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Deep learning (DL) components have been broadly applied in diverse applications. Similar to traditional software engineering,
effective test case generation methods are needed by industry to enhance the quality and robustness of these deep learning
components. To this end, we propose a novel automatic software testing technique, TAEFuzz (Automatic Fuzz-Testing via
Transferable Adversarial Examples), which aims to automatically assess and enhance the robustness of image-based deep
learning (DL) systems based on test cases generated by transferable adversarial examples. TAEFuzz alleviates the over-fitting
problem during optimized test case generation and prevents test cases from prematurely falling into local optima. In addition,
TAEFuzz enhances the visual quality of test cases through constraining perturbations inserted into sensitive areas of the
images. For a system with low robustness, TAEFuzz trains a low-cost denoising module to reduce the impact of perturbations
in transferable adversarial examples on the system. Experimental results demonstrate that the test cases generated by TAEFuzz
can discover up to 46.1% more errors in the targeted systems, and ensure the visual quality of test cases. Compared to existing
techniques, TAEFuzz also enhances the robustness of the target systems against transferable adversarial examples with the
perturbation denoising module.

CCS Concepts: « Computing methodologies — Artificial intelligence; « Security and privacy — Software security engineer-
ing; » Software and its engineering — Software testing and debugging.

Additional Key Words and Phrases: Deep learning, fuzzing, transferable adversarial examples, robustness

1 INTRODUCTION

Deep Neural Networks (DNNs) have demonstrated superior performance compared to traditional computing
technologies in various tasks, such as image classification [1], image semantic segmentation [2] and object
detection [3]. However, the vulnerability of DNNs against adversarial examples with small perturbations [4-6] or
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simple spatial transformations [7, 8] downgrades their applicability in safety-critical systems [9, 10]. Therefore, it
is increasingly critical to test DNN models to ensure their validity and robustness [11, 12].

Similar to traditional software testing techniques, DNN testing relies on high-quality and representative test
cases. Further, analogous to test-driven evolutionary program repair [13-16] and synthesis-driven repair [17-20],
vulnerable programs can be repaired with enhanced test case generation techniques [21-24]. Since it is challenging
to uncover all errors in DNN models, fuzzing is adopted to find possible errors by generating random and
unexpected test cases [25]. Recent studies [26, 27] have shown that using test cases generated by fuzzing can
significantly enhance the robustness of DNN models against adversarial examples, where fuzzing can generate
adversarial examples as test cases. Although current test case generation methods [8],[28—30] can find errors
in DNN models, they do not use transferable adversarial examples, which are a type of examples generated
for a surrogate model with a similar decision boundary as the target model. In general, malicious attacks can
be divided into white-box and black-box attacks. White-box attacks require an attacker to be fully aware of a
target model’s structure, parameters, and input and output information, while black-box attacks are usually
built on the prerequisite of a model’s input and output knowledge. The strict preconditions of white-box attacks
greatly challenge attackers to implement effective attacks [31-34]. Although some attackers canuse query-based
black-box attacks [35-37] to enable target DNN models to make incorrect predictions, such methods require
accessing API interfaces often for gaining the models’ information and can be easily detected [38]. In contrast to
white-box attacks, transfer-based attacks are basically black-box and do not require precise information about a
target model [39, 40]. However, transfer-based attacks utilize the a priori knowledge that different models have

Fig. 1. Transferable adversarial examples generation: The attacker generates transferable adversarial examples on the
surrogate model and inputs them into the target model for attack. The tester simulates the attack mode of the malicious
attacker and generates test cases on the surrogate model. These test cases are input into the target model to find the
transferable errors.

similar decision.boundaries [41], and that attackers only need to generate transferable adversarial examples on a
surrogate model to be able to force the target model to make incorrect decisions, as shown in Fig. 1. For example,
FGSM [5] is used to generate an adversarial example on a surrogate model to test a target model by maximizing
the loss function value relative to the input example. Transfer-based attacks are more devastating, considering
the simplicity of their execution conditions. In contrast, non-transfer-based testing relies on technical details of
target models for test case generation, which is more challenging to execute in most real-world environments.
Therefore, we can conclude that: Transferable adversarial examples are more serious threats to DNN models in the
real world. It is of great significance to investigate the security and robustness of DNN models against transferable
adversarial examples.

In the deep learning community, a few studies focus on employing the gradient information feedback obtained
from surrogate models to fuzz examples. These fuzzed examples are transferable adversarial examples. MI-
FGSM(MI) [42] and NI-FGSM [43] accumulate the gradients obtained during the iterations of test case generation,
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enabling a stable optimization direction. DMI-FGSM(DMI) [44], TMI-FGSM(TMI) [45] and VMI-FGSM(VMI) [46]
increase the input diversity via spatial variations, alleviating the over-fitting problem on the surrogate model.
In the software engineering community, noticeable efforts have been made to generate test cases that can
expose the vulnerabilities of DNN models and mitigate the adversarial threats to improve the robustness of
DNN systems [27, 47-49]. However, none of them focus on transferable adversarial examples, not to mention
generating solutions to address the threat of such examples and improving the robustness of target models. Thus,
we work on three challenges:

1) Weak ability to discover transferable errors. To discover transferable adversarial errors in DNNs, many
methods [42, 45, 46] apply gradients of loss functions to input examples as the direction of perturbation. In
transferable adversarial attacks, the gradient information of neighboring input examples is important [46, 50].
VMI [46] averages the gradients of multiple neighbor examples to stabilize the optimization direction. As shown
in Fig. 2, the horizontal and vertical axes in the figure represent the input space. The red solid circle represents the
region where most neighbor examples of input example x; are distributed during the t-th iteration. According
to uniform distribution rule, these examples are confined within a relatively fixed perturbation radius. The
blue dotted circle and black dotted circle indicate the region of more diverse neighbor examples with different
perturbation radii. With perturbations of a fixed radius, the range of gradient variations is limited, which can
cause the gradient directions to converge over multiple iterations, leading the optimization process to fall into
local optimum. To elaborate on this point, we conducted an experiment. As shown in Fig. 3, the two rows

Fig. 2. Distribution of neighbor examples generation.

represent the class activation maps of the last three neighbor examples generated in the final iteration by the
VMI method and our RMI method, respectively. The neighbor examples generated by VMI (first row) have almost
identical attention regions since VMI uses a fixed perturbation radius to generate neighbor examples, which
limits its exploration space and makes it prone to getting stuck in local optima. In contrast, the neighbor examples
generated by RMI (second row) exhibit greater diversity in the attention regions, indicating that our RMI method
generates more diverse neighbor examples by using varying perturbation radii, thus expanding the search space.
This diverse perturbation allows for better exploration of the global optimum and helps avoid local optima. In
addition, there is an overfitting problem due to differences in gradient sizes of loss functions of the models relative
to input examples, which leads to different contributions in the optimization results. These will result in testing
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methods that only find errors caused by fewer transferable adversarial examples, especially under targeted attacks
and on robust models.

Fig. 3. Class activation map of neighbor examples.

2) Low quality of generated test cases. In some instances, transfer-based attacks require greater image
distortion to enhance their efficacy [51]. Most transfer-based attacks use the Lo, norm as the perturbation
constraint, which results in lower attack transferability [52]. However, the Lo, norm does not consider the
relationship between individual and surrounding pixels, resulting in remarkable perturbations added into smooth
areas of images. They significantly degrade the quality of images. Fig. 4 shows the transferable adversarial
examples respectively generated by MI, CT-MI and CT-VMI [46].1t can be observed that there are remarkable
artifacts in the transferable adversarial examples, especially in the example generated by the more powerful
CT-VML

Fig. 4. Comparing transferable adversarial examples from different methods.

3) Low robustness of DNNs. The perturbations added in transferable adversarial examples significantly differ
from the high-frequency noise of typical adversarial examples, which contain many large chunks of low-frequency
noise. In Fig. 4, from left to right, the perturbations of the transferable adversarial examples gradually change
from high-frequency noise to large chunks of low-frequency noise with transfer-based attacks with increased
capability. Existing methods for generating non-transferable adversarial examples cannot effectively improve the
robustness of target models against transferable adversarial examples [46].

Proposed Technique. To address these three challenges, we propose a software testing technique, TAEFuzz
(Fuzz-Testing via Transferable Adversarial Examples), aiming to automatically assess and enhance the robustness
of image-based deep learning systems based on the test cases generated by fuzzing(Fig. 5).

ACM Trans. Softw. Eng. Methodol.
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Fig. 5. TAEFuzz’s contributions.

1) We enhance transferable error detection through multiple Radius Examples MI-FGSM(RMI). RMI can
increase the diversity of input examples to alleviate the over-fitting problem, thereby preventing test cases
from prematurely falling into local optima. Experimental results confirm that RMI successfully identifies more
transferable errors in the test methods.

2) To improve the quality of test cases, we use Neighbor Pixel Constraint (NPC). NPC uses the relationship
between a central pixel and its surrounding pixels to determine the size of a perturbation, instead of setting
identical perturbation values for all the pixels in an input example. NPC guarantees that the generated transferable
adversarial examples have high visual quality, i.e., the test cases are more realistic.

