
An Inception Architecture-Based Model
for Improving Code Readability Classification

Qing Mi, Jacky Keung, Yan Xiao, Solomon Mensah, Xiupei Mei
City University of Hong Kong, Kowloon, Hong Kong

{Qing.Mi, yanxiao6-c, smensah2-c, xpmei2-c}@my.cityu.edu.hk, Jacky.Keung@cityu.edu.hk

ABSTRACT
The process of classifying a piece of source code into a Readable
or Unreadable class is referred to as Code Readability Classification.
To build accurate classification models, existing studies focus on
handcrafting features from different aspects that intuitively seem to
correlate with code readability, and then exploring various machine
learning algorithms based on the newly proposed features. On the
contrary, our work opens up a new way to tackle the problem by
using the technique of deep learning. Specifically, we propose In-
cepCRM, a novel model based on the Inception architecture that can
learn multi-scale features automatically from source code with little
manual intervention. We apply the information of human annota-
tors as the auxiliary input for training IncepCRM and empirically
verify the performance of IncepCRM on three publicly available
datasets. The results show that: 1) Annotator information is benefi-
cial for model performance as confirmed by robust statistical tests
(i.e., the Brunner-Munzel test and Cliff’s delta); 2) IncepCRM can
achieve an improved accuracy against previously reported models
across all datasets. The findings of our study confirm the feasibility
and effectiveness of deep learning for code readability classification.

CCS CONCEPTS
• Software and its engineering→ Software reliability;Main-
taining software; • Computing methodologies → Neural net-
works; Supervised learning by classification;

KEYWORDS
Code Readability Classification, Inception Architecture, Deep Learn-
ing, Empirical Software Engineering
ACM Reference Format:
Qing Mi, Jacky Keung, Yan Xiao, Solomon Mensah, Xiupei Mei. 2018. An
Inception Architecture-Based Model for Improving Code Readability Classi-
fication. In EASE’18: 22nd International Conference on Evaluation and Assess-
ment in Software Engineering, June 28–29, 2018, Christchurch, New Zealand.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3210459.3210473

1 INTRODUCTION
Reading source code is a frequent activity in software maintenance
and evolution. Developers must read and fully understand source

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EASE’18, June 28–29, 2018, Christchurch, New Zealand
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6403-4/18/06. . . $15.00
https://doi.org/10.1145/3210459.3210473

code before attempting any changes. It is therefore desirable to
have readable code that is less erroneous [7], more reusable [23],
and easier to maintain [27].

Code readability can be defined as a human judgment of how
easily a piece of code can be read and understood [1], which is
essentially an intuitive concept. As shown in Figure 1, the visual
appearance of a source code in general is referred to as its readabil-
ity [4]. If automated readability metrics were available, they could
be integrated into real-world scenarios such as modern IDEs (inte-
grated development environments) and version control products,
and thus assist developers to identify poorly written code [1, 21].
However, there is only a limited literature concerning this issue.

/**

 * Creates a new <code>DisbandUnitAction</code>.

 *

 * @param freeColClient The main controller object for the client.

 */

DisbandUnitAction(FreeColClient freeColClient) {

super(freeColClient, "unit.state.8", null, KeyStroke...

putValue(BUTTON_IMAGE, freeColClient.getImageLibrary()...

ImageLibrary.UNIT_BUTTON_DISBAND,

0));

putValue(BUTTON_ROLLOVER_IMAGE, freeColClient...

getUnitButtonImageIcon(

ImageLibrary.UNIT_BUTTON_DISBAND, 1));

Unreadable Code (Mean Readability Score - 2.01)

/**

 * Add one zero if necessary

 * @param number

 * @return

 */

private CharSequence addZero(int number) {

StringBuilder builder = new StringBuilder();

if (number < 10) {

builder.append('0');

}

builder.append(Integer.toString(number));

Readable Code (Mean Readability Score - 4.02)

Figure 1: Readable Code vs. Unreadable Code

The existing code readability studies mainly consist of three
phases: 1) Collect labeled data by conducting a large-scale survey,
inviting multiple human annotators to rate code snippets by read-
ability; 2) Handcraft features from different aspects that intuitively
seem to have some effect on code readability; 3) Train a machine
learning classifier using data collected from the first phase.

