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Abstract—The training data commonly used in software defect
prediction (SDP) usually contains some instances that have
similar values on features but are in different classes, which sig-
nificantly degrades the performance of prediction models trained
using these instances. This is referred to as the class overlap
problem (COP). Previous studies have concluded that COP
has a more negative impact on the performance of prediction
models than the class imbalance problem (CIP). However, less
research has been conducted on COP than CIP. Moreover, the
performance of the existing class overlap cleaning techniques
heavily relies on the settings of hyperparameters such as the
value of K in the K-nearest neighbor algorithm or the K-means
algorithm, but how to find those optimal hyperparameters is
still a challenge. In this study, we propose a novel technique
named the radius-based class overlap cleaning technique (ROCT)
to better alleviate COP without tuning hyperparameters in SDP.
The basic idea of ROCT is to take each instance as the center of a
hypersphere and directly optimize the radius of the hypersphere.
Then ROCT identifies those instances with the opposite label
of the center instance as the overlapping instance and removes
them. To investigate the performance of ROCT, we conduct the
empirical experiment across 29 datasets collected from various
software repositories on the K-nearest neighbor, random forest,
logistic regression, and naive Bayes classifiers measured by AUC,
balance, pd, and pf . The experimental results show that ROCT
performs the best and significantly improves the performance
of prediction models by as much as 15.2% and 29.9% in
terms of AUC and balance compared with the existing class
overlap cleaning techniques. The superior performance of ROCT
indicates that ROCT should be recommended as an efficient
alternative to alleviate COP in SDP.

Index Terms—Class Overlap, Class Imbalance, Data Prepro-
cessing, Software Defect Prediction

I. INTRODUCTION

Software defect prediction (SDP) plays an important role in

software quality assurance [1], [2]. There are some practical

issues, such as the class imbalance problem (CIP) [3], [4]

and the class overlap problem (COP) [5], that significantly

hinder the performance of SDP models. CIP and COP often

occur simultaneously. Generally, there are more non-defective

instances (i.e., the majority class instances) than defective ones

(i.e., the minority class instances) in software defect datasets.

The prediction model trained on these imbalanced datasets

tends to focus on the non-defective instances and is more

likely to predict the new software instances as non-defective,

which is referred to as CIP. CIP degrades the performance of

SDP models and thus makes the predicted results less reliable.

However, some studies [6] have pointed out that CIP is not

the main reason for the degradation in the performance of

prediction models. In fact, they have concluded that only CIP

does not necessarily degrade the performance of prediction

models. For example, as shown in Fig. 1(a), it is not difficult

for prediction models to separate the non-defective instances

from the defective ones, even though the number of the non-

defective instances far exceeds the number of the defective

ones. Instead, these studies have concluded that COP takes the

primary responsibility for the degradation in the performance

of prediction models. COP refers to that the defective instances

and the non-defective instances are mixed in the feature space,

making prediction models difficult in separating the defective

instances from the non-defective ones. As shown in Fig. 1(b),

the number of the non-defective instances is equal to the

number of the defective ones. However, it is still difficult

for prediction models to make correct predictions for these

instances because of COP. Based on the above conclusion,

more effort should be paid to the research on COP. However,

the fact is that more research is conducted on CIP than COP

[7]. Besides, the performance of the existing class overlap

cleaning techniques heavily depends on the settings of the

hyperparameters, but how to find the optimal values of these

hyperparameters is difficult.

In this study, we propose a novel technique named the

radius-based class overlap cleaning technique (ROCT) to al-

leviate the aforementioned issues. ROCT takes each instance

as the center of a hypersphere and finds the optimal radius

of the hypersphere. Those instances with the opposite label

of the center instance will be identified as the class over-

lapping instances, and will be removed. By removing the

class overlapping instances, prediction models separate the

defective instances from the non-defective ones more easily.

The differential evolution algorithm [8] (DE) is employed

to explore the optimal radius. We conduct experiments to
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Non-defective instances

Defective instances

(a) CIP

Non-defective instances

Defective instances

(b) COP

Fig. 1. The illustration of CIP and COP

compare the performance of ROCT with those of four existing

class overlap cleaning techniques (i.e., Improved K-Means

Clustering Cleaning Approach (IKMCCA) [7], Neighborhood

Cleaning Learning (NCL) [9], Edited Nearest Neighbor (ENN)

[10] and, Tomek-link (Tomek) [11]). We investigate the per-

formances of ROCT and these techniques on four classifiers

(i.e., K-nearest neighbor (K-NN), random forest (RF), logistic

regression (LR), and naive Bayes (NB)) across 29 datasets

collected from the AEEEM [12], NASA [13], PROMISE [14],

ReLink [15], SOFTLAB [16] repositories in terms of four

performance measures (i.e., the area under the ROC curve

(AUC), balance, the probability of detection (pd), and the

probability of false alarm (pf )). To further investigate whether

there exists statistically significant difference between the

performance of ROCT and those of the compared techniques,

we employ the Wilcoxon signed-rank test [17] and Cliff’s δ
effect size [18]. The experimental results show that ROCT

significantly improves the performance of prediction models

compared with the existing class overlap cleaning techniques.

Therefore, we recommend ROCT as an efficient algorithm to

alleviate COP in SDP.