3) The test cases generated by fuzzing are used to test the robustness of the target model on the test results. If
the model exhibits a high degree of robustness, the target model will be returned; otherwise, we adopt the Image
Restoration-SwinTransformer (SwinIR) [53] to train a denoising module SwinD based on the characteristics of
low-frequency noise in transferable adversarial examples. The denoising module SwinD can effectively eliminate
the impact of artificial perturbations on the final classification performance, thereby improving the robustness of
the target model and guaranteeing its reliability and security. The training cost of the denoising module is high,
requiring a large amount of transferable adversarial examples. To address this issue, the test cases generated by
fuzz-testing are used to expand the training set by the Perturbation Mixing (PerMix) operation. This operation
enables benign examples to contain the perturbation characteristics of transferable adversarial examples and
significantly reduces the training cost.

In summary, this paper makes the following contributions:

o The proposed fuzzing method based on RMI can automatically generate test cases to find more transferable
errors innDNN models (Subsec 3.2.2).

e Qur proposed NPC operation can effectively reduce L; and L, norm values of perturbations and avoid
adding perturbations in the smooth region of an input example, thus improving the quality of test cases
(Subsec 3.2.1).

e The SwinD denoising module can reduce the impact of artifacts on a DNN model, thereby enhancing its
robustness (Subsec 3.3.1).

o The experimental results show that RMI improves the attack success rate by 17.7%-37.1% using a single
surrogate model for non-targeted attacks. For targeted attacks, the attack success rate is increased by
56.2%-71.2% compared to the best baseline methods. Considering the L; and L, metrics together, NPC
performs well in reducing the overall disturbance magnitude. SwinD improves the robustness of the
target models by an average of 10% compared to the existing methods (Sec 4). The code is available at
https://anonymous.4open.science/r/TAEFuzz-4575.
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The remainder of the paper is organized as follows: Section 2 presents some basic concepts on adversarial
attacks and Robustness Enhancement. In Section 3, the TAEFuzz approach is proposed. Section 4 describes
experimental setup and presents experimental results. Related work is described in Section 5. Finally, Section 6
concludes the paper.

2 BACKGROUND
2.1 Adversarial Attacks

Adversarial examples generated by adversarial attacks are a critical means to test DNNs [54]. Adversarial attacks
can be classified into targeted and non-targeted adversarial attacks according to the target label types of adversarial
examples. Suppose there is an image classification dataset X and its corresponding set of labels Y, and an example
(x,y) (x € X,y € Y), where x denotes an example, and y represents the valid label of the example. For a DNN
f(-) adopted for image classification, let f(x) denote the output of the model when the input example is x and
f(x) = y when the label of x is correctly predicted. The prediction label of an adversarial example x*?° generated
by a non-targeted attack only needs to satisfy f(x%%) # y, where x%% = x + § and § denotes the adversarial
perturbation added to the input example x. Unlike non-targeted attacks, the predicted label of the adversarial
example x?% generated by a targeted attack needs to satisfy f(x%?) = y*, where y* denotes the target labels
specified by the attacker and y* # y. To maintain the quality of x*??, the perturbation & added to the example
needs to be constrained to satisfy:

lx - x°09]|, < € M

where € is the perturbation threshold, and || - ||; is the L; norm. The Ly, L, and L, norms are usually chosen.

2.2 Transfer-based Attacks

To improve the capability of the methods to discover the errors caused by transferable adversarial examples in
target models, MI-FGSM [42] adds a momentum mechanism to I-FGSM [55]. This alteration accumulates the
gradients of the previous iterations, which can alleviate the problem that the methods easily fall into local optima.
The formal expression of MI-FGSM is as follows:

ny =V, J(xt,y) (2
n
G =pGeor+ — 3)
||”t||1
Xt+1 = Clipx,s{xt ta- Sign(gt)} (4)

where n; denotes the gradient of the t-th iteration output of the model relative to the ¢-th iteration input x;, and
a denotes the perturbation step of each iteration. The perturbation values that exceed the constraint threshold
€ are truncated so that each perturbation in the generated example satisfies the constraint. In order to further
stabilize the update direction and avoid the attacks from falling into a local optimum, the VMI-FGSM(VMI) [46]
method does not directly use the current gradient for momentum accumulation at each iteration. Instead, it
considers the gradient variance of the previous iteration to adjust the current gradient (see Eq. (5)) to stabilize
the gradient optimization direction and avoid local optima.

ny = Vi, J(x1,y) + v(x-1) 5)

1 M
0(x-1) = 22 D Ve (13 0) = Vi, J (o1, 3:0) (6)

In addition to the above gradient calculation process, the rest of the method is basically the same as MI-FGSM,
where x;_1 ; = x;_1 + {, { is the generated random perturbation, j denotes the j-th neighbor example of the t—1
iteration input example x;_1, and finally, the mean gradient of M neighbor examples minus the gradient of x;_;
is calculated as the gradient variance v(x;_1).

ACM Trans. Softw. Eng. Methodol.
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2.3 Robustness Enhancement Methods

Researchers can evaluate the robustness of a target model through testing, particularly in the context of image
classification deep neural network (DNN) models. Typically, model robustness is assessed by measuring the
classification accuracy of the target model when exposed to a set of test cases. DNN models that have not
undergone robustness enhancement tend to exhibit lower classification accuracy on these test cases, indicating
their reduced robustness.

Robustness enhancement of models based on adversarial training. The method to enhance the robustness of
models based on adversarial training mainly involves incorporating examples with added perturbation or noise as
either all or part of the training data input into the model, thereby enabling the DNN model to resist perturbations
or noise interference. HGD [56] defines the loss function during model training as the difference between
benign examples and perturbed examples, reducing the impact of minor perturbations that might be amplified
by deep neural networks, thus reducing the interference of perturbations on classification results. PGD [57]
uses projected gradient descent to generate adversarial examples, optimizing the model to withstand the most
damaging perturbations. Through this adversarial training, the model becomes more robust against various
attacks. Fast-AT [58] proposes an FGSM-based adversarial training method with random initialization, where
adding a random initial perturbation generates adversarial examples that enable the model to-achieve robustness
comparable to PGD training at a lower computational cost. This approach incorporates cyclic learning rates and
mixed-precision optimization to significantly enhance training speed, achieving fast adversarial training. RS [59]
inputs examples with added random Gaussian noise into the DNN model for adversarial training, enabling the
model to automatically learn and acquire the ability to resist noise interference. RS4A [60] constructs a smoothed
classifier by adding specific noise to the input data, thereby enabling the model to maintain robustness within
perturbation ranges under different norms.

Robustness enhancement of models based on input transformations. One method to enhance the robustness of
models is JPEG compression [61]. Bit-Red [62], building upon the JPEG compression, is a more comprehensive
compression approach that encompasses two primary facets. Firstly, it reduces the color depth of individual
pixel points. Secondly, it reduces the variability between pixel points using a smoothing strategy. Both of these
aspects are executed through feature compression, which preserves the essential features of the examples while
minimizing the interference caused by redundant information in adversarial examples on the model’s predictions.
In contrast to compression methods, two alternative approaches for enhancing model robustness are R&P [7]
and NRP [63]. R&P employs input transformation methods based on random resizing and random padding
strategies. NRP utilizes input transformation methods that rely on a network of purifiers to substantially reduce
the perceptual feature disparities between benign and antagonistic examples to an extremely low level.

3 THE TAEFUZZ APPROACH

The overview of TAEFuzz is shown in Fig. 6. TAEFuzz’s guiding strategy is different from traditional adversarial
example generation methods. Some traditional fuzzing methods [25, 26] use the feedback from the target model
directly, while TAEFuzz’s transfer-based methods use the feedback from a surrogate model. We create an entire
software engineering pipeline to improve the robustness of the image-based DNN components. Its algorithmic
expression is presented in Algorithm 1 and Algorithm 2, which comprises three steps.

Step 1: Data and Model Preparation. The first step is to collect and process the benign data to generate
data with the same size and pixel value range as the model input. Then, we put the processed data into the
processing pool (detailed in line 3 in Algorithm 1). The surrogate model is a white-box model with the same
image classification capabilities as the target model. Testers only need to know the structure and parameter
information of the surrogate model, but not the target model to be tested.

ACM Trans. Softw. Eng. Methodol.
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Fig. 6. The overview of TAEFuzz.