Unlike prior work [1, 7, 21, 23], we propose IncepCRM, a deep
learning based model for code readability classification. Specifically,
we make three improvements: 1) We eliminate the need for manual
feature engineering; 2) We apply the information of human anno-
tators as the auxiliary input for model training; 3) We propose a
modified Inception module that can automatically learn multi-scale

https://doi.org/10.1145/3210459.3210473
https://doi.org/10.1145/3210459.3210473

EASE’18, June 28–29, 2018, Christchurch, New Zealand Qing Mi, Jacky Keung, Yan Xiao, Solomon Mensah, Xiupei Mei

features from the source code. The experimental results show that
IncepCRM performs better than previous approaches, achieving a
state-of-the-art accuracy ranging from 82.2% to 84.2%.

The rest of this paper is organized as follows. Section 2 presents
the background and related work. Section 3 introduces IncepCRM
in detail. Section 4 describes the design of our empirical study and
Section 5 discusses the results. We analyze threats to validity in
Section 6. Section 7 concludes the paper and suggests future work.

2 BACKGROUND AND RELATEDWORK
This section introduces the related work on code readability re-
search and the basic knowledge of Convolutional Neural Networks.

2.1 Code Readability Research
A wide variety of readability metrics for natural languages are
available in the literature (e.g., the Flesch-Kincaid Grade Level [8]
and the SMOGGrading [19]), yet only a few studies have considered
the counterpart targeted in the context of program source code.

With data collected from 120 human annotators, Buse et al. [1]
proposed the first model of code readability based on a simple set of
local code features (e.g., the number of identifiers). Buse et al.’s work
was a major contribution to this area because it opened up the pos-
sibility of automated readability metrics and provided an excellent
platform for conducting future readability experiments. Posnett
et al. [21] improved Buse et al.’s work by introducing a simple, in-
tuitive theory of readability, which relied on two main measures:
size and code entropy. They showed that the simple model outper-
formed Buse et al.’s model across all performance measures (e.g.,
F-Measure and ROC). In order to build a model of code readability
that is more likely to generalize than previous work, Dorn et al. [7]
performed a large-scale human study involving over 5000 partici-
pants and proposed structural pattern features, visual perception
features, alignment features, and natural language features. In a
recent study, Scalabrino et al. [23] further introduced a set of tex-
tual features that were based on source code lexicon analysis. The
results indicated that the proposed features complemented classic
structural features when predicting code readability judgments.

As we have described above, most existing work still relies on
manual feature engineering. In other words, they focus on hand-
crafting different combinations of surface-level features to repre-
sent code readability. The process is generally effort-intensive and
requires strong domain-specific knowledge [5]. Actually, code read-
ability is an intuitive concept, the manually-designed features are
likely to be inadequate and thus put significant limitations on the
model performance. In order to eliminate the need for manual fea-
ture engineering and increase the accuracy of code readability clas-
sification, we propose to employ Convolutional Neural Networks
which are more efficient in learning local higher-level features of
source code [5].

2.2 Convolutional Neural Network
Deep learning [14] is a subfield of machine learning that is inspired
by Artificial Neural Networks, which has achieved impressive (and
often state-of-the-art) results in various domains such as image
recognition [10, 24] and natural language processing [3, 13]. In-
spired by the great success, deep learning has attracted considerable

attention of researchers and practitioners in software engineering
community. For instance, Gu et al. [9] applied the RNN Encoder-
Decoder model to generate API usage sequences for a given natural
language query. Wang et al. [28] leveraged Deep Belief Network to
learn a semantic representation of programs and used the learned
features to improve defect prediction. However, few studies have
been reported to apply deep learning techniques on code readability
classification.

Convolutional Neural Network (ConvNet) [16] is one of the most
popular deep learning models. A typical ConvNet is composed of
stacked convolutional, pooling, and fully-connected layers. As an
example, consider LeNet-5 [15, 26] shown in Figure 2, which is
designed for handwritten digit recognition.

