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Software comments sometimes are not promptly updated in sync when the associated code is changed. The
inconsistency between code and comments may mislead the developers and result in future bugs. Thus, stud-
ies concerning code-comment synchronization have become highly important, which aims to automatically
synchronize comments with code changes. Existing code-comment synchronization approaches mainly con-
tain two types, i.e., (1) deep learning-based (e.g., CUP), and (2) heuristic-based (e.g., HebCUP). The former
constructs a neural machine translation-structured semantic model, which has a more generalized capabil-
ity on synchronizing comments with software evolution and growth. However, the latter designs a series
of rules for performing token-level replacements on old comments, which can generate the completely cor-
rect comments for the samples fully covered by their fine-designed heuristic rules. In this article, we pro-
pose a composite approach named CBS (i.e., Classifying Before Synchronizing) to further improve the
code-comment synchronization performance, which combines the advantages of CUP and HebCUP with the
assistance of inferred categories of Code-Comment Inconsistent (CCI) samples. Specifically, we firstly
define two categories (i.e., heuristic-prone and non-heuristic-prone) for CCI samples and propose five fea-
tures to assist category prediction. The samples whose comments can be correctly synchronized by HebCUP
are heuristic-prone, while others are non-heuristic-prone. Then, CBS employs our proposed Multi-Subsets
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Ensemble Learning (MSEL) classification algorithm to alleviate the class imbalance problem and construct
the category prediction model. Next, CBS uses the trained MSEL to predict the category of the new sample. If
the predicted category is heuristic-prone, CBS employs HebCUP to conduct the code-comment synchroniza-
tion for the sample, otherwise, CBS allocates CUP to handle it. Our extensive experiments demonstrate that
CBS statistically significantly outperforms CUP and HebCUP, and obtains an average improvement of 23.47%,
22.84%, 3.04%, 3.04%, 1.64%, and 19.39% in terms of Accuracy, Recall@5, Average Edit Distance (AED),
Relative Edit Distance (RED), BLEU-4, and Effective Synchronized Sample (ESS) ratio, respectively,
which highlights that category prediction for CCI samples can boost the code-comment synchronization
performance.

CCS Concepts: « Software and its engineering — Software maintenance tools;

Additional Key Words and Phrases: Code-comment synchronization, category classification, deep learning,
heuristic rules
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1 INTRODUCTION

Code comments give a clear natural language description for source code, which are critical for
program comprehension and software maintenance [40, 45, 73]. As shown in Xia et al’s study
[91], software developers spend on average 58% of their time on program comprehension, where
reading and comprehending code comments play a vital role. However, developers often neglect or
forget to update the corresponding comments when code changes, which results in inconsistent or
obsolete comments (i.e., bad comments) for their corresponding code [77, 78, 87]. Bad comments
consume the effort of software developers in double-checking the code implementation and lead
to the unintended injections of software bugs [35, 62, 80], which undoubtedly delay the project
development and hinder software maintenance. If the comments can be correctly synchronized
when software developers change the source code, the bad comments can be reduced or even
avoided. Nevertheless, documenting source code is a labor-intensive work [20, 38], not to mention
manually synchronizing comments with code changes. Therefore, the necessity of automating this
process increases, which makes the code-comment synchronization a worthy research field.
Existing code-comment synchronization approaches can be divided into two categories: deep
learning-based approach (e.g., CUP [53]) and heuristic-based approach (e.g., HebCUP [50]). The
former constructs a Neural Machine Translation (NMT)-structured semantic model, while the
latter designs a series of heuristic rules for token-level replacements on old comments. They both
act on the code changes with bad comments left which are also referred to as Code-Comment
Inconsistent (CCI) samples in this paper. However, CCI samples are complicated in practice, and
the single type of approach is not enough to accurately synchronize all comments when their as-
sociated code is constantly evolving with various kinds of manners. For example, some tokens
that need to be updated in comments do not appear in the corresponding code change contents,
which makes it impossible for the heuristic-based approach to design hand-crafted heuristic rules
to synchronize comments correctly [50]. Certain code snippets contain some high-frequency to-
kens that are not related to the code changes, which causes the deep learning-based approach
to be distracted and ignore the key information of code changes during code-comment synchro-
nization [24, 85, 96]. On the other hand, approaches of different kinds also carry heterogeneous
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characteristics. Typically, deep learning-based approaches have a more generalized capability of
synchronizing comments with software evolution and growth. And heuristic-based approaches
can generate completely correct comments for CCI samples fully covered by their fine-designed
heuristic rules.

Therefore, towards the state-of-the-art deep learning-based and heuristic-based approaches (i.e.,
CUP and HebCUP), we first experimentally verify their different capabilities on an open-source
code-comment synchronization dataset, which is extracted from 1,496 Java repositories [53]. The
dataset has been split into three parts, i.e., 80,591 samples in the training set, 8,827 samples in
the validation set, and 9,204 samples in the testing set. Based on the empirical study in Section 3,
we find that CUP and HebCUP indeed have their own unique advantages, and neither can dominate
on all evaluation metrics, because these metrics assess code-comment synchronization approaches
from different aspects. HebCUP can correctly synchronize more CCI samples than CUP does, there-
fore it defeats CUP in terms of Accuracy. In contrast, CUP has a more generalized capability due to
its deep learning-based structure, causing it to defeat HebCUP in terms of Average Edit Distance
(AED), Relative Edit Distance (RED), and BLEU-4. In addition, owing to its beam search tech-
nique, CUP also performs better in terms of Recall@5. We also find that both HebCUP and CUP
have some distinctive CCI samples that the other side cannot handle but can be better solved by
themselves. In particular, HebCUP prefers to handle CCI samples that their code changes contain
more token replacements and fewer token insertions or deletions. However, CUP is not overly
dependent on the edit actions of CCI samples. It is noteworthy that CUP outperforms HebCUP
in terms of AED and RED, but has fewer CCI samples whose edit distances are reduced after the
synchronization. This finding motivates us to propose a new evaluation metric, Effective Syn-
chronized Sample (ESS) ratio, to complement AED and RED, which measures the ratio of CCI
samples whose edit distances are reduced after being handled by synchronizers.