Step 2: Transferable Test Case Generation. The second step is the generation of transferable tests. First,
the example x is selected from the data processing pool as the input example x, for the 0-th iteration to generate
a constraint E based on the relationship between each pixel in x and its surrounding pixels (detailed in lines
5-6 in Algorithm 1 and Section 3.2.1). The random perturbation of the specified radius r is obtained through
the multiplication of the scale factor R;;; and the noise p that follows the uniform distribution U(—p, +p). Then,
the perturbation P} is added to x; as the neighbor example x;.;, where x; denotes the input example x at the
t-th iteration. By repeating the above steps to generate M examples, the average of normalized gradients on
the radius r can be calculated. Once the examples based on all radii are generated, we calculate the average
of the normalized gradients for all the radii, denoted as n; (detailed in lines 9-10 in Algorithm 1 and Sections
3.2.2-3.2.3). The gradient n, is stacked for non-targeted attacks to get g; (Eq. (3)). By employing g, and generating
the perturbation for the current iteration according to the step a (Eq. (13)), the perturbation is added to the
input example x;. Since gradient stacking results in the direction of the gradient pointing less precisely to the
target class and leading to weaker results, the momentum-based gradient accumulation strategy of MI-FGSM
cannot be applied to targeted attacks. Instead, perturbations are generated based on the projection-based strategy
(Eq. (14)). For both targeted and non-targeted, the perturbation after clipping the part that does not fulfill the
constraint is added to the example x; to generate the example x;,; for the current iteration (detailed in Line 11 in
Algorithm 1 and Section 3.2.4). If the maximum number of iterations is reached, the examples generated from the
final iteration are stored in the test case set D’ (detailed in lines 13-14 in Algorithm 1). Otherwise, the generated
examples are used as input for the next iteration.

ACM Trans. Softw. Eng. Methodol.
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Algorithm 1: TAEFuzz’s Test Case Generation
Input: D: The datasets to test; e: The maximum perturbation; T: The number of iteration; N: The number
of radii; M: The number of examples in some radius; p: The decay factor; B: The factor for radius;
inter: The maximum scale factor;
Output: A test case set D’.
a=¢/T;
p=axp;
D = Preprocessing(D) ;
Ri+1 = Linspace(0, inter, N + 1) ;
5 for x in D do

[

W N

6 E = ConstraintGeneration(x, €) ;

7 | go=0;x=x;

8 fort=0—-T-1do

9 Get the average M examples gradient of each radius by Eq. (11) ;
10 Get the average gradient of N radii by Eq. (12) ;

11 Get t-th perturbation and add it to x; ;
12 end
13 Get the transferable adversarial examples x*° corresponding to x ;
14 Save x%4? as test case in D’ ;

15 end
16 return test case set D’;

Step 3: Target Model Testing and Enhancing. The third step is to deploy a denoising module in front of the
target model to improve its robustness. The denoising module aims to perform noise reduction on the fed inputs
based on the characteristics of the transferable adversarial examples’ perturbation. To reduce the cost of training
the denoising module, a new PerMix operation is designed to augment the training data with the test case set
and the set of benign examples (detailed in Line 1 in Algorithm 2 and Section 3.3.1). We then train SwinlIR as the
network structure of the denoising module. The trained denoising module and the target model are combined
into a new model with higher robustness (detailed in lines 2-4 in Algorithm 2 and Section 3.3.2).

Algorithm 2: TAEFuzz’s Model Enhancement
Input: C: The dataset to train; D’: The test case set; The target model.
Output: A robustness combined model.
1 Construct training set using Eq. (16), D’ and C;
2 Construct denoising module using SwinIR and training set ;
3 Get a new model by combining SwinIR and the target model ;

4 return The combined Model;

3.1 Data and Models Preparation

First, examples on which the target model can make correct judgments are collected to form a benign data set D.
The data is processed twofold: (1) converting the examples into the right length and width required by the model;

ACM Trans. Softw. Eng. Methodol.
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(2) normalizing all pixels’ values of the example to the specified range. Finally, the processed examples are fed
into the data processing pool for transferable examples. Moreover, we collect or train the DNN model with the
same classification capability of the target model as the surrogate model, based on the capability matching of
Dong et al. [45]. To simulate the security threat in the actual scene, the structure and parameters of the surrogate
model differ from those of the target DNN model.

3.2 Transferable Test Case Generation

3.2.1 Perturbation Constraint Generation. Currently, the L., norm is used as a constraint for perturbation in
transfer-based attacks. Under the Lo, norm constraint, the maximum perturbation change per pixel is set to €. The
perturbation’s value can vary between [—¢, +€]. This setting does not consider the relationship between individual
pixels and their surrounding pixels, so artifacts created in smooth areas of an image can be easily detected. Luo et
al. [64] have shown that humans are much less sensitive to perturbations added to image boundaries. Therefore,
we devise a method, NPC, for TAEFuzz to determine the perturbation range. NPC can generate the constraint of
a single pixel based on the relationship between the pixel and its surrounding pixels. The specific process of NPC
is: (1) obtaining and ranking the B neighborhood pixel values for a target pixel in the example;(2) selecting the
maximum value pmax and the minimum value pmin as the upper and lower bound constraints for the pixel, i.e.,
[pmin, pmax]; (3) repeating the above steps until all pixels have been traversed.

3.2.2 Data Diversity. Here, the data diversity refers to the proper adjustment of the gradient of an input example
to stabilize the optimization direction and prevent local optima. We propose a new data diversity method, RMIL
RMI generates neighbors of an example x; at multiple perturbation radii to increase the diversity of the neighbors
of the example x; at a specific iteration ¢. It is challenging to directly generate random perturbations that follow
a uniform distribution with a specified perturbation radius r. In contrast, it is much simpler to create random
perturbations with r’, the mean of all pixel values, according to the uniform distribution. When the height H and
width W of the input image example are significant, the relationship between r and r’ can be obtained from the
nature of the uniform distribution as follows.

rzz-r/-m 7)

There is a one-to-one correspondence between r’ and r. Therefore, generating random perturbations with the
mean pixel value 7’ is equivalent to generating random perturbations with different perturbation radii r via the
following steps:

First, M different random perturbations with the mean pixel value r’ are generated on a radius r. One of the
random perturbations is'denoted as P".

P’ ~U(-d,d) (8)
where r determines the radius of the perturbation and d = R;4; - p. This way, M random perturbations can be

generated for each of the N different radius values. This creates a total of M X N neighbor examples of x;, where
the j-th example generated with radius r can be expressed as:

Xtr,j = Xt + P]r (9)

3.2.3 Gradient Normalization. There is gradient non-fairness in current transfer-based attacks (see Challenge
1 in Section 1). To improve the fairness between the generated gradients from different models and neighbor
examples, we normalize the gradient of each example so that each gradient has the same contribution weight.
Here, we normalize each gradient to a mean value of 1.0, which can be described in the following form:

, Vx,,r,j](xt,r,j’ y)
n,, .=
BT Vg TG 9,

(10)

ACM Trans. Softw. Eng. Methodol.
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where x;, ; denotes a neighbor example, and y denotes the true label of x;, ;. Gradient fairness is achieved by
dividing the gradient values by the sum of their absolute values.
The gradient of the M neighbor examples at the r-th radius during the t-th iteration is:

My (11)

—

Jj=

Here, to make the gradients on different radii have the same contribution, n; , ; is normalized. Hence, the average
gradient n; over N different radii is:

1 N n

t,r
n =L , (12)
N;unmnl

Slightly different from non-targeted attacks, the gradient n; of the M-neighbor example at the r-th radius during
the t-th iteration y is replaced with y’ in Eq. (10) for targeted attacks.

3.2.4 Perturbation Getting and Adding. For non-targeted attacks, similar to VMI [46], we use MI-FGSM [42] to
perform momentum accumulation on the generated gradients n;, so the generated example x;,; after adding
perturbations to the input example at the ¢-th iteration is:

K41 = Clipe p{x; + o - sign(gr)} (13)

where E is the set of perturbation constraints for pixels, and g; is the gradient generated in the iteration. Clip{-}
truncates the pixel values that are outside the constraint E.

For targeted attacks, the experiments of Patch++ [65] show that the projected gradient can find more trans-
ferable errors in the target model. A step size amplification factor is introduced in each iteration to extend the
perturbation’s influence to more areas. And a kernel function is utilized to project the pixel values of overflow
constraint € to surrounding areas, which prevents information loss. Thus, we use Patch++’ s gradient projection
strategy. The example x;,; generated at the ¢-th iteration is:

Xpe1 = Clipy p{xs + v - a - sign(ng) +y - v-a - sign(V +C)} (14)

where E and n; are calculated using Eq. (12). V is a Gaussian convolution that projects the values in C onto the
neighboring pixels surrounding the central pixel. The calculation formula for C is:

C= Cllp(' ar+1 | —€,0, OO) O] Sign(at+1) (15)

where a,41 represents the perturbation directly added to the example at the ¢-th iteration before applying the
clipping operation. The values exceeding the constraint € at the ¢-th iteration are stored in C. The amount of
perturbations beyond the perturbation constraint of each pixel is projected onto its surrounding pixels. This
approach effectively extends the perturbation to a broader area, enhancing the overall impact of the perturbation.

3.3 Target Model Testing and Enhancing

A system developer investigates the classification accuracy of the target model under the set of test cases. If the
model does not meet the security requirements, the robustness of the model needs to be further improved. Here,
we use a powerful noise reduction module to perform noise reduction on the input. The following describes how
to build a noise reduction module, SwinIR-Based Denoising SwinD.
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3.3.1 Construct Training Set. As shown in Fig. 4, the noise characteristics of examples generated by the better-
performing transfer-based methods are vastly different from those generated by general methods, i.e. -[FGSM [55].
Therefore, using the randomly generated noise as a data enhancement method to train the denoising module is not
enough. Instead, we need to train a denoising module using transferable adversarial examples. However, the noise
reduction module training requires large training data with transferable examples’ perturbation characteristics.
In addition, the cost of obtaining these examples is usually huge in terms of time and computational resources.
To reduce the cost of acquiring training data, we propose a method, PerMix, to expand the training set based on
noise characteristics of transferable adversarial examples, by employing a small amount of data from test cases.
Similar to the data enhancement method MixUp [66], PerMix also enhances the data, but unlike MixUp, PerMix
is designed to expand transferable examples’ perturbation characteristics in training data.