The remainder of this paper is organized as follows: Section

II introduces the motivation of our work. Section III presents

the background and the related work. Section IV details our

proposed technique. In Section V, we introduce the experimen-

tal settings. The experimental results are presented in Section

VI. We further analyze the threats to the validity of our work

in Section VII. Finally, we conclude our work and introduce

our future work in Section VIII.

II. MOTIVATION

COP appears when there is a similar quantity of data

from both classes in a region of the feature space, which

makes prediction models hard to distinguish between the two

classes and thus, the performance of prediction is poor [6].

Previous studies have shown that COP plays a more important

role in negatively affecting the performance of prediction

models than CIP. Some class overlap cleaning techniques are

proposed to alleviate COP. Most of these techniques rely on

certain algorithms, such as K-NN and K-means algorithms, to

alleviate COP. For example, NCL [9] is a common technique

to alleviate COP. It first finds the top K nearest neighbor

instances for each minority class instance in a dataset. If

there are majority class instances in these K instances, these

majority class instances will be identified as the overlapping

instances and removed. IKMCCA [7], the latest class overlap

cleaning technique proposed to alleviate COP in SDP, employs

the K-means algorithm to divide datasets into K clusters.

Then the minority class instances in the clusters whose defect

ratio p is below a predefined threshold will be identified as the

overlapping instances and removed. Otherwise, the majority

class instances in these clusters will be removed. However,

how to decide the best values of the hyperparameters for these

techniques is still a challenge. The author manually sets K as

3 in NCL. In IKMCCA, the author sets K = n/m, where n
is the number of instances in a dataset, and m is manually set

as 20. p is set as the original percentage of the minority class

instances in the training datasets. However, there is a lack of

rationales behind the authors’ settings.

Essentially, the K value in NCL is used to aid in deciding

the radius of the hypersphere whose center is each minority

class instance. Then the majority class instances located in

the hypersphere decided by the minority class instances are

identified as the overlapping instances and should be removed.

As shown in Fig. 2, for the hypersphere decided by the

minority class instance A, the center is where the instance

A is, and the radius varies along with different K values.

For example, when K is set to be 3, the radius of the

hypersphere decided by the instance A is the distance between

the instances A and B, and the instance D will be identified

as the overlapping instance and removed by NCL. If K is set

to be 5, the radius is the distance between the instances A and

C. In such a case, the instances C, D, and E will be removed.

Moreover, the collected instances cannot fill up the feature

space. The density of the collected instances varies in different

areas of the feature space. For the same K value, the radius

of the hypersphere in the low-density area is large, while the

radius in the high-density area is small. This inconsistency may

also negatively impact the performance of these techniques.

Therefore, we propose the radius-based class overlap clean-

ing technique (ROCT) to alleviate COP. ROCT takes each

instance as the center of a hypersphere and directly optimizes

the radius for the hypersphere. The instances with the opposite

label in the hypersphere are the overlapping instances and

should be removed. ROCT employs DE to optimize the radius

and does not need to manually set any hyperparameter. The

detail of ROCT is presented in Section IV.

III. BACKGROUND AND RELATED WORK

A. Class overlap problem

COP usually causes a poor decision boundary and thus

makes it difficult to construct effective prediction models with

good ability to make accurate predictions. COP is usually

related to the research on the data quality and the noise

detection. Prati et al. [19] conducted an empirical study, and

the experimental results show that CIP does not directly cause

the degradation in the performance. Instead, the degradation in

the performance is related to the degree of the class overlap.
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Non-defective instances

Defective instances
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C

D

E

Fig. 2. The radius of the hypersphere decided by the number K

Kim et al. [20] proposed the closest list noise identification

(CLNI) to detect and remove the noisy instances. CLNI first

finds the top K-nearest neighbors of a target instance. Then

based on the overlapping degree, CLNI decides whether the

target instances are noise. The overlapping degree for the

target instance is calculated as the ratio of the number of the

minority class instances to the number of the majority class

instances for the top K-nearest neighbors. Therefore, CLNI

can be regarded as a technique to alleviate COP. NCL [9] is

similar to CLNI. The difference between CLNI and NCL is

that NCL directly removes all majority class instances that

belong to the top K-nearest neighbors of a minority class

instance. Tang et al. [21] proposed the K-means clustering

cleaning approach (KMCCA). Initially, KMCCA is also used

to detect the noisy instances like CLNI. KMCCA employs the

K-means algorithm to divide a dataset into K clusters. Then

the noise factor of an instance is calculated based on the cluster

it belongs to as well as the distance between this instance

and the center of its closet large cluster. Based on the noise

factor of the instances for each cluster, KMCCA sorts them

in the descending order and removes the top p% instances.

Gong et al. [7] proposed IKMCCA. IKMCCA also employs

the K-means algorithm to divide a dataset. Then, the minority

class instances in a cluster are removed, if the percentage of

the minority class instances is below a predefined threshold.

Otherwise, the majority class instances are removed. The

above-mentioned techniques all heavily rely on the setting of

the hyperparameters. Inappropriate settings will significantly

degrade their performances.

B. Differential evolution

DE, proposed by Storn et al. [8], is an evolutionary algo-

rithm. DE is based on the mutation, crossover, and selection

operations. DE initializes a group of candidate solutions which

is the first generation. The next generation is mutated by first

perturbing the first generation using a scaling factor F . Then,

the crossover operation is applied to improve the diversity

of the population based on the crossover rate CR. Next, the

selection operation selects the best candidate as a new member

of the next generation based on the fitness function. This

process is iterated until the stop criterion of DE is met. Finally,

the best candidate solution decided by the fitness function will

be selected as the final solution.