Upon the analysis above, we argue that combining the advantages of HebCUP and CUP can be
a rational attempt to further boost the code-comment synchronization performance, which is still
blank in this field and worthy to try. An intuitive solution is to design a classifier to predict the
proneness of each CCI sample on synchronizers (i.e., either CUP or HebCUP) and assign each of
them to one of the synchronizers according to the predicted proneness. Therefore, each approach
is only responsible for the samples that they can handle better, and the overall performance of the
code-comment synchronization can be further improved.

Nevertheless, there are some research challenges that need to be resolved: (1) How to accurately
predict the proneness of a CCI sample in advance between the approaches of HebCUP and CUP?
There is no previous study on the category prediction for CCI samples. Besides, it is also hard to
define or represent the internal relation patterns between CCI samples and their model proneness.
(2) How to deal with the class imbalance problem in the proneness prediction? Based on our pre-
liminary statistics, comments of only 23.83% of CCI samples in the training set can be correctly
synchronized by the HebCUP, which means the proneness prediction is a class imbalance problem.
Simply adopting normal classifiers may bias the overall prediction performance, which is also a
challenge that needs to be resolved.

This paper takes the first step towards constructing a composite approach named CBS (i.e.,
Classifying Before Synchronizing), which combines the advantages of CUP and HebCUP with
the assistance of inferred categories of CCI samples. We firstly define two categories for CCI sam-
ples, i.e., the samples that can be correctly synchronized by HebCUP are heuristic-prone, while
others are non-heuristic-prone. In addition, we propose five features to facilitate the representa-
tion of internal relation patterns between CCI samples and their model proneness, thereby assist-
ing category prediction. Then, since there are more non-heuristic-prone samples than heuristic-
prone ones in the dataset, we propose a Multi-Subsets Ensemble Learning (MSEL) classification
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algorithm to alleviate the class imbalance problem and construct the category prediction model.
Next, CBS employs the trained classification model to predict the category of the new CCI sample.
Finally, if the predicted category is heuristic-prone, CBS adopts HebCUP to synchronize comments
of the sample, otherwise CBS assigns CUP to handle the sample.

We evaluate CBS and the two baselines (i.e., CUP and HebCUP) on the testing set in terms of
Accuracy, Recall@5, AED, RED, BLEU-4, and ESS ratio. The experimental results demonstrate that
CBS, on average, achieves an Accuracy score of 27.90%, a Recall@5 score of 35.67%, an AED score
of 3.562, a RED score of 0.937, a BLEU-4 score of 73.16, and a ESS ratio of 35.85%. In addition, CBS
outperforms HebCUP by 8.53% in terms of Accuracy, by 35.16% in terms of Recall@5, by 4.85% in
terms of AED and RED, by 1.67% in terms of BLEU-4, and by 12.09% in terms of ESS ratio. CBS also
performs better than CUP by 38.41%, 10.52%, 1.24%, 1.24%, 1.62%, and 26.69% in terms of the six
evaluation metrics, respectively. Subsequently, we further discuss the performance of CBS with dif-
ferent base classifiers, the effect of the MSEL algorithm, and investigate the impact of the proposed
five features. In summary, according to our extensive experiments and discussion, the category pre-
diction for CCI samples can indeed boost the performance of code-comment synchronization via
combining it with current approaches.

To the best of our knowledge, this is the first work that takes advantage of category prediction on
the Code-Comment Inconsistent (CCI) samples to improve the performance of code-comment
synchronization approaches. The main contribution of our work can be summarized as follows:

e We systematically investigate the current state-of-the-art code-comment synchronization
approaches of heuristic-based and deep learning-based, which verifies the heterogeneous
advantages of each approach and the existence of model proneness among CCI samples.

e We define two categories (i.e., heuristic-prone and non-heuristic-prone) for CCI samples and
propose a CBS approach to further improve the performance of code-comment synchroniza-
tion models, which demonstrates how category prediction of CCI samples can benefit the
code-comment synchronization.

e We propose five original features to facilitate the representation of internal relation pat-
terns between CCI samples and their model proneness, and design a Multi-Subsets Ensemble
Learning (MSEL) algorithm to alleviate the class imbalance problem in category prediction.

e Extensive experiments are conducted to evaluate CBS, and a new evaluation metric named
Effective Synchronized Sample (ESS) ratio is proposed to make the assessment of this work
more comprehensive.

e Our research highlights that category prediction for CCI samples can make code-comment
synchronization more practical in the real development scenario and sheds light on future
directions for both industry and academia in this field.

e We open source the code of our CBS approach [92] to facilitate future research and
application.

The remainder of this paper is organized as follows: Section 2 clarifies the background of code-
comment synchronization, including the problem formalisation, the usage scenario, the state-of-
art approaches, and a code-comment synchronization example. Section 3 empirically explores the
existing code-comment synchronization approaches. Section 4 describes the methodology of our
proposed CBS approach. Sections 5 and 6 present the experimental results for category predic-
tion and code-comment synchronization, respectively. Section 7 explores the effect of the inside
structures of our proposed approach. Section 8 discusses the failures of CBS and summarizes the
implications of this work. Section 9 presents threats to validity. Section 10 briefly introduces related
work. Finally, Section 11 concludes this paper.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 30. Pub. date: March 2023.



On the Significance of Category Prediction for Code-Comment Synchronization 30:5

2 BACKGROUND

In this section, we introduce the background of code-comment synchronization, including its prob-
lem formalization, usage scenario, state-of-the-art methods, and an example.