X =Clip{x+ (¢ - (x4 — Xa0) + (1 = @) - (xp — xpo)) } (16)

where x, and x;, are the two randomly selected tests from the test case set, x,, and x3, are the corresponding
benign examples, and ¢ represents a mixing weight. Finally, Clip{-} is used to ensure all pixel values are within
the legal range. All enhanced examples are added to the training set.

3.3.2 Denoising Module Training. At present, the performance of image-denoising methods has been improved
greatly. Therefore, instead of designing a new denoising module, we choose SwinIR [53]; an existing denoising
method with proven performance. SwinIR can remove heavy noise corruption and preserve high-frequency
image details, resulting in sharper edges and more natural textures. In contrast, other methods [67-69] suffer
from either over-smoothness or over-sharpness, and cannot recover rich textures. Hence, we adopt the new
training set to train SwinIR as the denoising module. The trained denoising module is a prepositional procedure
of the target model to perform noise reduction for its input.

4 EVALUATION

To better understand the performance of TAEFuzz, we evaluate TAEFuzz on widely-used datasets and models.
The experiments are designed to answer the following research questions:

RQ1. Can TAEFuzz’s RMI find more transferable errors compared to other methods?

RQ2. Can TAEFuzz’s NPC improve image quality?

RQ3. Can TAEFuzz’s SwinD module improve the robustness of the model?

4.1 Experimental Setup

Dataset. Our experiments were conducted on the ImageNet and Tiny-ImageNet datasets. We are reluctant to
employ datasets with smaller sizes like MNIST [70] and CIFAR10 [71], considering the dataset is required to
simulate security threats in natural environments like [44, 46]. For non-targeted attacks, we randomly selected
1,000 images [46] from the ImageNet validation set and 2,000 images from the Tiny-ImageNet validation set as
the original benign examples. All these images can be almost correctly classified by all DNN models. For targeted
attacks, we use the dataset of PI++ [65] in the NIPS 2017 adversarial competition, which also contains 1,000
randomly selected ImageNet images that contain both the true and target labels for each example.

Models. We adopted 10 publicly available trained models as the models, including 6 models obtained by general
training, i.e., Inception-v3 (Inc-v3) [72], Inception-v4 (Inc-v4), Inception-ResNet-v2 (IncRes-v2) [73], ResNet50
(Res50), ResNet101 (Res101), and ResNet152 (Res152) [74] and 4 models with defensive capabilities obtained by
adversarial training, i.e. Inc-v3¢ps3, INC-V3eps4, IncRes-v2,,5, and Inc-v3,4, [75]. These models are widely used to
study transferable adversarial examples [42, 44-46, 65, 76].

Baselines. We choose Fast Gradient Sign Methods (FGSMs) as the currently best-performing methods [42, 46]
and [65] to generate adversarial examples as the baselines. All these methods are variants of I-)FGSM [55],
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which based on the study of Zhang et al. [54], finds more errors in DNN models than DeepXplore [30] and
DeepHunter(DH) [8](4.5 times), while DeepHunter can find more errors than DeepTest [77](3.09 times), Tensor-
Fuzz [78](3.08 times) and DeepXplore [30].

For non-targeted attacks, the I-FGSM-based comparison methods include MI, DMI, TMI, SMI, VMI and CT,
where CT indicates the combination of the three methods TMI, DMI and SMI. For targeted attacks, to improve
the effectiveness, we skip the methods that are inferior in finding errors according to Gao et al. [65]. Here,
we choose more powerful methods PI++ and DT-PI++ proposed by Gao et al. [65] as the baseline. To verify
whether the SwinD module in the TAEFuzz can improve the robustness of the target model, we compare it with
the input transformation-based methods FD [79], Bit-Red [62], ComDefend [80], NRP [63] and the adversarial
training-based method Fast-AT [58], RS [59] and RS4A [60].

Experimental protocol. To account for statistical differences in the results due to the randomness of generating
neighbor examples in the search process, we run 20 replicate experiments. To analyze the results of these
experiments, we perform a one-way ANOVA to compare the different methods and report statistically significant
results (significance level set to 0.01.).

Evaluation Metrics. The following six metrics were chosen to measure the effectiveness of the proposed
method.

1) Attack Success Rate (ASR). The attack success rate indicates the ability of adversarial attacks to detect
transferable errors. For non-targeted attacks, ASR represents the ratio of misclassified examples to the total
number of examples. For targeted attacks, ASR refers to the ratio of the number of examples predicted to be in
the specified category to the total number of examples.

2) Ly and L, Norms. The L, and L, norms indicate the magnitude of the overall perturbation in the generated
examples. The higher the quality, the smaller the norms value [81]. They are constraints on the quality of the test
case generation process as well, like what are described in Section 2.1.

3) LPIPS. LPIPS is a neural network based feature extraction method proposed by Zhang et al [82]. LPIPS is
the learnable similarity of perceptual image blocks that aligns more closely with human perception, and smaller
values indicate better image quality. Its calculation is shownin Eq. (17). LPIPS extracts the neural network features
from the L layer and normalizes them in the channel dimension. The normalized features in the [ layer are qﬁlw,

~ 1 . . .
q'p € REXWIXCi L PIPS then scales the channel activation using the vector w! € R and computes the L,
distance. Finally, it averages over space and sums up by channels.

’ 1 A 51
d(x,x)=ZW;HM@@§W—“W>H§ a7

4) C,. C; is a method using color perception distance as a metric [83]. It discards the L, norm constraints as they
cannot effectively measure if the added perturbation is imperceptible. C, can perceive color distance, aligning
more closely with human color perception, and smaller values indicate better image quality. The calculation of
Cy = —||AEgo(x, x") |2, AEq is given in Eq. (18) and Eq. (19),

AL’ AC’ AH’
AEy, = 24 24 24+ AR 18
" \/<KLSL> (s g (18)
AC’ AH’'
AR =R 19
s g (19)

where AL’, AC’, AH’ denote the distances between pixels of the three channels L (luminance), C (chrominance)
and H (hue) in the CIELCH space, and AR is the interaction term between the chrominance and the hue differences.
The weighting functions Sy, Sc, Sy and Ry are determined based on large-scale human studies and are used
as compensation to better simulate human color perception. K, K¢ and Ky are usually unified in graphic arts
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applications, and the detailed definitions of all the parameters and related explanations can be found in the
literature [84].

5)SSIM. SSIM [85] is a structural similarity metric as shown in Eq. (20), where u, is the mean of x, u, is the
mean of x’, o, is the variance of x, o, is the variance of x’, and oy, is the the covariance of x and x’. ¢; = (k;L)?
and ¢, = (k,L)? are constants used to maintain stability. L is the dynamic range of the pixel values, k; = 0.01,
k; = 0.03. SSIM measures the structural similarity between two images, and larger values indicate better image
quality.

(2uxuy + ¢1) (2055 + C2)

SSIM(x,x") =
(') (ud +u?, +c1) (0% + 0% +c2)

(20)

6) Accuracy (ACC). ACC denotes the ratio of the examples correctly predicted by a model to all the examples.
When the model is fed with non-targeted attack adversarial examples, robustness measured using ACC is equal
to1- ASR.

4.2 Hyperparameter Tuning

For non-targeted attacks, we set the maximum perturbation € to 16.0 and the maximum number of iterations T to
10. If the method incorporates DMI, the probability of the example performing a random transformation is set to
0.7. If the method incorporates TMI, the size of the Gaussian kernel is set to 7. If VMI is used, the number of
nearest neighbor examples M is set to 20. These parameter settings have been empirically proven to be effective
in previous studies [42-44, 46], [45]. For targeted attacks, we adopt the common parameter settings specified by
Gao et al. [65], where the number of iterations T is set to 20.

In addition to the above common parameters, the experiment contains the following unique parameters: the
number of perturbation radii N, the number of nearest-neighbor examples at each radius M, and the maximum
scaling factor 6. The following section focuses on optimizing these three parameters.

We employ the Inc-v3 model for test case generation, aiming to achieve optimal experimental results. Our
parameter setting experiments are performed on the following models: Inc-v4, Res50, Res101, IncRes-v2 (common
models), and Inc-v3,ps3, Inc-v3epns4, IncRes-v2,,5, Inc-v3,44, (robust models). First, we tune the maximum scaling
factor 0. The factor entails generating N + 1 equidistant values ranging from 0 to 6 as scaling factors for the
radius of perturbation applied to the nearest-neighbor examples. In Fig. 7, we present a graphical representation
of the success rate ASR for error detection during non-targeted attacks across the eight models. This analysis
involves varying the maximum scaling factor 6 from 0 to 10.0 at 0.5 intervals. The figure demonstrates that
when 0 approaches 3.0, all models, except for the robust model Inc-v3,4,, achieve nearly their highest ASR. As 0
increases from 0, ASR exhibits gradual improvement, indicating greater diversity among near-neighbor examples
at different radii. Subsequently, after reaching its peak, ASR gradually declines. This decline is primarily attributed
to the increased variability among radii, causing some near-neighbor examples to become too distant from the
input examples. Consequently, they can no longer effectively serve as near-neighbor examples for correcting the
direction of perturbation. In conclusion, we select a 8 value of 3.0 and maintain this setting for our target attack
experiments.