Convolu�on Convolu�onPooling Pooling Full Connec�on

INPUT
32x32

OUTPUT
10

P2

6@14x14

C3

16@10x10 C5

120 F6

84

C1

6@28x28

P4

16@5x5

Feature Learning Network Classifica�on Network

Figure 2: Architecture of LeNet-5 (A Classical Convolutional
Neural Network)

As shown in Figure 2, a typical ConvNet consists of two parts.
The first part is usually a feature learning network, which includes
alternating convolutional and pooling layers. A convolutional layer
is used to extract features from local receptive fields. A feature
map (the planes in Figure 2) is obtained by applying a convolution
operation to the input followed by a non-linear activation function.
Specifically, the kth feature map at a given layer is generated by:

hk = σ (W k ∗ x + bk) (1)
whereW k denotes the weight matrix, bk denotes the bias unit,

andσ (·) denotes a non-linear activation function (e.g., Tanh (e
x−e−x
ex+e−x)

or ReLU (max(0,x)). Generally, each hidden layer is composed of
multiple feature maps: {hk ,k = 0...K}. After a convolutional layer,
a pooling layer is added to perform down-sampling and reduce com-
putation complexity by consolidating the features learned in the
previous layer. The second part of ConvNets is usually a classifica-
tion network containing one or more fully-connected layers, which
is used to generate the output based on the extracted features.

3 PROPOSED APPROACH
Analogous to prior work [1, 7, 21, 23], we regard the code readability
classification problem as a binary classification problem: given a
piece of source code, we classify it as either Readable or Unreadable.

To improve the accuracy of code readability classification, we
propose IncepCRM, a deep learning based method that can extract
features automatically from source code with little manual inter-
vention. Figure 3 presents the overall workflow of IncepCRM.1 In

1Note that the human study (code readability survey) is used to obtain a reliable oracle,
i.e., a set of labeled data for model training. The process is shown here for clarity,
which is not part of our approach.

An Inception Architecture-Based Model
for Improving Code Readability Classification EASE’18, June 28–29, 2018, Christchurch, New Zealand

Label

(Readable or Unreadable)

Main Input

Offline Training

Training

Instances
IncepCRM

Readable

Data Collec"on (Code Readability Survey)

Unreadable

Code Corpus Human Annotators

Auxiliary Input

(Annotator Informa"on)

Data Preprocessing

Training

Classifica"on

(Readable or Unreadable)

A New Instance

Trained

Model

112,97,99,...
10,-1,-1,-1,...
105,109,...

……

Figure 3: Approach Overview

the first step, we transform source files (data collected from the
code readability survey) into a specific format that Convolutional
Neural Networks (ConvNets) can accept. Inspired by GoogLeNet
[26], we build a novel model based on the Inception architecture
for the task of code readability classification. After that, we involve
annotator information as the auxiliary input for model training.
Using the trained model, we are able to predict the classification
for each new instance. A detailed description of our approach is
provided in the following sections.

3.1 Data Preprocessing
Based on various reasons, previous studies on deep learning appli-
cations in software engineering often preserve partial information
of the source code. For instance, Wang et al. [28] made use of only
three types of AST nodes (i.e., invocation nodes, declaration nodes,
and control-flow nodes) for defect prediction. Gu et al. [9] focused
solely on API usage sequences (e.g., FileOutputStream.new, FileOut-
putStream.write, and FileOutputStream.close) for API recommenda-
tion. By contrast, we intend to preserve the original information of
the source code as much as possible, primarily because no definitive
conclusions have been reached as to which factor(s) can affect code
readability.

Inspired by image recognition, we propose to treat a source code
as a matrix of characters (similar to pixels of an image). Specifically,
we first convert letters (i.e., a-z and A-Z), numbers (i.e., 0-9), marks
(e.g., parentheses and braces), and whitespaces (i.e., spaces, hori-
zontal tabs, and line terminators) into their ASCII values. Because
ConvNets require all inputs to be of the same length, we then pad
the matrices with a special integer (here, -1). In comparison to ex-
isting code representations (e.g., AST nodes), the main advantage
of this method is its simplicity and without loss of generality.

3.2 Annotator Information
According to the definition of code readability, the most accurate
method to judge whether a piece of source code is readable is to
conduct a large-scale survey, inviting multiple human annotators
(preferably domain experts) to provide readability scores based on
their knowledge and experience, as shown in the first part of Figure
3. The result of the survey is a set of code snippets accompanied by
readability scores, which serves as the main input to IncepCRM.