2.1 Problem Formalization

Code-comment synchronization aims to synchronize comments when the associated code changes.
More formally, given a piece of code change, including a pre- and a post-change version of the code
snippet, namely c and ¢ , as well as a pre- and a post-change version of the comment associated with
it, namely x and y, the objective of this research is to find a function f (i.e., a kind of code-comment
synchronization approach), such that the post-change comment y can be correctly produced from
f on condition of given c, ¢, and x as below.

y=fle.c.x) (1)

Hereon, the ¢, ¢, x, and y are referred to as old code, new code, old comment, and new comment
(it is also named as reference comment in other studies), respectively. For each triple composed
of ¢, ¢’, and x, we refer to it as a Code-Comment Inconsistent (CCI) sample in this paper. The
associated y is our target and is not available during the code-comment synchronization in practice.
We cope with this problem by proposing a CBS approach to approximate f, and refer to each
comment outputted from CBS as a synchronized comment .

2.2 Usage Scenario

We illustrate the usage scenario of CBS as follows:

Firstly, CBS can promptly and automatically help developers synchronize the associated com-
ment when making a code change. If the synchronized comment is correct or partially correct, it
can greatly reduce the workloads of developers on manually editing comments and make them
concentrate more on the code implementation of transaction logic, thereby improving productiv-
ity. Besides, this process also effectively avoids the obsolete comments that are ignored to update
by developers during their programming.

Secondly, CBS is also useful in repairing the existing bad comments. For example, when develop-
ers are programming based on others’ code, they may encounter code snippets with bad comments,
which will mislead their understanding of the code’s intention. In this case, developers can adopt
a bad comment detector, e.g., the tool proposed by Liu et al. [51], to identify comments that need
to be synchronized, then CBS can be applied to them to automatically repair those comments and
make them synchronous with their associated code snippets.

The usage of CBS can also be quite frequent. According to the study of Kolassa et al. [43] on
11,143 open-source projects with a total of 8,705,118 commits by 47,548 committers, over 50%
of developers commit twelve times daily. Besides, we also conducted a preliminary analysis on
the 1,496 Java projects in this paper, and we found that each commit is related to, on average,
2.2 method-level code changes. Hence, CBS, as a method-level code-comment synchronizer, can
be utilized by developers very often.

2.3 Current Code-Comment Synchronization Approaches

CUP and HebCUP are two representative state-of-the-art code-comment synchronization ap-
proaches. Here, we introduce them as below:

e CUP is a deep learning-based model proposed by Liu et al. [53]. They describe the code-
comment synchronization task as a machine translation process and design an LSTM-based
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Sequence-To-Sequence (Seq2Seq) variant to deal with the mapping from old comments
and code changes to new comments. Specifically, the semantics of code change sequences
and old comment sequences are progressively extracted through the layers of embedding, co-
attention, and modeling. Afterward, the high-level representation of code change sequences
and old comment sequences are decoded with the previously generated tokens of new com-
ments via the dot-production attention mechanism to generate a new comment token at
each time step.

HebCUP is a heuristic-based approach proposed by Lin et al. [50]. They put forward a se-
ries of heuristic rules by empirically studying CUP successful and failure cases. HebCUP
can successfully handle most code-indicative changes, whose changed sub-tokens or tokens
in comments can be found from the corresponding code change contents [50]. Specifically,
HebCUP first aligns the sub-tokens in code change sequences according to its sub-token
alignment algorithm and constructs a series of replacement pairs based on the alignment
results. Each replacement pair can be represented as a format of key-value, where the key is
the old token while the value is the potential new token for replacement. Finally, HebCUP
adopts keys to match tokens in old comments and conduct the updating with values, thereby
conducting the synchronization for comments.

2.4 An Example of Code-Comment Synchronization

We present a code-comment co-change instance in Listing 1, where the comment in red is the old
comment describing the functionality of the old code, the comment in green is the new comment
describing the functionality of the new code, the code in red is the deleted statement, the code
in green is the newly added statement, and the other code is no-change statements. Old code is
composed of no-change statements and deleted statements while new code is composed of no-
change statements and newly added statements. Given a triple of old code, new code, and old
comment, a code-comment synchronizer (e.g., CUP and HebCUP) is able to provide a comment
suggestion of describing the new code, and we refer to such suggestion as a synchronized comment.
Taking the Listing 1 as an example, CUP will generate a comment suggestion of “Return the PIM
Interface” for it. Subsequently, this synchronized comment will be evaluated in terms of the metrics
we illustrate in Section 3.2 via making a series of comparisons between itself and the reference
comment (i.e., “Return the ONOS Interface”), thereby assessing the quality of each synchronized
comment.

- /*Get the PIM Interface’/

+ /*Return the ONOS Interface’/

public Interface getlnterface () {
return thelnterface;

+ return this.onosInterface;

}

AN U R W DN =
1

Listing 1. A code-comment co-change instance.

3 EXPLORING EXISTING CODE-COMMENT SYNCHRONIZATION METHODS

In this section, we experimentally investigate the performance of CUP and HebCUP to explore
their respective advantages and their heterogeneous characteristics.
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Old Code Sequence I 'public’, 'Interface’, 'get', '<con>', 'Interface’, '()’, '{’, 'return’ I | "the' I | '<con>', 'Interface’, '<con>',';', '}

New Code Sequence

"public’, 'Interface’, 'get’, "<con>', 'Interface’, '0", '{’, 'return’ I | "this’, '<con>', ", "<con>", 'onos’ l | '<con>', 'Interface’, '<con>", ';", '}’ |

Action Sequence | equal | | replace | | equal

Fig. 1. The code change sequence of the code-comment co-change instance on sub-sequence-level.