To optimize parameters M and N, we adopted the grid search method and determined the value range of the
parameters with reference to the previous related research. We generate test cases using the Inc-v3 model and
statistically evaluate the results for both the four normal and four robust models. The statistics for the attack
success rate (ASR) are presented for the following 4 common models Inc-v4(see Fig. 8(a)), Res50(see Fig. 8(b)),
Res101(see Fig. 8(c)), IncRes-v2(see Fig. 8(d)), and the 4 robust models Inc-v3,,s3(see Fig. 9(a)), Inc-v3.,sa(see
Fig. 9(b)), IncRes-v2,,s(see Fig. 9(c)), and Inc-v3,4,(see Fig. 9(d)). For the common models, the attack success
rate (ASR) consistently increases as both M and N increase, with no observed decreasing trend. Eventually, it
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Fig. 7. Evolution of error detection capability of the test method with changing 6.

stabilizes at a relatively high level, indicating that there is minimal room for test method improvement in later
iterations, resulting in minimal growth variation.

In Fig. 9, the experiments on robust models reveal that as the values of both M and N increase, the success rate
(ASR) exhibits a consistent upward trend. This trend continues throughout, and in comparison to common models,
the improvement in ASR for robust models is more pronounced, especially in the later stages of the experiment.
However, it is essential to note that while ASR increases with higher values of M and N, this also results in a
swift increase in the number of example gradients that need to be computed. Consequently, the computational
cost escalates significantly. To strike a balance between improved performance and manageable computational
overhead, we have set the experimental parameters to M = 10 and N = 6. For the targeted attack testing, we
maintain the same parameter settings for M and N as those used in the non-targeted attack experiments.

Finally, we set the number of radii N to 6, the number of neighbor examples M to 10, the factor for radius f
to 1.8, the maximum scale factor 0 to 3.0, and the maximum number of iterations T to 10. For targeted attacks,
the maximum number of iterations to achieve the optimal result is different from that of non-targeted attacks,
which is set to 20, and the other parameters remain the same as those of non-targeted attacks. In addition to the
hyperparameters mentioned above, the remaining parameters are the same as those employed in the works of
Gao et al. [65] and Wang et al. [46].

4.3 RQ1: Discovery of Transferable Errors

RMI is a method adopted by TAEFuzz to improve the number of transferable errors found. To answer RQ1, our
experiments are twofold, respectively, for transfer-based targeted attacks and transfer-based non-targeted attacks.
For non-targeted attacks, we verify RMI from the following settings:
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(a) Inc-V4 (b) Res50

(c) Res101 (d) IncRes-V2

Fig. 8. Trend plot of the effect of changes in M and N on ASR (common model).

$1: There is no coupling with other methods on a single surrogate model.

$2: There is a coupling with CT on a single surrogate model.

$3: There is a coupling with CT on ensemble surrogate models.

We utilized the Inc-v3, Inc-v4, IncRes-v2, and Res101 models as surrogate models to generate transferable
adversarial examples, testing their effectiveness across different target models on both the ImageNet and Tiny-
ImageNet datasets. On the ImageNet dataset, as shown in Table 1(top), RMI achieves a higher attack success
rate on almost all models, especially for the more robust models Inc-v3,ys3, Inc-v3,ps54, IncRes-v2,,;, and Inc-
V3,44do- For the robust models, RMI improves the attack success rate by 17.7%-37.1%. For the common models,
the attack success rate is increased by 1.3%-22.4%. On the Tiny-ImageNet dataset, as shown in Table 2, RMI
also outperforms most other methods, achieving an ASR of over 90% using IncRes-v2 and Res101 as surrogate
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(@) Inc-V3epss (b) Inc-V3essa

(c) IncRes-V2¢,5 (d) Inc-V3,40

Fig. 9. Trend plot of the effect of changes in M and N on ASR (robust model).

models. On common models, RMI improves the ASR by up to 10.6% compared to the best baseline methods. On
robust models, RMI’s ASR surpasses the best baseline methods by 13.5%-45.7%. This demonstrates the strong
transferability of the adversarial examples generated by RMI. However, when using Res101 as the surrogate
model, there is no significant increase in the attack success rate against the target models Res50 and Res152. This
is because these three models have structures with similar decision boundaries, and the number of discovered
errors already approaches the upper limit. RMI does not perform optimally in a white-box setting compared
to some methods (see Table 1 Inc-v4, IncRes-v2 and Res101, and Table 2 IncRes-v2 and Res101). This is mainly
because RMI generates many examples that do not fit the surrogate model. These examples focus on regions of
the common error space, which do not precisely overlap with the error-prone classification space of the surrogate
model. In addition, we recorded the time consumed by RMI and VMI to generate the same number of adversarial
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examples. Compared to the best baseline method VMI, our RMI method consumes three times the amount of time.
This is primarily due to the incorporation of multiple random neighbor example generation during the process,
which ensures more comprehensive results. Although our method requires more time, it achieves high-quality
and transferable adversarial examples, making the additional computational cost worthwhile.

To further validate the effectiveness of RMI, we combined RMI and CT to form CT-RMI. Table 1 (bottom) shows
the experimental results under setting S2. RMI finds more transferable errors on almost all the models. Especially
for the robust models, the ability of CT to find mistakes is further improved. NCT-RMI and N-RMI are adversarial
attacks employing NCP constraints, where RQ2 has a more detailed explanation of them. The same example can
be found in Table 3 for NCT-ERMI and in Table 4 for NCT-RP. To verify the effectiveness of RMI in an ensemble
attack setting, we combine CT, ensemble attacks and RMI to CT-ERMI. We perform ensemble attacks using Inc-v3,
Inc-v4, Res101, IncRes-v2 as surrogate models and the other models as target models. The experimental results in
Table 3 show that RMI can further improve the ability of ensemble attacks to discover transferable errors. The
best existing method is CT-EVMI, and the room for enhancement is already small. However, the CT-ERMI has
further increased the attack success rate by 3.7%-5.6% on the robust models.

Since the existing methods only find a few transferable errors in the target model by using a single model for
transfer-based targeted attacks, we only validate the effectiveness of RMI with ensemble attacks, similar to Gao
et al. [65] and Li et al. [86]. In Table 4, we used five of the six white-box models as surrogate models to generate
transferable adversarial examples to test the remaining target models. The experiments can be divided into six
groups in total. The reason for choosing these common models is that the models are easier to train than the
robust models, which can significantly reduce the cost of testing. In Table 4, “Normal'~%” denotes a common
model, and we numbered all the common models, i.e. ! —Inc-v3, 2. <Inc-v4, > —ResNet152, * »ResNet101,
> Res50, and ¢ —IncRes-v2.

RMI shows the best results on all models, especially on the robust models. Compared to the best existing
method DT-PI++, CT-RP increases the attack successrate by 56.2%-71.2% on the robust models. NCT-RP can
improve the attack success rate by up to 46.1% as shown in the experimental results (Table 4, column 3 (Inc-v3.ps3),
row 13 (NCT-RP=48.2) minus row 11 (DT-PI++=2.1)). For the six common models, the attack success rate is
increased by an average of 45.1%.

The experimental results of the significance analysisare shown in Table 1(top), which indicates the result gener-
ated by our method RMI compared to the other methods is more significant, similar to CT-RMI in Table 1(bottom)
and CT-ERMI in Table 3.

4.4 RQ2: Image Quality

To answer RQ2, we use the transferable adversarial examples generated in RQ1 to compare with the quality of
the adversarial examples generated using NPC. Since the perturbation range of pixel values in a smooth region
of an image is usually small, which leads to a rapid decrease in the perturbation range of generated examples
and reduces the number of transferable errors found by adversarial attacks. To increase the search space of
perturbation, we set the perturbation value of the Lo, constraint to 32.0. The method combining RMI and NPC
is referred to as N-RMI. Similar naming patterns are applied to CT-RP and NCT-RP. The results of the errors
discovered by these methods are shown in Tables 1, 2, 3 and 4.

The results from Table 5 indicate that examples generated through NPC operations exhibit the best scores for
both LPIPS and C; across all comparison groups. Furthermore, these examples display the least perturbation, as
evidenced by the highest SSIM score. With Inc-v3 as the surrogate model, it is noteworthy that both L; and L,
metrics of N-RMI perform the best. With ResNet101 as the surrogate model, N-RMI performs best in terms of L;
but not L,. The L, metric, which represents the overall perturbation level on the example, does not achieve the
lowest value. However, N-RMI only registers a 6.4% increase compared to the lowest L, value. For L;, N-RMI
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Table 1. The ability of different methods uncoupled with other methods (top table) and coupled with CT (bottom table) to find transferable
errors using a single-model on the ImageNet dataset, measured by attack success rate (ASR), where  indicates the ASR of white-box attacks.
Results where our method outperforms the benchmark are bold and an up triangle (2) indicates statistical significance (one-way ANOVA,
sig. level < 0.01).