Considering that the obtained mean-opinion-scores may not be
equally reliable, we propose to apply the information of human
annotators as the auxiliary input to our model. Although a variety
of metrics can be considered, in this studywe especially focus on the
following two:2 1) the number of annotators who have rated a code
snippet (code snippets that have been rated by more annotators
are more reliable than those with less); 2) the standard deviation
of readability scores on a code snippet (a lower standard deviation
indicates greater consistency among annotators).

3.3 Model Architecture
Inspired by GoogLeNet [26],3 we adapt the Inception architecture
for code readability classification. The primary reasons are as fol-
lows: 1) The Inception architecture is proven to be effective in
capturing multi-scale information from the input data; 2) When
building a ConvNet layer, there is a challenge of choosing either
a convolution or a pooling operation. The Inception architecture
enables the simultaneous use of both.

2x2
Conv

2x2
Pooling

Filter
Concatena!on

2x2
Conv

Previous Layer

2xMLL
Conv

2x2
Conv

2xMLL
Conv2xMLL

Conv
2xMLL
Conv

Figure 4: The Inception Module used in IncepCRM

Figure 4 illustrates the Inception module we use in IncepCRM,
which contains a set of convolutions and poolings alongside each
2The main reason is that the information of human annotators has not been properly
recorded by prior work [1, 7, 23]. As a result, we have only limited data to work with.
3GoogLeNet is a deep ConvNet constructed by stacking Inception modules.

EASE’18, June 28–29, 2018, Christchurch, New Zealand Qing Mi, Jacky Keung, Yan Xiao, Solomon Mensah, Xiupei Mei

Table 1: Statistical Summary of the Code Corpus

Dataset Description Source Total # of Total # of Lines of Codea

Code Snippets Annotators Mean SD

DBuse Provided by Buse et al. [1] SourceForge 100 121 7.61 2.59
DDorn Provided by Dorn et al. [7] SourceForge 360 5000+ 29.74 16.36

DScalabr ino Provided by Scalabrino et al. [23] SourceForge 200 9 26.56 10.29
aAll lines in the text of source code are counted, including blank and comment lines.

other. Specifically, we make two modifications based on Inception-
v6 [25]. First, we apply the same receptive field in each module for
computational savings. We bias our selection to minimal values
(here, 2) to capture lower-level features. Second, because code read-
ability is context sensitive (just like natural language), the width of
the filter size on top levels is deliberately set as the maximum line
length (MLL).

In IncepCRM, the feature learning network consists of Incep-
tion modules, whereas the classification network consists of fully-
connected layers followed by a Softmax layer. To introduce non-
linearity and accelerate the training process, ReLU activation and
batch normalization are applied after each convolutional layer. In
addition, we involve the dropout strategy to reduce over-fitting.

3.4 Model Training
We use the Keras library4 with Tensorflow backend to implement
IncepCRM. The training process is to minimize the loss (the classifi-
cation error) of the network by adjusting the layer parameters (i.e.,
weights and biases) in an iterative way. Here, we adopt the cross-
entropy loss [6] (one of the most commonly used loss functions for
classification problems) to calculate the error rate between actual
and desired outputs. The loss function is then given by:

J = −
1
N

N∑
i=1

M∑
j=1

p
(i)
j logq(i)j (2)

where N = 32 is the number of data samples (the batch size),
M = 2 is the number of classes (Readable and Unreadable), pj
denotes whether data sample i belongs to class j (the ground-truth),
and qj denotes the probability for class j estimated by IncepCRM.

We train the model in a supervised manner using the Adam
optimizer [11] with a learning rate of 0.001. The number of feature
maps is set to 32 and the dropout rate is set to 0.5.5 The training data
comes from three publicly available datasets, including a total of
210 code snippets with a shape of 50× 305 (the details are provided
in Section 4.1). For the model to generalize well, we split the data
into two parts: 70% for training and 30% for test.

4 EMPIRICAL STUDY DESIGN
We aim to answer the following research questions:

• RQ1: Does annotator information contribute to the perfor-
mance of IncepCRM?

4https://github.com/keras-team/keras
5As a result of time constraint, the values of hyperparameters (e.g., learning rate
and dropout rate) are chosen arbitrarily. In future work, we will fine-tune these
hyperparameters in a systematic manner to improve our model.

• RQ2: To what extent does IncepCRM outperform the exist-
ing models in code readability classification?

We detail our research settings in this section. Specifically, we
first describe the construction process of the studied datasets. Then
we briefly introduce the evaluation metrics used in this study. Fi-
nally, we present our research methodology and competitors ac-
cording to each research question.