3.1 Dataset

The dataset we adopt in this work is extracted from 1,496 Java repositories hosted on GitHub
[6], where most of them are famous projects, such as the Nomulus [7] of Google, the Hive [3]
of Apache, and Fresco [5] of Facebook. The dataset was first built by Wen et al. [87], and first
applied in the code-comment synchronization field by Liu et al. [53]. Subsequently, Lin et al. [50]
further cleaned the dataset. According to Liu et al. [53], they deduplicated the dataset and arranged
it in ascending order according to the commit creation time within each project. The first 80% of
commits were put into the training set, and the remaining 20% of commits were shuffled and evenly
split into the validation and test set, thereby avoiding the data leakage problem. Subsequently, Lin
et al. [50] further cleaned the dataset and obtained 80,591, 8,827, and 9,204 code-comment co-
change instances in the training, validation, and testing sets, respectively. For each instance, the
old code, new code, and old comment constitute a CCI sample in practice, and the new comment
is regarded as the reference comment for synchronization. Code and comments are tokenized to
sequences, and their tokens are broken into sub-tokens based on camel casing and snake casing.
Besides, “<con>" is also inserted to join the sub-tokens for future recovery. For example, the token
“getInterface” is tokenized to two sub-tokens “get” and “Interface”, and “<con>" is inserted to join
the two sub-tokens.

In particular, according to Liu et al. [53] who construct the original version of this dataset, if the
word-level Levenshtein distance [57] of a comment pair (i.e., an old comment and its associated
new comment) is larger than the old comment’s length and 5, they regarded this pair as a rewrite
instead of an update, where the word-level Levenshtein distance is minimum word edits required
to change a sentence into the other. This makes sense, because if the distance of a comment pair
is too large, it has a great possibility that there is little relation between the pre- and post-change
version of code and comments, which should better use code summarization approaches to gen-
erate comments from scratch. On the other hand, if we still use code-comment synchronization
approaches to deal with them, the synchronized comments may be not as good as we expected
because the relation between old and new code (comment) has almost disappeared. Therefore, set-
ting some restrictions on the distances of comment pairs is reasonable. In addition, according to
the study of Liu et al. [53], before they conducted this filtering procedure, they collected a dataset
with 242,649 samples. After the filtering, there still remains 147,844 samples which still account for
over 60% of the original samples. Therefore, these samples with relatively small changes indeed oc-
cur very often in code changes, whereas the larger changes are the minorities. Thus, this dataset is
practical.

Table 1 presents the statistics of the dataset we adopted, where Length is the number of sub-
tokens in each type of data sequence, and Number of Changed Sub-tokens (NCS) records the
number of sub-tokens that are modified between the old and new code (comments). According to
the statistical results in Table 1, we find that the Lengths of code (comments) among each part of the
dataset are similar on both the mean and standard deviation. Besides, the same phenomenon can
also be observed in the NCS. It indicates there is no significant difference in the data distributions
among the training, validation, and testing sets.
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Table 1. The Statistics of the Datasets

Dataset  Type Length NCS
Mean Standard Deviation Median Mean Standard Deviation Median
0Old Code 91.22 84.42 60.0
Train New Code 91.26 84.98 58.0 34.73 57.49 11.0
Old Comment  14.43 7.34 13.0 381 301 3.0
New Comment 14.47 7.63 13.0 ’ ’ ’
0Old Code 89.60 82.61 59.0
Validation New Code 88.77 82.66 57.0 32.73 >4.66 12.0
Old Comment  15.16 7.57 14.0 3.83 3.03 3.0
New Comment 15.21 7.83 14.0 ’ ’ '
0Old Code 97.61 86.92 64.0
Test New Code 97.44 87.94 63.0 36.85 63.73 12.0
Old Comment  15.37 7.52 14.0 3.97 311 3.0
New Comment 15.29 7.77 14.0 ’ ’ ’
o1 codesequence 554 i|pubtic |: [mtertace | [ gt | [ <eom |[amrince| [ J[ 5 [ ¢ [[wewm |[ e |[ 0 |[ 0 |[<ow |[meie][ : || |
New cote sequence s |_puvtie | [1mvertace | [ get | [[zeon | [mmerte | [ ][5 J[ ] [rewm [ e J[ ][ omes | [ cow |[mmesee][ ][]
action sequence  , | _equat |:| equat | [ equa | [ equat | [ equar | [equar | [equar | [ eavat | [Cequat | [[reptace | [Cimsere | [Cimsere | [ equat |[ equar | [ equar | [ eauat |

Fig. 2. The code change sequence of the code-comment co-change instance on element-level.

To better represent the code changes during the synchronization, Liu et al. [52, 53] adopted a
Python diff tool namely SequenceMatcher [4] to align each old code sequence and its associated
new code sequence. The SequenceMatcher is able to identify four edit actions, including “equal’,
“replace”, “insert”, and “delete” at the sub-sequence-level between two sequences. For example,
Listing 1 presents a code-comment co-change instance. After breaking the old code, and new code
of this sample into sub-tokens, SequenceMatcher can align old and new code sequences of List-
ing 1, and present results as shown in Figure 1. Subsequently, to convert the alignment from sub-
sequence-level to element-level, Liu et al. conducted a series of operations: (1) for sub-sequence
matches marked as “equal”, they keep them intact, (2) for those marked as “insert” and “delete”,
they directly fill up empty tokens “@” for the shorter ones to align them, and (3) for those marked
as “replace”, since the lengths of two sub-sequences in each matched pair may not be equal, they
align them from the head or tail according to the similarity of their first and last tokens. In detail,
if the similarity between the first tokens of the two sub-sequences is larger than that between
the last tokens, they align the two sub-sequences from their head and add empty tokens “@” to
fill up the short one, otherwise, they align the two sub-sequences from the tail and add empty
tokens “@” accordingly. The similarity is computed by quick_ratio which is a built-in function of
SequenceMatcher. For example, towards the sole “replace” edit action between the sub-sequence
(i.e., [“the”]) of the old code and the sub-sequence (i.e., [“this”, “<con>", “”, “<con>", “onos”]) of the
new code shown in the Figure 1, sub-token “the” is closer to sub-token “this” than to sub-token
“onos” according to the similarity score computed by quick_ratio. Thus, sub-sequence [“the”] aligns
sub-sequence [“this”, “<con>", “”, “<con>", “onos”] from head, and empty tokens “@” fills up the
shorter sub-sequence [“the”] in the old code. Figure 2 is the element-level aligned code change
sequence processed by the above procedure based on Listing 1. Each element, i.e., code-edit, in the
code change sequences is a triple <sl.Cd, s;Cd, a;>, where sicd is the ith sub-token in the old code, s;Cd
is the ith sub-token in the new code, and a; denotes the edit action that converts sl.Cd to s;.Cd, which
can be “equal”, “replace”, “insert”, and “delete” as we mentioned above. If a; is “insert” (“delete”),
sl.cd (s;Cd) will be the empty token @.
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3.2 Evaluation Metrics for Code-Comment Synchronization