IV. METHODOLOGY

In this section, we present the radius-based class overlap

cleaning technique (ROCT). The core of ROCT is to find the

optimal values of four parameters, which are rmin, tmin, rmaj

and tmaj , respectively. The details of these four parameters are

given as follows.

rmin is the radius of the minority class hypersphere whose

center is each minority class instance. The number of the

minority class hyperspheres is equal to the number of the

minority class instances in a dataset. tmin is the threshold used

to decide whether a hypersphere belongs to the minority class.

If the ratio of the number of the minority class instances to the

number of all instances in the hypersphere is beyond tmin, it

indicates that this hypersphere belongs to the minority class,

which means the majority class instances in this hypersphere

are the overlapping instances and should be removed. rmaj

and tmaj are similar to rmin and tmin. These two parameters

are used to decide whether the minority class instances are the

overlapping instances and should be removed or not.

It is notable that we discriminate between the minority class

and majority class instances by separately exploring rmin,

tmin, and rmaj , tmaj , which is because of CIP. If we treat the

minority class and the majority class instances equally, and set

the same radius and the same threshold of the hyperspheres

for all instances, the hyperspheres will include more majority

class instances than minority class instances, and the ratio of

the number of the minority class instances to the number of

all instances will always be low, whatever the center instance

belongs to the majority class or the minority class. In fact,

discriminating between the minority class and majority class

instances is quite common in the area of CIP.

To find the optimal values of the four parameters, we

employ DE [8]. The range of rmin and rmaj explored by DE

is set from 0 to dismax, where dismax is the largest distance

between any two instances in a dataset. The range of tmin and

tmaj is set from 0 to 1. In this study, we set the fitness function

to explore the maximum AUC value of prediction models. For

the hyperparameter settings of DE, there is no uniform rule.

We set the population size N as ten times the dimensionality

D of instances by convention. As for the scaling factor F and

the crossover rate CR, we have tried various combinations.

Experimentally, we choose the combination of F equalling 0.3

and CR equalling 0.9, which minimizes the execution time of

ROCT while achieving a similar performance compared with

the other settings. The number of the generation G is set to be

ten, because the convergence was achieved on all classifiers

across all selected datasets in no more than ten generations.

We present the details of the settings of DE in Table I.

230

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on September 23,2021 at 08:25:57 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
HYPERPARAMETER CONFIGURATIONS OF DE

Hyperparameters Values
The population size, N 10 * D

The number of generations, G 10
The mutation constant, F 0.3
The crossover rate, CR 0.9

The range of rmin (0, dismax)
The range of rmaj (0, dismax)
The range of tmin (0, 1)
The range of tmaj (0, 1)

Algorithm 1 ROCT algorithm
Input: Dataset N including the minority class instances Nmin and the majority class
instances Nmaj

Output: Dataset N removing the overlapping instances

1: apply DE to N to obtain rmin, tmin, rmaj and tmaj

2: for each instance Xi in N do
3: calculate the distance di between Xi and all the other instances in N
4: if Xi in Nmin then
5: select X whose di < rmin from N
6: calculate the ratio t of the minority class instances in X
7: if t > tmin then
8: remove the majority class instances from N
9: end if

10: else
11: select X whose di < rmaj from N
12: calculate the ratio t of the majority class instances in X
13: if t > tmaj then
14: remove the minority class instances from N
15: end if
16: end if
17: end for
18: return Dataset N removing the overlapping instances

Algorithm 1 shows the pseudo-code of ROCT. First, ROCT

obtains the optimal values of rmin, tmin, rmaj , and tmaj by

applying DE (Line 1). Then, for each instance Xi, ROCT

calculates the distance between it and all the other instances

(Lines 2 to 3). If Xi belongs to the minority class, rmin and

tmin are applied to decide whether the majority class instances

in the hypersphere decided by Xi are the overlapping instances

and should be removed or not (Lines 4 to 9). Otherwise, rmaj

and tmaj are applied (Lines 10 to 16). Finally, the dataset

removing the overlapping instances is returned (Line 18).

V. EXPERIMENTAL DESIGN

This section details the experimental design, including the

baseline techniques, the adopted datasets, the classifiers, the

performance measures, the statistical test, as well as the

experimental procedure.

A. Baselines

The class overlap cleaning techniques we adopt as the

baselines are IKMCCA [7], NCL [9], ENN [10], and Tomek

[11]. We give a brief introduction to these techniques as below:

IKMCCA. IKMCCA is the latest class overlap cleaning

technique proposed to alleviate COP in SDP. It first employs

the K-means algorithm to cluster datasets into K clusters.

Then for each cluster, IKMCCA calculates the percentage of

the minority class instances. If the percentage is lower than

a predefined threshold, the corresponding cluster is identified

as the majority class cluster, and the minority class instances

in this cluster are removed. Otherwise, the majority class

instances are removed.

NCL. The main idea of NCL is to locate the overlapping

instances that have contradictory nearest neighbor instances.

Specifically, for each minority class instance, NCL calculates

its top K nearest neighbor instances and removes the majority

class instances from the top K nearest neighbor instances if

these K instances contain the majority class instances. NCL

only removes the majority class instances to avoid worsening

CIP.