Surrogate Model | Attack [Inc-v3 Inc-v4 Resl101 IncRes-v2 Res50 Res152 Inc-v3enss Inc-v3ensa IncRes-v2ep,s Inc-v3,q,
MI 100" 449 36.0 41.2 39.7 32.3 13.5 13.4 6.60 18.2
TMI | 100" 475 38.7 435 409 37.6 23.5 21.2 13.2 34.9
DMI | 99.4* 66.1 56.1 63.2 57.2 53.9 19.6 18.1 10.2 244
Inc-v3 SMI 100"  68.8 613 66.9 63.7 60.4 31.5 30.9 17.0 35.2
VMI | 100* 715 59.4 68.0 61.8 577 324 31.7 17.9 36.7
RMI 100* 90.4~ 83.7 89.3 86.1, 82.7 67.6 64.2 46.7 A 72.3
N-RMI| 99.8* 83.7 77.6 81.2 79.3 75.7 53.9 46.6 29.4 64.5
MI 55.2  99.9*  40.6 455 45.2  40.2 16.6 14.6 7.6 18.8
TMI 57.0 99.6* 42.0 47.4 44.2 394 26.4 24.0 17.6 259
DMI | 72.8 96.9* 57.0 64.5 59.0 55.6 21.1 19.1 12.3 234
Inc-v4 SMI 81.7 99.8* 67.2 74.2 69.2 68.3 46.5 44.5 29.7 41.7
VMI | 76.6 99.9" 62.0 70.2 635 622 39.5 37.9 25.5 36.4
RMI [92.1~ 99.3* 83.2 88.4 84.7, 82.0 72.3 A 70.7 & 58.9 72.3
N-RMI| 87.7 99.2* 78.1 81.0 82.1 78.9 66.2 64.0 46.0 68.0
MI 60.3 50.1 452 98.1" 48.3 439 223 17.5 12.1 21.6
TMI | 61.3 551 495 97.6* 51.0 485 31.6 26.9 22.0 29.3
DMI 69.4 64.5 59.5 91.4* 59.2 56.8 31.7 26.2 19.8 29.6
IncRes-v2 SMI 84.6 80.0 757 99.1* 775 755 55.9 48.9 42.1 54.1
VMI 77.5 72.9 67.1 97.9* 68.4 66.6 46.9 39.9 33.6 44.0
RMI (87.6~ 86.9. 83.3 97.0" -83.9A 82.3A 73.6 69.6 67.9 74.3
N-RMI| 89.2 87.1 85.1 97.4* 86.5 84.2 73.5 69.7 63.7 76.8
MI 57.0 51.4 99.4* 49.3 87.9 87.8 23.9 21.5 11.6 25.1
TMI 58.0 51.8 99.4* 51.7 87.6 853 36.0 31.0 22.2 33.5
DMI | 783 712 99.3* 73.4 92.0 910 38.5 35.8 25.2 394
Res101 SMI 73.9 68.4 99.9* 68.1 96.4 95.2 414 38.0 26.2 41.2
VMI | 75.1 67.2 99.3* 69.1 949  93.8 43.7 40.7 30.0 42.5
RMI |88.1A 85.7 99.6* 86.5 97.7, 97.3 77.0 73.5 65.2 79.6
N-RMI| 81.0 73.9 99.6* 77.4 96.5 95.8 68.0 63.7 51.4 71.1
Surrogate Model| Attack | |Inc-v3 Inc-v4 Res101 IncRes-v2 Res50 Res152 Inc-v3enss Inc-v3enss IncRes-v2ens Inc-v3,4,
CT-MI 99.8"  85.3 77.6 82.5 77.9 75.5 65.1 62.3 46.7 64.5
Ine-v3 CT-VMI | 99.8° 90.3 83.6 88.0 83.9 82.5 80.2 77.6 65.7 80.5
CT-RMI | 100* 95.2A 92.0 94.0 92.8. 90.8 92.2 91.8 83.7 92.8
NCT-RMI| 99.6* 87.6 86.4 87.0 88.7 83.7 86.2 85.2 73.7 85.5
CT-MI 86.3 99.0% 773 82.7 75.5 74.2 67.2 65.3 55.2 62.9
Inc-v4 CT-VMI 90.7 99.0* 825 87.4 82.2 81.2 78.7 76.3 69.9 75.5
CT-RMI |94.2 99.6* 88.9 92.8 90.1~. 88.4 89.1 88.2 84.1 89.1
NCT-RMI| 90.5 98.8* 83.3 86.2 84.8 823 84.9 85.4 74.3 84.1
CT-MI 87.7 85.1 82.1 96.2* 81.6 80.7 76.4 72.1 70.4 72.6
IncRes-v2 CT-VMI 89.8 883 85.5 97.5% 85.7 84.9 83.1 80.4 78.6 80.3
CT-RMI |93.1~ 91.9~ 90.3 98.1* 90.3. 89.7 89.9 89.3 89.6 90.5
NCT-RMI| 89.3 87.5 87.6 97.8* 88.8 85.7 89.3 87.8 85.2 90.4
CT-MI 88.5 84.0 99.8* 86.0 97.4 96.2 77.7 74.7 65.8 74.7
Res101 CT-VMI 90.1 87.1 98.8* 89.7 97.6 97.2 84.7 82.4 75.6 82.9
CT-RMI [92.8~ 89.6 99.9* 93.2 98.3. 98.0 92.6 91.8 89.5 93.5
NCT-RMI| 834 753 98.9* 80.5 96.4 944 86.1 84.0 76.2 86.2
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makes a 25.34% reduction compared to the best comparison method. This demonstrates NPC’s ability to enhance
the quality of test cases.

Experimental results further demonstrate that applying NPC to certain models can reduce errors detected by
transfer-based attacks. For instance, in Table 1, using Res101 as a surrogate model, NCT-RMI detects no more
errors on Inc-v3, Inc-v4, and IncRes-v2 compared to CT-MI and CT-VMI. This can be attributed to the limited
search space in smoother areas, which constrains the algorithm’s search range. While there is a slight reduction
in success rates, it coincides with improved image quality. In non-targeted testing, as shown in Table 6 (derived
from Tables 1 (bottom) and 3), similar conclusions can be drawn as those from Table 5.

Table 7 presents quality statistics for test cases generated by different methods under targeted testing, aligning
with the test cases in Table 4 and corresponding to each item in Table 4 sequentially. From Table 7, we observe
that NPC excels in metrics such as LPIPS, C,, SSIM, and L, highlighting its superior image quality. While it lags
slightly in the L, metric, the combined assessment of L; and L, underscores NPC’s advantage in reducing overall
disturbance magnitude.

Table 2. The ability of different methods uncoupled with CT to find transferable errors using a single-model on the Tiny-ImageNet
dataset, measured by attack success rate (ASR), where * indicates the ASR of white-box attacks. Results where our method outperforms the
benchmark are bold and an up triangle () indicates statistical significance (one-way ANOVA; sig. level < 0.01).

Surrogate Model | Attack [Inc-v3 Inc-v4 Res101 IncRes-v2 Res50 Res152-Inc-v3enss Inc-v3ensa IncRes-v2e,s Inc-v3,4,
MI 100* 82.7 74.3 80.5 78.5 69.8 24.1 22.4 104 41.2
TMI | 100" 85.0 79.2 82.3 820 753 55.6 49.8 31.7 57.9
DMI | 100" 909  84.8 90.8 87.6  80.8 27.2 27.6 15.0 44.6
Inc-v3 SMI 100* 92.7 87.7 91.6 89.8 85.4 50.4 50.0 26.1 63.1
VMI | 100* 944  90.3 93.9 91.1 87.8 59.1 55.8 324 70.9
RMI 100* 99.4~ 99.2 99.2A 99.2/ 98.4 91.2 914 78.1 96.1
N-RMI| 99.9* 93.2  90.7 93.7 92.2 89.1 67.0 58.3 35.3 82.8
MI 89.8 100.0* 83.3 86.4 85.7  80.2 38.5 334 16.7 45.7
TMI 90.7 100.0* 84.6 87.5 86.9 83.3 66.8 59.0 44.3 66.1
DMI | 94.0 99.8% 88.7 92.6 89.5 864 37.3 39.5 23.0 474
Inc-v4 SMI 95.8 100.0* 93.3 95.3 95.0 925 77.8 74.6 54.1 74.5
VMI 96.6 - 99.9* 93.4 95.8 94.6 92.7 74.9 70.4 49.8 75.5
RMI [99.2. 100.0* 98.8 99.2 98.8/. 98.4 94.8 94.6 89.5 96.4
N-RMI| 96.8 99.8* 91.8 93.8 94.9 90.6 80.4 74.6 58.6 87.2
MI 92.8 90.2 84.7 99.7* 89.2 81.8 44.6 38.6 24.6 51.6
TMI 93.7 -~ 91.8  88.9 99.4* 91.1 88.0 72.7 63.2 55.2 70.2
DMI 94.4 92.8 89.3 98.4* 91.2 88.3 52.3 47.2 34.5 60.5
IncRes-v2 SMI 97.3 973 952 99.9* 96.3 945 79.6 72.9 64.1 80.9
VMI 96.6 96.5 94.7 99.4* 95.0 93.7 80.8 74.4 64.9 79.7
RMI |98.1~ 97.9 97.7 99.4* 97.7, 97.4 94.5 92.8 93.0 94.4
N-RMI| 96.5 957 93.9 99.0* 949  93.8 88.3 84.3 80.0 92.1
MI 89.0 87.1 99.6* 86.1 98.1 97.7 49.0 43.0 26.3 52.3
TMI 91.6 89.0 99.6F 88.4 98.5 98.6 72.7 66.1 52.0 70.8
DMI | 97.1 955 99.5* 96.4 99.0  99.0 63.3 60.6 42.0 69.2
Res101 SMI 94.6 939  99.9% 93.4 99.3 99.4 69.7 63.7 44.5 68.6
VMI | 96.1 958 99.7* 95.3 99.5  99.3 79.1 74.3 58.5 77.5
RMI |99.8. 98.6 99.8* 99.0 99.7, 99.7 96.9 954 94.9 97.3
N-RMI| 957 92.6 99.8" 93.9 98.6  98.6 85.5 82.4 75.3 91.0
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Table 3. The ability of different methods coupled with CT to find transferable errors using ensemble models on the ImageNet dataset,
measured by attack success rate (ASR). Results where our method outperforms the benchmark are bold and an up triangle (») indicates
statistical significance (one-way ANOVA, sig. level < 0.01).