Following Liu and Lin et al’s works [50, 53], we adopt Accuracy, Recall@5, AED, RED, and
BLEU-4 to evaluate the performance of the two code-comment synchronization approaches.

e Accuracy measures the capability of code-comment synchronization approaches on correct
synchronizations. The term correct synchronizations means the synchronized comments are
identical with the reference comments, which also means CCI samples are correctly synchro-
nized. Specifically, Accuracy is the percentage of CCI samples where correct synchronizations
can be generated on the first attempt. More formally, it can be defined as below:

N co]:;ect , (2)
where Niorrec: is the number of correct synchronizations, and N is the number of testing
samples. Thus, the higher the Accuracy, the better the performance of code-comment syn-
chronizers. When judging the identicalness between synchronized comments and reference
comments, Liu et al. [53] ignore the punctuations at the end of the comments, while Lin
et al. [50] ignore the case and all punctuations in comments. Since both punctuation and
case will not affect developers’ understanding of comments too much, we uniformly adopt
the code implementation of Lin et al. to calculate the Accuracy of synchronizers in our study.

e Recall@5 is similar to Accuracy but allows an approach to conduct five attempts for each
CCI sample. If any one of the synchronized comments is a correct synchronization, it consid-
ers the approach can successfully handle this sample [53]. Likewise, the higher, the better.
This metric is also useful and practical because providing correctly synchronized comments
in limited (e.g., five) candidates also saves the efforts of developers and offers alternative
options.

e AED is the average edits that developers need to perform in order to change the synchro-
nized comments to the reference comments after being handled by code-comment synchro-
nizers, which indicates the distance between the synchronized comments to the reference
comments. Therefore, the smaller the AED, the better the performance of code-comment
synchronizers. More formally, AED can be defined as below:

Accuracy =

N
1
- ~(k) (k)
AED = N kg_lED(y YY), (3)

where ED is the edit distance (i.e., word-level Levenshtein distance [57]) between (*)and
y*, 9% represents the kth synchronized comment, y* denotes the kth reference comment,
and N is the number of the testing samples. Since Lin et al. [50] did not publish the source
code of calculating AED, we adopt the code implementation of Liu et al. [53] except that we
ignore the case.

e RED is similar to AED, but presents the average of relative edit distance. In detail, it mea-
sures the ratio of AED between synchronized comments (§s) and reference comments (ys) to
the AED between old comments (xs) and reference comments (ys), which indicates to what
extent an approach can release the burden of developers from a manual update: the smaller,
the better.

1/N 3L, ED@GR),y®)

YN YN ED(x®), yk)’

e BLEU-4 is a universally applied precision-oriented evaluation metric in code summarization
[17, 34, 93] and code-comment synchronization [53] fields, which measures the quality of

4)
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automatically generated sentences by computing the n-gram precision of a generated sen-
tence to the reference sentence [61]: the higher, the better. More formally, it can be defined

as follows:
N
BLEU — N = BP * exp (Z wylog pn), (5)
n=1
1, i candi > re
BP = 1— ref f 3 f (6)
e “candi, if candi<ref,

where p, represents the ratio of sub-sequences of the length of n in candidated synchronized
comments that also appear in the reference comments, BP represents the brevity penalty,
candi and re f represent the length of the candidated synchronized comments and reference

comments, w, = % and N = 4 in this work is to reflect the weighted sum from 1 to 4.

To sum up, since Accuracy and Recall@5 only count the proportion of samples that are abso-
lutely correctly synchronized, their evaluation results reflect the correct synchronization capability
of approaches. However, AED, RED, and BLEU-4 compute the average similarity of the overall sam-
ples between synchronized comments and their corresponding reference comments. Thus, AED,
RED, and BLEU-4 evaluate the general synchronization capability of approaches.

3.3 Experimental Design

In this section, first of all, we assess the performance of CUP and HebCUP on the same validation
set and unified evaluation criteria. In detail, both CUP and HebCUP are constructed based on the
source code published in their respective papers [50, 53]. CUP is trained from scratch on the train-
ing set then evaluated on the validation set, while HebCUP is directly evaluated on the validation
set due to its training-free characteristic. With respect to the initial training parameters, hyper-
parameters, and training strategies of CUP, we fixed them according to the setting in its original
paper [53], such that the re-trained CUP can reproduce its original performance. Afterward, the
outputs of CUP and HebCUP on the validation set are uniformly evaluated via the metrics we
illustrated in Section 3.2.

After obtaining and evaluating the outputs of CUP and HebCUP, we further deeply analyze
the distributions of samples that are correctly synchronized within the first attempt (i.e., Accu-
racy) and five attempts (i.e., Recall@5) to explore the different advantages of CUP and HebCUP
on correct synchronization. In addition, we also dig deeper for the distribution of samples in terms
of edit distance (i.e., concerning the AED and RED) to explore the heterogeneous characteristics
of HebCUP and CUP on general synchronization capability. Finally, for samples whose edit dis-
tances are reduced after the synchronization, we study them further to explore whether there are
potential regularities in the sample preferences of approaches.

3.4 Results and Discussion

Table 2 presents the performance of CUP and HebCUP on the validation set under the unified
evaluation metrics.