ENN. For each instance, ENN finds its K nearest neighbors. If

this instance does not agree with the majority of its K nearest

neighbors, in other words, if this instance is misclassified

by the K-NN algorithm, it will be removed. ENN edits out

noisy instances as well as close border cases, leaving smoother

decision boundaries.

Tomek. If one minority class instance and one majority class

instance are each other’s nearest neighbor, these two instances

are one tomek link. Then there are two ways to handle Tomek

link. One way is to remove all tomek links in a dataset. The

other way is to remove only the majority class instance in each

tomek link.

B. Datasets

In this study, we adopt 29 datasets collected from the

AEEEM [12], NASA [13], PROMISE [14], ReLink [15], and

SOFTLAB [16] repositories to conduct the experiment. These

datasets were widely adopted in previous studies [7], [22].

The projects from PROMISE are multi-version, and we only

use the first version of each project as Gong did [7]. Table II

presents the details of the adopted datasets.

C. Classifiers

We select four classifiers to build prediction models. These

classifiers are the K-nearest neighbor (K-NN), random forest

(RF), logistic regression (LR), and naive Bayes (NB). These

classifiers were widely adopted by previous studies in SDP.

To make others replicate our work conveniently and avoid

reinventing the wheel, we adopt the Sklearn package [23]

for our experiment. The hyperparameters of these classifiers

are all set to be the default values, because we focus on

the performance of different techniques instead of tuning the

hyperparameters of the classifiers.

D. Performance Measures

In SDP, the performance measures that are not significantly

affected by CIP are preferable. In this study, we adopt AUC,

balance, pd, and pf to measure the performance of prediction

models. AUC [24]–[26] is the abbreviation of the area under

the ROC curve, which is widely adopted to measure the overall

performance of prediction models in SDP. balance, pd, and

pf [27]–[29] are computed using the results from a confusion

matrix (Table III). In SDP, defective instances are considered

as positive instances and non-defective instances as negative

instances. Then the outcomes of a prediction model can be

categorized into four types:
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TABLE II
DESCRIPTION OF 29 DATASETS

Group Dataset Language Granularity Number of metrics # Instances % Defect Ratio

NASA

CM1

C Function

37

327 12.84
MW1 253 10.67
PC1 705 8.65
PC3 1077 12.44
PC4 1458 12.21

SOFTLAB

AR1

29

121 7.44
AR3 163 12.70
AR4 107 18.69
AR5 36 22.22
AR6 101 14.85

AEEEM

Equinox Framework

Java

Class

61

324 39.81
Eclipse JDT core 997 20.66
Apache Luence 691 9.26

Mylyn 1862 13.16
Eclipse PDE UI 1497 13.96

PROMISE

ant1.3

20

125 16.00
camel1.0 339 3.83

ivy1.1 111 56.76
jedit3.2 272 33.09
log4j1.0 135 25.19

lucene2.0 195 46.67
poi1.5 237 59.49

synapse1.0 157 10.19
velocity1.4 196 75.00

xalan2.4 723 15.21
xercesinit 162 47.53

ReLink
Apache HTTP Server

File 26
194 50.52

OpenIntents Safe 56 39.29
ZXing 399 29.57

• True Positive (TP): the number of correctly predicted

positive instances

• True Negative(TN): the number of correctly predicted

negative instances

• False Positive(FP): the number of instances which are ac-

tually negative instances but wrongly predicted as positive

instances

• False Negative(FN): the number of instances which are

actually positive instances but wrongly predicted as neg-

ative instances

TABLE III
A CONFUSION MATRIX

Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

A confusion matrix is composed of these four categorized

outcomes. balance, pd, and pf are calculated based on the

confusion matrix, and the mathematical definitions are given

below:

pd =
TP

TP + FN
, (1)

pf =
FP

TN + FP
, (2)

balance = 1−
√
(0− pf)2 + (1− pd)2√

2
. (3)

The higher values of AUC, balance, pd, and the lower

values of pf represent a better performance.

E. Experimental Procedure

Fig. 3 shows the flow of the experiment. We first apply

the log-transformation to the datasets as Gong did [7]. Then

we employ the 5-fold cross-validation with the stratification

method to divide the datasets into five folds. The stratification

method is to keep the ratio of the minority class instances to

the majority class instances in each fold remaining the same as

the original dataset. We use the four folds as the training data

and apply the compared techniques to the training data. The

left one fold is used as the testing data.Then this procedure

will be iterated five times to ensure all five folds are used

as both the training and the testing data. For ROCT, we also

use the 5-fold cross-validation with the stratification method

to divide the datasets into five parent folds. We further divide

the four parent folds into five sub-folds. Then we take four

sub-folds as the training data and apply DE to these four sub-

folds. The left sub-fold is used to decide the optimal values

of the parameters of ROCT. This procedure is also repeated

five times to ensure all sub-folds are used for both training and

testing. Once the optimal values are found, ROCT is applied to

the four parent folds, and the left parent fold is used to validate

the performance of ROCT. We also repeat this procedure five

times. For each technique, we iterate the above process ten

times to reduce the variance and bias. After ten iterations, we

record the average values of AUC, balance, pd, and pf . For
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Dataset

Apply 5-fold cross-validation

Training dataset Training dataset

Apply the compared techniques
(NCL, IKMCCA, ENN, Tomek) Train classifiers

(KNN, RF, LR, NB)

Prediction models Testing dataset

Outcomes

Compute performance 
measures

Apply 5-fold cross-validation

Sub-training dataset Prediction models

Apply DE to find the optimal 
parameters of ROCT

Sub-testing dataset Apply ROCT

Repeat 10 times

Averages of each 
performance measure

Apply the log-transformation

Fig. 3. The experimental framework

the hyperparameters of the compared techniques, we follow

the authors’ settings.