Attack ‘ Res50 Res152 Inc-v3enss Inc-v3ensa IncRes-v2¢ns Inc-v3,40
CT-EMI 96.6 96.2 91.3 89.6 87.5 90.5
CT-EVMI 97.5 97.4 93.7 92.2 90.4 93.0
CT-ERMI 98.8 98.2 97.4 97.0 96.0 97.4
NCT-ERMI 96.3 94.9 95.8 94.3 924 95.6

Table 4. The ability of different methods to find target errors using ensemble models, measured by attack success rate (ASR).
Results where our method outperforms the benchmark are bold and an up triangle (») indicates statistical significance
(one-way ANOVA, sig. level < 0.01).

Attack Normal Inc-v3enss Inc-v3ensa IncRes-v2¢ns Inc-v3,40
PI++ 10.9! 0.1 0.1 0.1 0.0
DT-PI++ 39.31 3.5 3.3 1.8 2.1
CT-RP 78.51 73.5 69.8 64.2/ 70.1
NCT-RP 48.8! 49.1 424 37.1 42.2
Pl++ 8.9 0.1 0.1 0.0 0.1
DT-Pl++ 31.9 3.2 3.0 1.6 2.2
CT-RP 77.6% 73.1 69.6 63.7A 70.2
NCT-RP 45.8° 48.2 422 35.5 43.4
PI++ 28.73 0.0 0.4 0.1 0.1
DT-PI++ 44.63 2.1 2.1 0.9 1.2
CT-RP 90.13 73.3 69.4 60.6 70.0
NCT-RP 63.8° 48.2 41.8 36.4 42.9
PL++ 31.6% 0.1 0.3 0.0 0.1
DT-PI++ 46.2* 2.6 2.8 0.9 1.5
CT-RP 90.74 70.34 67.9 61.1 67.8
NCT-RP 64.9* 46.6 43.8 35.4 42.5
Pl++ 26.0° 0.2 0.1 0.0 0.1
DT-Pl++ 42.7° 2.6 2.3 0.8 13
CT-RP 90.0° A 71.8 66.7 61.8 67.6
NCT-RP 63.3° 47.8 41.5 35.3 42.2
Pl++ 9.8° 0.1 0.4 0.0 0.2
DT-Pl++ 36.6° 3.4 2.8 1.0 2.3
CT-RP 84.96 72.1 67.8 57.2 67.7
NCT-RP 53.8° 47.8 41.5 35.3 42.2

As depicted in Fig. 10, NCT-RMI perturbations in the generated image (first column) predominantly concentrate
on the image edges, making them less detectable. The subsequent three columns display the distribution of
perturbations in the RGB channels. NCT-RMI method utilizes NPC to limit the magnitude of the perturbations,
allowing them to be more concentrated on the image edges, which enhances their concealment and makes them
less noticeable. However, perturbations are not restricted at the image edges. A small number of perturbations
are added to other regions of the image. In contrast, perturbations from other methods are widely dispersed
across the entire image, making them more visible and easier to detect, particularly in smoother image areas.
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Table 5. Quality statistics of examples generated by different methods of non-targeted attacks on a single model.

DataSet Model Method LPIPS C, SSIM L, L,
MI 0.33 2362.02 0.65 10664.71 23.17
TMI 0.31 2683.11 0.69 10564.36 23.01
DMI 0.71 2499.88 0.63 10928.46 24.37
Inc-v3 SMI 0.31 2280.61 0.66 10665.82 23.20
VMI 0.31 2311.29 0.66 10551.38 22.95
RMI 0.30 2361.58 0.66 11143.52 24.06
ImageNet N-RMI 0.19| 2120.55 ] 0.83] 7699.49 | 22.71|
MI 0.32 2070.21 0.65 10620.95 23.08
TMI 0.29 2391.50 0.70 10563.94 22.99
DMI 0.75 2218.57 0.63 10863.81 24.18
Res101 SMI 0.30 1989.11 0.66 10658.37 23.19
VMI 0.31 2010.49 0.66 10641.55 23.09
RMI 0.27 2054.96 0.69 11372.72 24.27
N-RMI 0.19| 1953.56 0.82] 8490.56 | 24.47
MI 0.71 2472.59 0.54 11933.57 27.16
TMI 0.59 2789.30 0.59 11882.71 27.09
DMI 0.71 2590.48 0.52 12092.26 28.01
Inc-v3 SMI 0.67 2427.53 0.55 11889.77 27.17
VMI 0.67 2437.08 0.57 11556.63 26.53
RMI 0.64 2476.10 0.57 12148.84 27.66
Tiny-ImageNet N-RMI 0.47] 1780.27 | 0.83] 7594.82 | 21.90|
MI 0.68 2182.50 0.55 11850.93 27.01
TMI 0.55 2458.28 0.59 11825.59 27.00
DMI 0.70 2292.97 0.53 12004.77 27.80
Res101 SMI 0.65 2089.74 0.56 11757.63 26.95
VMI 0.65 2143.95 0.56 11780.26 26.93
RMI 0.58 2156.24 0.60 12214.57 27.82
N-RMI 042 1549.04 0.84] 7695.50 | 22.20|

Table 6. Quality statistics of examples generated by different methods of non-targeted attacks combined with CT.

Model Method LPIPS Cy SSIM Ly L,

CT-MI 0.31 2610.33 0.70 10754.74 23.33

Inevs CT-VMI 0.29 2502.09 0.72 10540.19 22.91]
CT-RMI 0.27 2481.89 0.74 11659.92 24.97

NCT-RMI 0.22] 2315.97 0.80] 9257.24| 25.35

CT-MI 0.28 2305.14 0.70 10847.08 23.50

R&101 CT-VMI 0.26 2155.96 0.72 10735.38 23.24
CT-RMI 0.24 2085.71 0.75 11869.27 25.35

NCT-RMI 0.19] 1964.25 | 0.80] 9414.03 | 25.77

CT-EMI 0.30 2457.85 0.70 10893.86 23.60
CT-EVMI 0.28 2359.76 0.72 1091135 23.55

Ensemble

CT-ERMI 0.25 2106.98 0.76 10984.20 23.58

NCT-ERMI 0.20] 2050.13 | 0.817] 9071.41| 24.76

4.5 RQ3: Model Robustness

To answer RQ3, we compare the proposed SwinD with the mainstream methods to improve model robustness,
including FD, Bit-Red, ComDefend, Fast-AT, RS, RS4A and NRP. SwinD is used as a noise reduction module to
remove the artifacts added to images. Experiments randomly select 10,000 images from the ImageNet training
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Table 7. Quality statistics of examples generated by different methods of targeted attacks.