4.1 Data Preparation
To train and test our model, we first need to prepare a corpus of
labeled code snippets as the ground-truth. To facilitate comparison
with other approaches, we use publicly available data provided by
previous studies [1, 7, 23], namely,DBuse ,DDorn , andDScalabr ino .
Table 1 presents a statistical summary of the code corpus.

In DBuse , DDorn , and DScalabr ino , each code snippet is evalu-
ated by multiple human annotators using a Likert scale [18] ranging
from 1 (very unreadable) to 5 (very readable). To label a code snip-
pet as Readable or Unreadable, we follow a similar approach to
that of Lee et al. [17]. First, we aggregate the readability scores of
each code snippet by taking the mean. After that, we select the top
25% of code snippets (with high readability scores) as the Readable
group, whereas the bottom 25% of code snippets (with low read-
ability scores) as the Unreadable group. By doing so, we obtain two
representative groups for each dataset.

4.2 Measures for Evaluation
We adopt accuracy to evaluate classification results, which is a
widely used performance measure in the context of code readability
classification [1, 7, 23]. Accuracy shows the ratio of all correctly
classified instances, which is defined as:

Accuracy =
tp + tn

tp + f p + tn + f n
(3)

where tp, fp, tn, fn are the number of readable instances that are
correctly classified as Readable, the number of unreadable instances
that are wrongly classified as Readable, the number of unreadable
instances that are correctly classified as Unreadable, and the number
of readable instances that are wrongly classified as Unreadable,
respectively. The higher the metric value, the better the model
performance.

4.3 Analysis Method
To answer RQ1, we examine whether there exists significant dif-
ference between the performance of IncepCRM with and without
annotator information using robust test statistics recommended

https://github.com/keras-team/keras

An Inception Architecture-Based Model
for Improving Code Readability Classification EASE’18, June 28–29, 2018, Christchurch, New Zealand

by Kitchenham et al. [12], i.e., the Brunner-Munzel test (signifi-
cance level α = 0.05) [20] and Cliff’s delta [2]. The value of Cliff’s
delta is interpreted using the thresholds provided in Romano et
al.’s study [22], which is considered Negligible for |d-value| < 0.147,
Small for |d-value| < 0.330, Medium for |d-value| < 0.474, and Large
for otherwise.

To answer RQ2, we compare IncepCRMwith five state-of-the-art
code readability models:

• Buse et al.’s Model [1]: To construct an automated model
of readability, Buse et al. proposed a relatively simple set of
low-level code features (e.g., the number of loops).

• Posnett et al.’s Model [21]: Based on Buse et al.’s work,
Posnett et al. derived a model that is simpler, better perform-
ing, and theoretically well-founded with only 3 variables:
z = 8.87 − 0.033V + 0.40Lines − 1.5Entropy.

• Dorn et al.’s Model [7]: Dorn et al. presented a formal de-
scriptive model of code readability based on features related
to the visual and linguistic presentation of code.

• Scalabrino et al.’s Model [23]: By considering lexical as-
pects of source code involved in identifiers and comments,
Scalabrino et al. further introduced a set of textual features
(e.g., narrow meaning identifiers).

• A Comprehensive Model [23]: A code readability model
which combines all the features mentioned above.

We abbreviate the aforementioned models asMBuse ,MPosnett ,
MDorn ,MScalabr ino , andMAll , respectively. To enable a fair com-
parison, we apply different machine learning techniques as the
underlying classifier for each model, namely, Logistic Regression
(LR), Bayesian Network (BN), Multilayer Perception (MLP), Sequen-
tial Minimal Optimization (SMO), and Random Forest (RF).

5 RESULTS AND DISCUSSION
In this section, we present the results of our empirical study with
respect to the two research questions.

RQ1: Does annotator information contribute to the per-
formance of IncepCRM?

This RQ is to investigate whether the addition of annotator in-
formation can further improve the accuracy of code readability
classification. We observe that without annotator information, In-
cepCRM is able to correctly classify 80.19% of code snippets in our
corpus. When annotator information is included, the accuracy in-
creases to 82.76%. The p-value for the Brunner-Munzel test is 0.016
(<0.05) and the d-value for Cliff’s delta is 0.641 (>0.474), implying a
significant difference with a large effect size.