F. Statistical Test
To analyze whether there exists statistically significant dif-

ference between the performance of ROCT and those of the

compared techniques, we adopt the Wilcoxon signed-rank test

(Wilcoxon) [30]. Wilcoxon is a non-parametric test and takes

the null hypothesis that data are paired and come from the

same distribution. The alternative hypothesis is that data come

from a different distribution. We employ Wilcoxon at the 95%

confidence level. If the p-value is less than 0.05, the null

hypothesis is rejected. Otherwise, the null hypothesis cannot

be rejected. Furthermore, to quantify the difference between

the performances of ROCT and other techniques, the effect

size is computed (i.e., Cliff’s δ). We interpret the effect size

as negligible (0 < Cliff’s δ < 0.147), small (0.147 < Cliff’s δ
< 0.33), medium (0.33 < Cliff’s δ < 0.474) or large (Cliff’s

δ > 0.474) as Kampenes [31] did.
We also adopt the win-draw-loss strategy to show a detailed

performance of each technique across every single dataset in

terms of AUC.

VI. EXPERIMENTAL RESULTS

In this section, we present the performance of ROCT and the

baseline techniques in terms of pd, pf , balance, and AUC. We

further present the performance of each technique across every

single dataset in terms of AUC. To ease the demonstration, we

refer IKMCCA as IKM in this section.

TABLE IV
THE PERFORMANCE OF ROCT, NCL, IKM, ENN, AND TOMEK ON THE

SELECTED CLASSIFIERS ACROSS 29 DATASETS IN TERMS OF pd

ROCT NCL IKM ENN Tomek
K-NN 0.777 0.561 0.596 0.539 0.433
p-value < .05 < .05 < .05 < .05
Cliff’s δ 0.577 0.655 0.598 0.781

RF 0.735 0.538 0.591 0.557 0.391
p-value < .05 < .05 < .05 < .05
Cliff’s δ 0.498 0.503 0.397 0.746

LR 0.768 0.534 0.593 0.559 0.411
p-value < .05 < .05 < .05 < .05
Cliff’s δ 0.570 0.560 0.534 0.738

NB 0.712 0.680 0.649 0.682 0.653
p-value > .05 < .05 > .05 < .05
Cliff’s δ 0.059 0.224 0.033 0.210

We first present the pd values of each technique on the

four classifiers. It can be seen that ROCT performs the best

compared with the baselines in terms of pd from Table IV.

Based on the conclusion of Chen [9], an effective class

overlap technique should increase the pd values of prediction

models. ROCT obtains the highest pd values on all classifiers.

Moreover, the differences in the pd values between ROCT

and the compared techniques are statistically significant on

most classifiers. On the K-NN, RF, and LR classifiers, the

effect sizes are all practical. The higher pd values of ROCT

reflect a better ability to find defects. Compared with ROCT,

the lower pd values of the baselines indicate a poor ability to

find defects, which shows the inefficiency of these techniques.
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TABLE V
THE PERFORMANCE OF ROCT, NCL, IKM, ENN, AND TOMEK ON THE

SELECTED CLASSIFIERS ACROSS 29 DATASETS IN TERMS OF pf

ROCT NCL IKM ENN Tomek
K-NN 0.299 0.204 0.236 0.194 0.148
p-value < .05 < .05 < .05 < .05
Cliff’s δ 0.465 0.265 0.520 0.587

RF 0.276 0.181 0.230 0.192 0.120
p-value < .05 > .05 < .05 < .05
Cliff’s δ 0.522 0.227 0.451 0.703

LR 0.293 0.198 0.234 0.203 0.131
p-value < .05 < .05 < .05 < .05
Cliff’s δ 0.505 0.284 0.484 0.641

NB 0.275 0.296 0.285 0.304 0.268
p-value > .05 > .05 > .05 > .05
Cliff’s δ 0.140 0.115 0.170 0.046

There is a positive correlation between pd and pf . Usually,

a high pd value follows a high pf value. From Table V, it

can be seen that there is no significant difference between the

performance of ROCT and those of the compared techniques

on the NB classifiers. On the other classifiers, the compared

techniques obtain lower pf values. Tomek performs the best

in terms of pf . It significantly outperforms ROCT on most

classifiers with practical effect sizes. However, this is at the

expense of degrading the pd values, which means it is difficult

for Tomek to find defects in a dataset, and thus less practical.