(1) As can be seen, HebCUP achieves a score of 25.60% in terms of Accuracy, 25.99% in terms of
Recall@5, 3.68 in terms of AED, 1.009 in terms of RED, and 70.94 in terms of BLEU-4. CUP achieves
a score of 21.75%, 30.50%, 3.45, 0.944, and 72.09 in terms of the five evaluation metrics, respectively.
More specifically, CUP outperforms HebCUP by 17.35% in terms of Recall@5, 6.25% in terms of
AED and RED, and 1.62% in terms of BLEU-4. On the contrary, HebCUP performs better than CUP
in terms of Accuracy by 17.70%.
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Table 2. The Code-Comment Synchronization Performance of HebCUP and CUP
on the Validation Set

Approach Accuracy (%) Recall@5 (%) AED RED BLEU-4
HebCUP 25.60 [2260/8827] 25.99 3.68 1.009 70.94
CcupP 21.75 [1920/8827] 30.50 3.45 0.944 72.09

®The number of correct synchronizations are presented in square brackets, where the number of
total validation samples is 8,827.

17% 54% 29% 28% 57% 15% 18% 53% 29%
(461/2721) (1459/2721) (801/2721) (877/3172) (1815/3172) (480/3172) (643/3519) (1864/3519) (1012/3519)
Ll HebCUP cup Hebcup e HebCUP
® ®) ©

Fig. 3. (A) The Venn graph for the distributions of samples with correctly synchronized comments after being
handled by CUP and HebCUP within the first attempt, (B) The Venn graph for the distributions of samples
with correctly synchronized comments after being handled by CUP and HebCUP within five attempts, (C)
The Venn graph for distributions of samples with ED_dif f < 0 after being handled by CUP and HebCUP.

(2) It is noticeable that the Accuracy and Recall@5 on the validation set of CUP in our experi-
ment are higher than those recorded in the paper of Lin et al. [50]. This is because Lin et al. did not
uniformly apply the implementations of their evaluation metrics to CUP, and their implementa-
tions of the evaluation metrics for HebCUP are looser than those in the CUP paper (details refer to
Section 3.2). Therefore, owing to such kind of unfair comparison, the performance of CUP in terms
of Accuracy, Recall@5, AED, and RED are lower than those of HebCUP in the paper of Lin et al.
[50]. However, as shown in Table 2, neither of the two approaches can dominate on all evaluation
metrics.

To dig deeper into the performance of CUP and HebCUP, we plot three Venn graphs to describe
the sample distributions related to the metrics of Accuracy, Recall@5, AED, and RED in Figure 3
and list our findings as the following:

(1) According to Figure 3(a), in totally 2,721 samples that can be correctly synchronized by CUP
or HebCUP, CUP can correctly synchronize comments for 461 (17%) samples that HebCUP cannot
handle. On the contrary, the latter can correctly synchronize comments for 801 (29%) samples that
the former cannot handle. Besides, 1,459 (54%) samples can be correctly handled by both CUP and
HebCUP.

(2) Nevertheless, if we expand the evaluation to five candidated synchronized comments,
Figure 3(b) illustrates that CUP can correctly synchronize more distinctive samples (28%) than
HebCUP (15%). This is due to the usage of beam search in the neural semantic model of CUP,
which helps it infer a limited number of best predictions by approximately maximizing the condi-
tional probability [23]. Whereas, the candidates of HebCUP are generated by permutation and
combination within the replacement pairs, leading to a lack of diversity in most candidates.
(3) Subsequently, we define an Equation (7) to describe edit distance difference (ED_dif f) before
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Fig. 4. The density plot for the sample distributions of ED_dif f # 0 after being handled by CUP and
HebCUP.

and after the code-comment synchronization.
ED_dif f = ED(j.y) - ED(x, ). (7)

where ED(7,y) denotes the edit distance from the synchronized comment (3) to the reference
comment (y) while ED(x,y) denotes the edit distance from the old comment (x) to the reference
comment (y). For example, if ED_dif f < 0, it represents the edit distance of a sample is reduced,
that is to say, comparing with the old comment, the synchronized comment approaches closer to
the reference comment, thus the code-comment synchronizer shows a positive effect; if ED_dif f
> 0, it illustrates the edit distance increases and the code-comment synchronizer has a negative
effect on the sample; and if ED_dif f = 0, it tells us the synchronizer has no effect. With the aid of
ED_dif f, Figure 3(c) demonstrates that the edit distances of 29% distinctive samples are reduced
after being handled by HebCUP, while the edit distances of 18% distinctive samples are reduced
by CUP.

It is noteworthy that CUP outperforms HebCUP in terms of AED and RED but contributes fewer
edit distance reduced samples. In order to clearly explain this phenomenon, we plot samples of
ED dif f # 0inFigure 4 to more clearly present the distributions of samples whose edit distances
are changed after being handled by CUP and HebCUP, where the red (blue) points represent the
samples with the top 10 largest ED_dif f values processed by CUP (HebCUP), and the red (blue)
stars represent the samples with top 10 smallest ED_di f f values processed by CUP (HebCUP).! We
find that although HebCUP contributes more edit distance reduced samples, it produces more edit
distance increased samples, and the edit distance of these samples increase even more.? Therefore,
CUP outperforms HebCUP in terms of AED and RED. The above analysis inspires us that AED
and RED indeed can describe the model performance concerning the edit distance over the entire
samples on the sub-token-level, but they cannot measure the edit distance from the perspective
of individual quantity (i.e., sample-level), such as counting the proportion of samples whose edit
distances are reduced after being handled by synchronizers. In particular, approaches with better
AED and RED may also have fewer samples whose edit distances are reduced after the synchro-
nization as shown in the above comparison between CUP and HebCUP, which is also the issue

The proportions of ED_diff # 0 for CUP and HebCUP are 43.94% and 52.71%, respectively, indicating the fact that both
CUP and HebCUP indeed have a number of samples that cannot implement any synchronization for them. Nevertheless,
this phenomenon does not affect the improvement of our proposal based on CUP and HebCUP.