Our work is the first attempt to explore the impact of annota-
tor information in the context of code readability classification.
However, we involve only two metrics. In future work, we plan to
examine additional factors, for instance, the annotators’ develop-
ment experience (the opinions of domain experts are more reliable
than those of university students).

RQ2: To what extent does IncepCRM outperform the ex-
isting models in code readability classification?

This RQ is to explore the extent to which IncepCRM can predict
human readability judgments compared to previously reported
models in the literature. We provide the accuracy achieved by each
model on three publicly available datasets in Table 2. The results

show that IncepCRM yields higher accuracy against its competitors
across all datasets.

Table 2: Accuracy Achieved by Code Readability Models

Model DBuse DDorn DScalabr ino

LR 0.810 0.786 0.705
BN 0.760 0.750 0.625

MBuse MLP 0.760 0.742 0.665
SMO 0.820 0.797 0.670
RF 0.800 0.781 0.680
LR 0.780 0.728 0.660
BN 0.760 0.681 0.695

MPosnett MLP 0.770 0.703 0.655
SMO 0.770 0.711 0.680
RF 0.770 0.703 0.605
LR 0.800 0.800 0.755
BN 0.670 0.747 0.640

MDorn MLP 0.720 0.725 0.685
SMO 0.770 0.767 0.725
RF 0.750 0.744 0.690
LR 0.740 0.772 0.680
BN 0.530 0.681 0.640

MScalabr ino MLP 0.770 0.742 0.665
SMO 0.720 0.717 0.650
RF 0.720 0.742 0.655
LR 0.790 0.839 0.795
BN 0.720 0.761 0.710

MAll MLP 0.730 0.778 0.700
SMO 0.810 0.806 0.770
RF 0.770 0.789 0.690

IncepCRM 0.825 0.842 0.822

There are three main reasons why IncepCRM can surpass the
state-of-the-art. First, we have eliminated the need for manual fea-
ture engineering, and thus effectively avoided personal biases and
neglects of certain features. Second, a modified Inception architec-
ture has been specially designed to learn a high-level representation
of the source code. Finally, the visual appearance of code plays a
critical role in its readability (see Figure 1), while deep learning
has achieved remarkable success in image-related tasks. However,
it should be noted that deep learning is not flawless. The main
drawback lays in the lack of interpretability of the obtained model.

6 THREATS TO VALIDITY
Internal Validity. Our code corpus is sourced from prior work
[1, 7, 23]. If the data is prone to errors, then it will be reflected in
our results. Further research is needed to explore this issue.

Another possible threat resides in the sample size. According
to Table 1, only a few labeled data are available in the literature,
which may not be adequate to train the proposed IncepCRM. To
mitigate this threat, we intend to extend the code corpus with more
samples in our future work.

EASE’18, June 28–29, 2018, Christchurch, New Zealand Qing Mi, Jacky Keung, Yan Xiao, Solomon Mensah, Xiupei Mei

External Validity. All projects investigated in this study are
collected from SourceForge6. It is unclear whether the same findings
would be observed in other projects. To improve external validity,
we plan to experiment our model on other open source projects to
better generalize our results.

Construct Validity. In our experimental setup, we mainly used
accuracy to evaluate the effectiveness of the proposed model. How-
ever, other performance measures such as F-Measure and AUC can
also be considered. We leave this for future studies.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we presented IncepCRM, a novel approach to improve
the accuracy of code readability classification based on the Inception
architecture. Specifically, we made the following contributions:

• We proposed a modified Inception module suitable for code
readability classification.

• We proposed the use of annotator information as the auxil-
iary input for model training. To the best of our knowledge,
we are the first to consider the effect of human factors.

To validate our approach, we conducted a series of experiments
on three publicly available datasets. The results show that: (RQ1)
Annotator information is beneficial for classification performance;
(RQ2) IncepCRM achieves state-of-the-art accuracy in comparison
to previous code readability models [1, 7, 23].

Our future work focuses on further improving the performance
of IncepCRM. For instance, we can fine-tune hyperparameters (e.g.,
filter size and dropout rate), combine multiple deep learning models,
or experiment with different configurations (e.g., different optimiz-
ers and loss functions).

Additionally, there is a need to find out what exact factors make
a code more or less readable. We plan to further explore this open
question with the help of deep learning techniques. Once completed,
we are able to provide targeted suggestions to developers on how
to improve their code.

