of both
traditional software and intelligent software with learning-based components,
which covers but is not limited to software testing, program analysis, vulnera-
bility detection, and runtime verification.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on March 22,2024 at 11:52:17 UTC from IEEE Xplore.  Restrictions apply. 

https://arxiv.org/abs/2108.09305
https://arxiv.org/abs/2108.09305
https://www.sec.gov/spotlight/enf-actions-ponzi.shtml
https://www.sec.gov/spotlight/enf-actions-ponzi.shtml


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