TABLE VI
THE PERFORMANCE OF ROCT, NCL, IKM, ENN, AND TOMEK ON THE

SELECTED CLASSIFIERS ACROSS 29 DATASETS IN TERMS OF balance

ROCT NCL IKM ENN Tomek
K-NN 0.708 0.613 0.630 0.601 0.549
p-value < .05 < .05 < .05 < .05
Cliff’s δ 0.574 0.508 0.605 0.722

RF 0.693 0.609 0.629 0.612 0.537
p-value < .05 < .05 < .05 < .05
Cliff’s δ 0.442 0.436 0.424 0.646

LR 0.700 0.592 0.626 0.604 0.539
p-value < .05 < .05 < .05 < .05
Cliff’s δ 0.620 0.508 0.574 0.715

NB 0.686 0.657 0.647 0.653 0.655
p-value < .05 < .05 < .05 < .05
Cliff’s δ 0.282 0.282 0.270 0.275

We then use balance and AUC to measure the overall

performance of ROCT and the baseline techniques. Table

VI presents the balance values of each technique together

with the p-values and the effect sizes. We can see that the

performance of ROCT is superior in terms of balance. ROCT

gains the highest balance values on all four classifiers and sig-

nificantly outperforms all the compared techniques. Moreover,

the effect sizes between ROCT and the other techniques reach

medium, or even large on the K-NN. RF and LR classifiers.

On the NB classifier, the effect size between ROCT and the

compared techniques is small. Compared with the second-

best performing technique on each classifier, the improvement

brought by ROCT is up to 12.4%, 10.2%, 11.8%, and 4.4%

in terms of balance, respectively. Compared with the worst

performing technique on each classifier, the improvement

Fig. 4. The boxplots of the performance of ROCT and the class overlap
cleaning techniques in terms of AUC

brought by ROCT is up to 29.0%, 29.1%, 29.9%, and 6.0%

in terms of balance, respectively.

TABLE VII
THE PERFORMANCE OF ROCT, NCL, IKM, ENN, AND TOMEK ON THE

SELECTED CLASSIFIERS ACROSS 29 DATASETS IN TERMS OF AUC

ROCT NCL IKM ENN Tomek
K-NN 0.739 0.679 0.680 0.672 0.642
p-value < .05 < .05 < .05 < .05
Cliff’s δ 0.486 0.539 0.517 0.684

RF 0.729 0.679 0.681 0.682 0.636
p-value < .05 < .05 < .05 < .05
Cliff’s δ 0.361 0.448 0.365 0.636

LR 0.737 0.668 0.680 0.678 0.640
p-value < .05 < .05 < .05 < .05
Cliff’s δ 0.591 0.532 0.517 0.707

NB 0.718 0.692 0.682 0.689 0.692
p-value < .05 < .05 < .05 < .05
Cliff’s δ 0.282 0.351 0.279 0.258

Table VII presents the AUC values of the class overlap

cleaning techniques across 29 datasets. It can be seen that

ROCT achieves the highest AUC values and significantly out-

performs the other techniques on all classifiers. Furthermore,

ROCT significantly outperforms the compared techniques with

small, medium or even large effect sizes. Compared with

the second-best performing technique on each classifier, the

improvement brought by ROCT is up to 8.7%, 6.9%, 8.4%,

and 3.8% in terms of AUC, respectively. Compared with the

worst performing technique on each classifier, the improve-

ment brought by ROCT is up to 15.1%, 14.6%, 15.2%, and

5.3% in terms of AUC.

Fig. 4 shows the boxplot of AUC values of the techniques

across 29 datasets on the four classifiers. The black triangle in

the boxplot represents the mean value, and the black line is the

median value. Except that ENN obtains the highest maximum

AUC value on the RF classifier, it can be seen that ROCT

obtains the highest maximum, mean, median, and minimum

AUC values on all classifiers. Considering AUC can handle the

trade-off between pd and pf well, higher AUC values indicate

a better overall performance of prediction models. Therefore,

from Fig 4, we can see that the overall performance of ROCT

is superior to those of the compared techniques.
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We further take the win-draw-loss strategy to show the

detailed performance of ROCT across every single dataset

in terms of AUC, because AUC is one of the common

performance measure in SDP. W/D/L in Tables VIII, IX, X,

and XI represents ROCT performs better than, the same as or

worse than the corresponding baseline in terms of AUC across

each dataset. It can be seen that no baseline obtains more than

seven wins against ROCT across 29 datasets on all classifiers.

Notably, we observe that the baseline techniques obtain 0.5 in

terms of AUC on some datasets such as camel1.0 and AR5.

When prediction models obtain AUC value equalling 0.5, it

means the predicted results of the prediction models are not

better than a random guess. This shows that these datasets

are difficult for prediction models to make correct predictions,

even if they are processed by some baseline techniques. On

the contrary, ROCT obtains much higher AUC values than

these baselines on these datasets, which shows the superiority

of ROCT and indicates that ROCT can better process those

difficult datasets than the previous techniques.

TABLE VIII
AUC VALUES ON THE KNN CLASSIFIER ACROSS 29 DATASETS

ROCT NCL IKM ENN Tomek
EQ 0.755 0.746 0.749 0.738 0.682
JDT 0.775 0.765 0.752 0.760 0.737
LC 0.714 0.659 0.666 0.635 0.586
ML 0.727 0.691 0.694 0.686 0.613
PDE 0.695 0.650 0.658 0.635 0.579
CM1 0.694 0.565 0.592 0.578 0.529
MW1 0.726 0.751 0.706 0.729 0.584
PC1 0.741 0.595 0.685 0.587 0.583
PC3 0.766 0.689 0.728 0.655 0.559
PC4 0.817 0.825 0.785 0.814 0.693

ant1.3 0.787 0.718 0.704 0.718 0.632
camel1.0 0.759 0.500 0.569 0.500 0.500

ivy1.1 0.697 0.613 0.641 0.650 0.693
jedit3.2 0.767 0.752 0.738 0.719 0.743
log4j1.0 0.741 0.733 0.714 0.754 0.724

lucene2.0 0.704 0.641 0.680 0.647 0.629
poi1.5 0.726 0.716 0.680 0.684 0.744

synapse1.0 0.750 0.694 0.746 0.727 0.589
velocity1.4 0.709 0.685 0.705 0.695 0.699

xalan2.4 0.739 0.654 0.669 0.658 0.613
xercesinit 0.772 0.715 0.668 0.736 0.739
Apache 0.731 0.651 0.697 0.594 0.678