2HebCUP: 1,776 samples with ED_dif f > 0, where the edit distance increases 3.106 on average; CUP: 1,372 samples with
ED_diff > 0, where the edit distance increases 2.103 on average.
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(A) CUP Only (B) Both (C) HebCUP Only
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Fig. 5. The preferences of HebCUP and CUP on samples with different percentages of “replace”, “insert”, and
“delete”.

that the previous studies ignore. Therefore, in Section 6, we propose a new evaluation metric as
complementation for AED and RED.

Afterwards, we further conduct a statistical analysis on the samples whose edit distances are
reduced after the synchronization in Figure 5, where all these samples are partitioned into three
kinds, i.e., (A) edit distances can be reduced by HebCUP only, (B) edit distances can be reduced
by both approaches, and (C) edit distances can be reduced by CUP only. For each part of the sam-
ples, we show the percentages of their edit actions (i.e., “replace”, “insert”, and “delete”) in code
changes via box plots, where the green triangles represent the mean values and the orange lines
represent the median values. As can be seen, HebCUP extremely prefers to handle samples with a
high percentage of “replace” action, and around half of those samples do not have any edit actions
of “insert” and “delete” according to Figure 5(b) and (c). The mechanism of HebCUP is exploiting
replacement pairs to conduct token-level updates on old comments. On the other hand, according
to Figures 5(a), we find that samples with edit actions of “insert” and “delete” account for a higher
percentage compared with those with “replace” action. However, in Figure 5(b), samples with “re-
place” action account for the greatest proportion. Edit distances of samples in both figures can be
reduced by CUP, but present quite different distributions over edit actions, showing that CUP is
not overly dependent on the edit actions, like HebCUP, because it is driven by deep learning.

(1) HebCUP outperforms CUP in terms of Accuracy, while CUP produces better results in
Recall@5, AED, RED, and BLEU-4.

(2) Both HebCUP and CUP have some distinctive samples that the other one cannot handle
but can be better solved by themselves.

(3) HebCUP prefers to handle samples having more edit actions of “replace” and fewer
actions of “insert” and “delete” in their code changes whereas CUP is not overly dependent
on the edit actions like HebCUP during the code-comment synchronization.

4 METHODOLOGY
This section interprets the methodologies of CBS.

4.1 Motivation

According to the statistics and analysis in Section 3.4, we have verified the heterogeneous char-
acteristics of CUP and HebCUP, including their superiority on different metrics and preferences
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Fig. 6. The overview of the CBS approach.

on different kinds of samples, which are originated from the different properties and mechanisms
of the two approaches. Therefore, it is a great possibility that combining these two kinds of ap-
proaches can be beneficial and reach a better result in the code-comment synchronization task.
Due to this, we propose a Classifying Before Synchronizing (CBS) approach, which predicts the
proneness of CCI samples on approaches (i.e., HebCUP and CUP) first, then assign samples to the
most suitable approach to conduct the comment synchronization with code changes. Theoretically,
the code-comment synchronization results of CBS approach heavily depend on the performance of
category prediction for the proneness of CCI samples. If the prediction for the proneness is wrong,
CCI samples will be assigned to the wrong approach, and the final synchronization result will be
awful. Hence, our methodology mainly focuses on the following problems: (1) How to represent
the internal relation patterns between CCI samples and their proneness to facilitate the category
prediction. (2) The class imbalance problem during the category prediction is also an imperative
issue that needs to be solved.

4.2 Approach Overview

Figure 6 shows the overall framework of our proposed CBS approach, which consists of two stages
with multiple steps. For the offline training stage, we firstly extract the five predefined features
from the training and validation sets, and label the samples as heuristic-prone or non-heuristic-
prone in Step 1; In Step 2, exploiting the features we extract from the previous step, we train a
Multi-Subsets Ensemble Learning (MSEL) classification model for category prediction of CCI sam-
ples. Besides, the MSEL classification model also alleviates the class imbalance problem during the
category prediction due to its ensemble technique; Finally, we exploit the training and validation
sets to train the CUP as the code-comment synchronizer for non-heuristic-prone samples in Step 3.
Until now, the CBS has prepared for online testing as shown in the left-hand side of Figure 4.2. For
the online testing stage, we firstly extract the same features from the testing sample in Step 4;
Then, we employ the trained MSEL classification model (as mentioned in Step 2) to predict the cat-
egory of the testing sample in Step 5; Finally, in Step 6, the predicted category is heuristic-prone,
we adopt HebCUP to synchronize the comment of the sample, otherwise, we assign CUP to handle
the sample.
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In order to illustrate our approach more clearly, we present a running example here in Figure 7
to show how CBS handles CCI samples in practice via combining CUP and HebCUP, and list two
CCI samples for illustration, the one is from Apache Wicket [1] which is a sample can be correctly
synchronized by CUP, the another one is from the Google Nomulus [2], which can be correctly
synchronized by HebCUP. For code changes, we highlight the statements that are deleted in red,
and for those that are newly added, we highlight them in green. Besides, we also circle the specific
changed regions in both code and comments for the convenience of illustration. As can be seen,
regardless of any CCI samples, their five features will be extracted first, then the MSEL classifica-
tion model will identify the categories of samples (i.e., Phase 1: Category Prediction), then allocate
them to the corresponding code-comment synchronizers to generate new versions of comments
and replace their old obsolete comments (i.e., Phase 2: Code-Comment Synchronization).