Method LPIPS Cs SSIM Ly Ly
Pl++ 033 3235.47 0.66 14432.87 28.84
DT-PL++ 0.34 3218.87 0.67 14431.36 28.81]
CT-RP 0.30 2694.49 0.70 14731.95 29.48
NCT-RP 0.22| 2316.45 | 0.79] 10588.53 | 29.05
PL++ 0.34 3259.03 0.66 14430.97 28.83
DT-PL++ 0.34 3238.16 0.67 14458.18 28.19
CT-RP 0.30 2705.69 0.70 14755.06 29.45
NCT-RP 0.22] 2289.54 0.79] 10454.42 | 28.61
Pl++ 0.34 3299.92 0.66 14456.99 28.81
DT-PL++ 0.34 3286.45 0.67 14454.90 28.78 |
CT-RP 0.31 2781.77 0.70 14756.95 29.45
NCT-RP 0.23| 2377.13 | 0.79] 10564.73 | 28.98
Pl++ 0.34 3301.52 0.66 14453.16 28.80
DT-PL++ 0.34 3286.71 0.67 14453.25 28.78 |
CT-RP 0.31 2784.74 0.70 14761.16 29.45
NCT-RP 0.23| 2381.47 0.79] 10561.94 | 28.97
PL++ 0.34 3301.58 0.66 14457.78 28.81
DT-PL++ 0.34 3285.92 0.67 14456.25 28.78 |
CT-RP 0.31 2796.36 0.70 14754.00 29.44
NCT-RP 0.23] 2385.75 | 0.79] 10563.90 | 28.98
Pl++ 0.34 3286.24 0.66 14431.41 28.83
DT-PL++ 0.34 3272.95 0.67 14430.41 28.80
CT-RP 0.31 276143 0.70 14726.85 29.47
NCT-RP 0.22] 2358.24 0.79] 10572.96 | 29.01

Fig. 10. Comparing transferable adversarial examples from different methods.
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set as the training dataset. 1,000 of these images are selected to simulate the natural environment to generate
adversarial examples as the test cases. Using the data enhancement method PerMix proposed in SwinD, the 1,000
adversarial examples generated by the CT-ERMI method are used to enhance the remaining 9,000 images, which
eventually form a training set containing 10,000 examples. Using this training set, the SwinIR module is trained
with the default parameter settings [53]. Finally, we test the accuracy of the adversarial examples generated in
RQ1 on the target models. To ensure the effectiveness of SwinD, the experiment is repeated five times, and the
average result is taken as the final result. We performed statistical analysis of the experimental results using
one-way ANOVA, and the significance level of the results was less than 0.05.

For non-targeted attacks, we conduct experiments in a single-model environment and an ensemble model
environment, respectively. Fig. 11(a) demonstrates using adversarial examples generated by Inc-v3 to test different
methods of improving model robustness. The experimental results show that SwinD has stronger robustness
compared to other defense methods. For non-targeted transfer attacks such as CT-MI, CT-VMI, and CT-RM]I,
SwinD maintains an ACC above 85%, significantly outperforming other defense methods. For ensemble attacks
like CT-EMI, CT-EVMI, and CT-ERMLI, the ACC of other defenses drops substantially, whereas SwinD holds an
ACC above 70% in Fig. 11(b). For targeted attacks, as shown in Fig. 11(c), SwinD’s ACC is even close to 100%. For
the examples generated by CT-RMI, the model’s ACC can be improved by up to 18.3% compared with NRP in
Fig. 11 (a). The experimental results also indicate that the performance of SwinD does not rely on specific attacks
and can enhance the model’s general robustness against multiple attacks, such as CT-MI and CT-VML

Dong et al. [87] and Zhang et al. [88] show that existing robustness enhancement methods can reduce the
prediction accuracy on benign examples of the dataset. Therefore; we measure the accuracy of those methods
on ImageNet validation set. The experimental result in Table 8 shows that, while most robustness enhancement
methods entail some sacrifice of model performance, the SwinD enhances model robustness with minimal
impact on accuracy. This negligible decrease in performance demonstrates that SwinD effectively balances model
robustness and accuracy.

Table 8. Accuracy variation of different robustness enhancement methods on benign examples.

Bit-Red FD ComDefend NRP SwinD
-8.59 -7.96 -10.26 -4.11 -0.08

We show that the SwinD in TAEFuzz can improve the robustness of the target models by an average of 10%
compared to the existing methods, which proves the effectiveness of TAEFuzz.

4.6 Threats to Validity

We identify the following threats to the validity of our research.

Internal Validity. Threats to internal validity may arise from the random selection of experimental examples
and random generation of neighbor examples. For both non-targeted and targeted attacks, we use image data that
has been validated and widely adopted [46, 65, 86] to ensure the fairness of the experimental data. These data are
validated and have high authority. To eliminate the threat of randomness of nearest neighbor examples to the
experimental results, we repeated each set of experiments multiple times and chose the median as the final result.

External Validity. The external validity threat mainly originates from the choice of datasets and models. The
image classification datasets also include MNIST [70], CIFAR10 [71], etc. However, to better approximate the
image classification in natural scenes, we chose ImageNet, a large-scale image dataset with more categories, to
ensure the validity of the experiments. Additionally, in consideration of the diversity in image sizes, we have also
selected the smaller-sized image dataset Tiny-ImageNet to ensure the comprehensiveness of our experiments. In
addition, to eliminate the threat of the models to the experimental results, we employed 10 different structures
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(a) Robustness enhancement for single-model non-targeted attacks. (b) Robustness enhancement for ensemble non-targeted attacks.

(c) Robustness enhancement for targeted attacks.

Fig. 11. Model robustness enhancements for different attacks.

of DNNSs image classification models for validation. With more image classification models emerging, such as
Transformer-based classification models, validation of our approach for those emerging models is demanded in
future work.

5 RELATED WORK

Related work is categorized into two aspects: Transfer-based Test Case Generation and Model Robustness
Enhancement.

5.1 Transfer-based Test Case Generation

State-of-the-art transfer-based generation methods can be divided into the following two categories:
Non-Targeted. Classical white-box attacks include FGSM [5] and I-FGSM [55]. However, they are not
specifically designed for transfer-based adversarial attacks. MI-FGSM [42] adds a momentum mechanism to
I-FGSM, which alleviates the problem of generating methods that fall into local optima early by accumulating
the gradients of previous iterations. However, MI-FGSM suffers from overfitting. In other words, the generated
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examples on surrogate models can cause more errors in those models, with few errors found in target models.
DMI [44], TMI [45], and SMI [43] have been proposed successively to alleviate the over-fitting problem. DMI adds
diversity to the input by panning and scaling examples. TMI tries to smoothen the gradient during an iteration.
Experiments demonstrate that this operation allows a larger discriminative region to contribute to the model
prediction. SMI uses the undisturbed translation of DNNs to obtain multiple examples by performing an overall
scaling of pixel values. While DMI, TMI and SMI try to alleviate the overfitting problem in terms of example
diversity, the problem still exists. VMI [46] corrects the current gradient by averaging the gradients of multiple
neighbor examples. Nevertheless, the uniformly generated neighbor examples are rare. Thus, the overfitting is
not effectively mitigated. TAEFuzz, on the other hand, diversifies neighbor examples over multiple radii and
employs a normalized loss function relative to the input gradients so that each gradient contributes equally to
the optimization result.

Targeted. Transfer-based targeted attacks are more challenging than non-targeted attacks. For PoTrip [86],
to alleviate the phenomenon of perturbation solidification, the Poincare” distance is used as a similarity metric
to make the size of the gradient adaptive during the iteration process. A triple loss function is used to make
adversarial examples close to target labels while staying away from true labels. A representative method is
Patch++ [65], which is an extension of its predecessor—Patch [76] for non-targeted transfer-based attacks. This
method introduces an amplification factor to the step size in each iteration and a kernel to project the pixel
values of the overflow constraint € into the surrounding regions, which can effectively boost targeted attacks. In
addition, Patch++ adopts the concept of knowledge distillation to soften the model logits in ensemble attacks.
The above methods each have a serious over-fitting problem in targeted attacks. Therefore, we combine TAEFuzz
with Patch++ to alleviate the over-fitting on surrogate models.

5.2 Model Robustness Enhancement

Since adversarial attacks become more capable of finding transferable errors in models, a few adversarial examples
have been successfully applied to the physical world [89]. These techniques have raised public concerns about Al
security. In this regard, methods to improve the DNN model robustness have been proposed. These methods can
be divided into two main categories, adversarial training and input transformation.

Adversarial Training. The core idea of adversarial training is to re-train a model using either the adversarial
examples or the examples with random noise. The purpose of re-training a model is to make the model more
resistant to noise disturbance. Classic adversarial training methods include Fast-AT [58], RS [59] and RS4A [60].
These methods easily fit specific adversarial examples and do not significantly improve robustness against
transferable adversarial examples.

Input Transformation. Instead of making changes to DNN models, the input transformation-based approach
transforms the examples before they are fed into a model to attenuate the effect of perturbations on the model
predictions. The methods of input transformations include ComDefend [80], Bit-Red [62], NRP [63] and FD [79].
The study of Wang and He [46] shows that the methods mentioned above cannot improve the robustness of the
target model against the transferable adversarial examples. In contrast, the method proposed in this paper can
improve the robustness of DNN models against transfer-based adversarial attacks with little loss of accuracy on
benign examples.

6 CONCLUSION

We propose TAEFuzz, a novel fuzzing method for image classification-based DNNs via transferable adversarial
examples. TAEFuzz can find more transferable errors in target models and improve the image quality of generated
examples. Finally, to improve the robustness of the target model, TAEFuzz provisions a less expensive training
method for the noise module, which significantly improves the robustness of target models. For future work, we
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plan to apply our approach to the generation of transferable adversarial examples across different datasets and
more models. In addition, it is worth investigating whether the mutation approaches are useful for pushing the
generated examples out of the public error decision space.
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