Safe 0.736 0.696 0.721 0.711 0.708
ZXing 0.628 0.622 0.607 0.618 0.590
AR1 0.665 0.482 0.582 0.477 0.486
AR3 0.855 0.791 0.791 0.741 0.741
AR4 0.755 0.621 0.674 0.644 0.611
AR5 0.830 0.807 0.500 0.807 0.760
AR6 0.683 0.651 0.609 0.600 0.598

W/D/L 27/0/2 29/0/0 27/0/2 28/0/1

We further present the boxplot of rmin and rmaj explored

by DE on the 29 datasets. Fig. 5 presents the boxplots of the

optimal values of tmin and tmaj on the 29 datasets. It can be

seen that tmin values are generally smaller than tmaj values,

which fits our intuition because of CIP, and it also indicates

the necessity of discriminating between the minority class and

majority class instances.

According to the experimental results, we conclude that

TABLE IX
AUC VALUES ON THE RF CLASSIFIER ACROSS 29 DATASETS

ROCT NCL IKM ENN Tomek
EQ 0.778 0.743 0.768 0.754 0.766
JDT 0.778 0.762 0.756 0.788 0.722
LC 0.729 0.664 0.669 0.614 0.610
ML 0.733 0.698 0.703 0.681 0.618
PDE 0.694 0.660 0.659 0.646 0.604
CM1 0.675 0.576 0.599 0.576 0.490
MW1 0.713 0.740 0.706 0.711 0.618
PC1 0.758 0.611 0.674 0.626 0.602
PC3 0.768 0.653 0.730 0.659 0.565
PC4 0.803 0.761 0.793 0.783 0.686

ant1.3 0.737 0.754 0.670 0.749 0.567
camel1.0 0.655 0.494 0.582 0.497 0.495

ivy1.1 0.710 0.686 0.650 0.596 0.685
jedit3.2 0.769 0.796 0.744 0.777 0.765
log4j1.0 0.742 0.722 0.714 0.723 0.659

lucene2.0 0.678 0.599 0.696 0.614 0.634
poi1.5 0.711 0.707 0.677 0.685 0.728

synapse1.0 0.700 0.628 0.679 0.684 0.556
velocity1.4 0.761 0.794 0.739 0.773 0.791

xalan2.4 0.736 0.643 0.706 0.678 0.571
xercesinit 0.757 0.686 0.711 0.723 0.746
Apache 0.732 0.656 0.704 0.569 0.645

Safe 0.726 0.707 0.716 0.679 0.673
ZXing 0.646 0.635 0.590 0.650 0.598
AR1 0.712 0.473 0.561 0.564 0.491
AR3 0.818 0.773 0.750 0.873 0.723
AR4 0.715 0.698 0.674 0.675 0.659
AR5 0.823 0.823 0.500 0.807 0.590
AR6 0.591 0.534 0.614 0.640 0.583

W/D/L 24/1/4 27/0/2 22/0/7 27/0/2

TABLE X
AUC VALUES ON THE LR CLASSIFIER ACROSS 29 DATASETS

ROCT NCL IKM ENN Tomek
EQ 0.754 0.747 0.746 0.728 0.712
JDT 0.779 0.762 0.765 0.767 0.727
LC 0.742 0.674 0.695 0.683 0.631
ML 0.719 0.667 0.687 0.680 0.611
PDE 0.699 0.655 0.669 0.647 0.601
CM1 0.697 0.622 0.644 0.684 0.531
MW1 0.723 0.682 0.730 0.693 0.558
PC1 0.762 0.608 0.668 0.606 0.555
PC3 0.751 0.648 0.727 0.655 0.560
PC4 0.837 0.783 0.809 0.813 0.737

ant1.3 0.749 0.627 0.673 0.713 0.596
camel1.0 0.741 0.497 0.624 0.497 0.498

ivy1.1 0.715 0.676 0.636 0.665 0.685
jedit3.2 0.774 0.756 0.725 0.741 0.759
log4j1.0 0.753 0.747 0.687 0.749 0.720

lucene2.0 0.707 0.608 0.651 0.605 0.692
poi1.5 0.680 0.674 0.668 0.641 0.677

synapse1.0 0.786 0.602 0.656 0.572 0.523
velocity1.4 0.725 0.715 0.733 0.738 0.722

xalan2.4 0.726 0.659 0.672 0.655 0.587
xercesinit 0.738 0.653 0.663 0.655 0.722
Apache 0.718 0.699 0.660 0.694 0.717