ACKNOWLEDGMENTS
This work is supported in part by the GRF of the Research Grants
Council of Hong Kong [No. 11208017], and the research funds of
City University of Hong Kong [No. 9678149, 9440180, 7004683, and
7004474].

REFERENCES
[1] Raymond P L Buse and Westley R. Weimer. 2010. Learning a Metric for Code

Readability. IEEE Transactions on Software Engineering 36, 4 (jul 2010), 546–558.
https://doi.org/10.1109/TSE.2009.70

[2] Norman Cliff. 1993. Dominance statistics: Ordinal analyses to answer ordinal
questions. Psychological Bulletin 114, 3 (1993), 494–509. https://doi.org/10.1037/
0033-2909.114.3.494

[3] Alexis Conneau, Holger Schwenk, Loïc Barrault, and Yann Lecun. 2017. Very
deep convolutional networks for text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association for Computational Linguistics,
Vol. 1. 1107–1116.

[4] Ermira Daka, José Campos, Gordon Fraser, Jonathan Dorn, and Westley Weimer.
2015. Modeling readability to improve unit tests. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering - ESEC/FSE 2015. ACM Press,
New York, New York, USA, 107–118. https://doi.org/10.1145/2786805.2786838

[5] Hoa Khanh Dam, Truyen Tran, John Grundy, and Aditya Ghose. 2016. DeepSoft:
a vision for a deep model of software. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering - FSE

6https://sourceforge.net

2016, Vol. 1691. ACM Press, New York, New York, USA, 944–947. https://doi.org/
10.1145/2950290.2983985 arXiv:1602.05561

[6] Pieter-Tjerk de Boer, Dirk P. Kroese, Shie Mannor, and Reuven Y. Rubinstein.
2005. A Tutorial on the Cross-Entropy Method. Annals of Operations Research
134, 1 (feb 2005), 19–67. https://doi.org/10.1007/s10479-005-5724-z

[7] JonathanDorn. 2012. AGeneral Software ReadabilityModel.MCS Thesis avairable
from (http://www. cs. virginia. edu/˜ weimer/students/dorn-mcs-paper. pdf) (2012).

[8] Rudolph Flesch. 1948. A new readability yardstick. Journal of applied psychology
32, 3 (1948), 221.

[9] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep
API learning. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering - FSE 2016. ACM Press,
New York, New York, USA, 631–642. https://doi.org/10.1145/2950290.2950334
arXiv:1508.06655

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 770–778. https://doi.org/10.1109/CVPR.2016.90
arXiv:1512.03385

[11] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-
mization. (2014), 1–15. https://doi.org/10.1145/1830483.1830503 arXiv:1412.6980

[12] Barbara Kitchenham, Lech Madeyski, David Budgen, Jacky Keung, Pearl Brereton,
Stuart Charters, Shirley Gibbs, and Amnart Pohthong. 2017. Robust Statistical
Methods for Empirical Software Engineering. Empirical Software Engineering 22,
2 (apr 2017), 579–630. https://doi.org/10.1007/s10664-016-9437-5

[13] Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan
Gulrajani, Victor Zhong, Romain Paulus, and Richard Socher. 2016. Ask Me
Anything: Dynamic Memory Networks for Natural Language Processing. In
Proceedings of The 33rd International Conference on Machine Learning, Vol. 48.
PMLR, 1378–1387. http://proceedings.mlr.press/v48/kumar16.html

[14] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature
521, 7553 (2015), 436–444. https://doi.org/10.1038/nature14539 arXiv:1312.6184v5

[15] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,W. Hubbard, and L. D.
Jackel. 1989. Backpropagation Applied to Handwritten Zip Code Recognition.
Neural Computation 1, 4 (dec 1989), 541–551. https://doi.org/10.1162/neco.1989.
1.4.541

[16] Yann LeCun, Bernhard E Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne E Hubbard, and Lawrence D Jackel. 1990. Handwritten digit
recognition with a back-propagation network. In Advances in neural information
processing systems. 396–404.

[17] Taek Lee, Jung Been Lee, and Hoh Peter In. 2013. A study of different coding
styles affecting code readability. International Journal of Software Engineering and
its Applications 7, 5 (2013), 413–422. https://doi.org/10.14257/ijseia.2013.7.5.36

[18] Rensis Likert. 1932. A technique for the measurement of attitudes. Archives of
psychology (1932).

[19] G Harry Mc Laughlin. 1969. SMOG grading-a new readability formula. Journal
of reading 12, 8 (1969), 639–646.

[20] Karin Neubert and Edgar Brunner. 2007. A studentized permutation test for
the non-parametric Behrens-Fisher problem. Computational Statistics & Data
Analysis 51, 10 (jun 2007), 5192–5204. https://doi.org/10.1016/j.csda.2006.05.024

[21] Daryl Posnett, Abram Hindle, and Premkumar Devanbu. 2011. A simpler model
of software readability. In Proceeding of the 8th working conference on Mining
software repositories - MSR ’11, Vol. 11. ACM Press, New York, New York, USA,
73. https://doi.org/10.1145/1985441.1985454

[22] Jeanine Romano, Jeffrey D Kromrey, Jesse Coraggio, and Jeff Skowronek. 2006.
Appropriate statistics for ordinal level data: Should we really be using t-test and
cohen’s d for evaluating group differences on the NSSE and other surveys. In
annual meeting of the Florida Association of Institutional Research. 1–33.

[23] Simone Scalabrino, Mario Linares-Vasquez, Denys Poshyvanyk, and Rocco
Oliveto. 2016. Improving code readability models with textual features. In 2016
IEEE 24th International Conference on Program Comprehension (ICPC), Vol. 2016-
July. IEEE, 1–10. https://doi.org/10.1109/ICPC.2016.7503707

[24] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. Science (New York, N.Y.) 313, 5786 (sep
2014), 504–7. https://doi.org/10.1126/science.1127647 arXiv:1409.1556

[25] Christian Szegedy. [n. d.]. Scene classification with inception-7.
[26] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, 1–9. https://doi.org/10.1109/CVPR.2015.
7298594 arXiv:1409.4842

[27] Yahya Tashtoush, Zeinab Odat, Izzat Alsmadi, and Maryan Yatim. 2013. Impact
of Programming Features on Code Readability. International Journal of Software
Engineering and Its Applications 7, 6 (nov 2013), 441–458. https://doi.org/10.
14257/ijseia.2013.7.6.38

[28] Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically learning semantic
features for defect prediction. In Proceedings of the 38th International Conference
on Software Engineering - ICSE ’16, Vol. 14-22-May-. ACM Press, New York, New
York, USA, 297–308. https://doi.org/10.1145/2884781.2884804

https://doi.org/10.1109/TSE.2009.70
https://doi.org/10.1037/0033-2909.114.3.494
https://doi.org/10.1037/0033-2909.114.3.494
https://doi.org/10.1145/2786805.2786838
https://sourceforge.net
https://doi.org/10.1145/2950290.2983985
https://doi.org/10.1145/2950290.2983985
http://arxiv.org/abs/1602.05561
https://doi.org/10.1007/s10479-005-5724-z
https://doi.org/10.1145/2950290.2950334
http://arxiv.org/abs/1508.06655
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1512.03385
https://doi.org/10.1145/1830483.1830503
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/s10664-016-9437-5
http://proceedings.mlr.press/v48/kumar16.html
https://doi.org/10.1038/nature14539
http://arxiv.org/abs/1312.6184v5
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.14257/ijseia.2013.7.5.36
https://doi.org/10.1016/j.csda.2006.05.024
https://doi.org/10.1145/1985441.1985454
https://doi.org/10.1109/ICPC.2016.7503707
https://doi.org/10.1126/science.1127647
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
http://arxiv.org/abs/1409.4842
https://doi.org/10.14257/ijseia.2013.7.6.38
https://doi.org/10.14257/ijseia.2013.7.6.38
https://doi.org/10.1145/2884781.2884804

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Code Readability Research
	2.2 Convolutional Neural Network

	3 Proposed Approach
	3.1 Data Preprocessing
	3.2 Annotator Information
	3.3 Model Architecture
	3.4 Model Training

	4 Empirical Study Design
	4.1 Data Preparation
	4.2 Measures for Evaluation
	4.3 Analysis Method

	5 Results and Discussion
	6 Threats to Validity
	7 Conclusions and Future Work
	Acknowledgments
	References