Safe 0.729 0.700 0.738 0.729 0.682
ZXing 0.620 0.581 0.592 0.611 0.571
AR1 0.676 0.491 0.584 0.591 0.495
AR3 0.795 0.673 0.805 0.655 0.682
AR4 0.716 0.722 0.624 0.725 0.673
AR5 0.890 0.757 0.500 0.817 0.690
AR6 0.684 0.686 0.688 0.651 0.649

W/D/L 27/0/2 24/0/5 26/1/2 29/0/0
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TABLE XI
AUC VALUES ON THE NB CLASSIFIER ACROSS 29 DATASETS

ROCT NCL IKM ENN Tomek
EQ 0.776 0.736 0.756 0.737 0.696
JDT 0.756 0.745 0.739 0.746 0.743
LC 0.743 0.732 0.729 0.736 0.742
ML 0.670 0.638 0.645 0.633 0.639
PDE 0.698 0.674 0.679 0.674 0.660
CM1 0.646 0.645 0.626 0.635 0.632
MW1 0.704 0.693 0.701 0.698 0.696
PC1 0.729 0.680 0.686 0.682 0.688
PC3 0.731 0.710 0.721 0.713 0.706
PC4 0.740 0.733 0.729 0.732 0.732

ant1.3 0.788 0.763 0.758 0.768 0.792
camel1.0 0.715 0.711 0.710 0.710 0.724

ivy1.1 0.679 0.633 0.637 0.627 0.682
jedit3.2 0.755 0.761 0.741 0.764 0.741
log4j1.0 0.781 0.750 0.759 0.743 0.762

lucene2.0 0.701 0.670 0.695 0.653 0.683
poi1.5 0.708 0.666 0.669 0.677 0.656

synapse1.0 0.734 0.688 0.736 0.681 0.688
velocity1.4 0.709 0.697 0.589 0.707 0.718

xalan2.4 0.722 0.713 0.709 0.712 0.713
xercesinit 0.734 0.701 0.673 0.709 0.726
Apache 0.750 0.747 0.704 0.732 0.709

Safe 0.718 0.693 0.726 0.693 0.736
ZXing 0.610 0.582 0.574 0.574 0.572
AR1 0.617 0.529 0.671 0.529 0.479
AR3 0.800 0.659 0.668 0.659 0.659
AR4 0.725 0.707 0.628 0.725 0.711
AR5 0.760 0.790 0.500 0.773 0.757
AR6 0.636 0.618 0.618 0.567 0.624

W/D/L 27/0/2 26/0/3 27/1/1 24/0/5

Fig. 5. The boxplots of tmin and tmaj of ROCT on the 29 datasets

ROCT achieves a significantly better overall performance

compared with the existing class overlap cleaning techniques

in terms of AUC and balance. ROCT also obtains significantly

higher pd values. With respect to the pf values, Tomek

performs the best. However, this is at the expense of degrading

the ability of prediction models to find defects. Therefore,

ROCT should be considered as an effective technique to

alleviate COP in SDP.

VII. THREATS TO VALIDITY

In this study, 29 datasets collected from various repositories

are adopted. These datasets are measured by various met-

rics. However, there are still some other datasets measured

by other metrics. It will become a threat to the validity

of our conclusion if our results fail to generalize to other

datasets or other types of metrics. However, these datasets

and these metrics were widely adopted in previous studies.

Their performances are stable and satisfactory. Four common

classifiers are selected, and the hyperparameters of these

classifiers are set to be the default values. The conclusion may

vary on the other classifiers or with different hyperparameter

settings. We detail the settings of the experiment. Therefore,

it would be easy for others to replicate our work by adopting

different classifiers or hyperparameter settings on any available

dataset. During the experiment, biases and variances may be

introduced. To minimize biases and variances, the 5-fold cross-

validation method is adopted, and the experiment is repeated

ten times. We adopt four performance measures, one of which

is threshold-independent (i.e., AUC), and the other three are

threshold-dependent (i.e., balance, pd, and pf ). There are

also many other performance measures such as F-measure

or G-mean. If different performance measures are adopted,

the conclusion may be different. We plan to adopt more

performance measures to validate the performance of ROCT

in the future.

VIII. CONCLUSION AND FUTURE WORK

Previous studies have pointed out that COP plays a more

important role in affecting the performance of prediction

models than CIP. However, few works have been done to

alleviate COP compared with CIP. Moreover, the performance

of the existing class overlap cleaning techniques is heavily

dependent on the proper settings of the hyperparameters.

To alleviate these issues, we propose a novel class overlap

cleaning technique-ROCT, which gets rid of the difficulty in

deciding the optimal hyperparameters. ROCT directly iden-

tifies the class overlapping area by looking for the optimal

radius of the hypersphere decided by each instance. The

instances with the opposite label of the center instance in

these hyperspheres are identified as the overlapping instances

and removed. Empirical experiments are conducted to validate

the performance of ROCT. The experimental results show

that ROCT significantly improves the overall performance of

prediction models compared with the existing class overlap

cleaning techniques in terms of AUC and balance. Based on

the experimental results, we recommend applying ROCT to
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alleviate COP in SDP, thereby improving the performance of

prediction models.

For future study, we plan to generalize ROCT to more

datasets with different metrics on more classifiers, and vali-

date its performance using more performance measures. We

also plan to conduct an empirical study to investigate the

performance of the existing class overlap cleaning techniques.

Moreover, we plan to propose a technique that can alleviate

COP and CIP simultaneously.
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