More specifically, Sample 1 is to fix the “createSessionFolder” value as “true” inside the method,
thus the content of “and createSessionFolder is true” which is one of the conditions to create a
new folder in comment should be removed. However, Sample 1 has two parts of changes in the
code, the one is the deletion of ", “boolean”, and “createSessionFolder” in Line 5 and the other
one is a replacement of “createSessionFolder” with “true” in Line 8-9. The two kinds of operations
for “createSessionFolder” make HebCUP hardly tell what should be done for “createSessionFolder”
in the old comment. More importantly, the tokens that need to be deleted in the old comment
include contents that are not shown in the code changes, such as “and” and “is”, thus it is impos-
sible to design heuristic rules. On the contrary, CUP can successfully handle this sample for its
learning and comprehension to the code and comment semantics. In this case, MSEL classification
model correctly predicts the category (i.e., non-heuristic-prone) of Sample 1 and allocates it to CUP,
thereby we obtain the correct synchronization for Sample 1, and list the result in the left-bottom
corner of Figure 7. For Sample 2, it is going to change the path of the file in code, i.e., from “javat-
ests/%s/testdata/%s” to “src/test/resources/%s/%s” in Line 8-9, and HebCUP is able to extract the
replacement pairs between key: “javatests” and value: “src/test/resources”, as well as key: “testdata”
and value: “@”. As such, HebCUP exactly replaces the “javatests” with “src/test/resources” on the
old comment, and achieves a correct synchronization. Nevertheless, CUP fails to conduct the cor-
rect synchronization, and its generated result is “Returns the “real” location of the file loaded by the
other commands, starting from test/test”. Obviously, it repeatedly generates the word “test”, which
is a very high-frequency word, ranks 156 out of 44,577 in the whole vocabulary, and neglects the
correct words, such as “src” and “resources”. In this case, the MSEL classification model correctly
predicts the category (i.e., heuristic-prone) of Sample 2 and allocates it to HebCUP, thereby we
obtain the correct synchronization for it, and list the result in the right-bottom corner of Figure 7.
Via the procedure we mentioned above, CBS can effectively exploit the advantages of both CUP
and HebCUP, thereby continue boosting the performance of code-comment synchronization. We
illustrate each part of CBS in detail in the following sections.

4.3 Category Definition and Partition Criteria

In this paper, we categorize CCI samples as heuristic or non-heuristic based on the synchroniza-
tion results of HebCUP. In other words, for those samples that can be correctly synchronized by
the HebCUP, we label them as heuristic-prone; otherwise, we label them as non-heuristic-prone.
We adopt the synchronization results of HebCUP as the labeling criterion for a variety of reasons:
(1) The labeling results of the deep learning-based approach, i.e., CUP, will change more or less
for its randomness in training. The category prediction is hard to conduct with nonstationary la-
bels. (2) Code-comment synchronization guided by hand-crafted rules is explainable, thus, it is
relatively easier to represent the internal relation patterns between CCI samples and their prone-
ness. According to the above definition and partition criterion, we label the categories for CCI
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Sample 1 Sample 2
project: apache/wicket project: google/nomulus
commit_id: 8dcf2e34927e0c164235f5hea79¢7026d22192dc commit_id: cf507dad6d7bfc9e30eb520da0c08a75d054b2bd

( | 2
1k
private String getSessionFileName(String sessionldentifieroolean createSessionFolder) ) 5 | public static String filePath (Class<?> context, String filename)

+ private String getSessionFileName(String sessionldentifier) {
{ String packagePath = context . getPackage () . getName(). replace (. *, */*);
= File sessionFolder = folders y-r\m-mnnhhuluu‘l 2 return String fmnmlnukwnl'.xlh filename);
+ File sessionFolder = folders.get(sessionldentifier(truc)) ' return String format @SFelest resources) waT%s packagePath, flename);
return new File( sessiqnFolder , “data”).getAbsolutePath() 3} }
CBS Framework JI

Phase 1:
Category Prediction

Non-Heuristic-

Classifier 1

Prone

Phase 2: |
Code-Comment Synchronization v

private String getSessionFileName(String  sessionldentifier ) public static String filePath (Class<?> context, String filename)
{ {
File sessionFolder = folders get( sessionldentifier , true); String packagePath « context.getPackage () . getName().replace (*. ", */");
return new File( sessionFolder , “data”).getAbsolutePath () ; return String _format("src/test/resources/%s/Xs", packagePath, filename);

Fig. 7. A running example to show how CBS works.

Table 3. Category Distribution of Code-comment Inconsistent Samples
in the Training and Validation Sets

Dataset Category Count Proportion
Trainine Set Heuristic-Prone 19,202 23.83%
g Non-Heuristic-Prone 61,389 76.17%
L Heuristic-Prone 2,260 25.60%
Validation Set Non-Heuristic-Prone 6,567 74.39%

samples on the whole training and validation set. Table 3 demonstrates the category distribution
of CCI samples on training set and validation set, respectively, where 23.83% of them are heuristic-
prone and 76.17% of them are non-heuristic-prone in the training set, while 25.57% of them are
heuristic-prone and 74.43% of them are non-heuristic-prone in the validation set.

4.4 The Proposed Features

Based on our statistical analysis in Section 3.4, we further analyze the training samples in each
category, and propose five features to facilitate the representation of internal relation patterns
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between CCI samples and their model proneness, thereby assisting category prediction. The details
of the five features are introduced as follows.
o ReplaceRate: Ignoring the code edits whose sicd and s;.Cd are both meaningless symbols, i.e.,

7, “<con>" and “@”, it is the ratio of code edits with the “replace” action among those with
non-equal actions in a code change sequence:

Nyreplace

ReplaceRate = (8)

Nreplace t Ninsert + Ndelete ’
where n,eplaces Ninsert> and Ngejere denote the number of code edits with the action of “re-
place”, “insert”, and “delete” in a code change sequence, respectively. The intuition is that
the code change sequence (as shown in Figure 2) that contains more code edits with the
“replace” action in proportion is more likely to be the code-indicative changes, and tends to
be easily and correctly synchronized by HebCUP.

MatchedLevelsNum: This feature counts the number of matching levels of HebCUP that
are satisfied by a CCI sample. The HebCUP totally designed three matching levels, i.e., to-
kens, sub-tokens, and sub-tokens without <con>. Therefore, the range of this feature is 0-3.
The fact behind it is that if none of the matching levels is reached, HebCUP cannot conduct
the substitution with its prepared replacement pairs, thus, the old comment will not be syn-
chronized at all. On the contrary, if there are more levels of matchings found, HebCUP will
have more chances to conduct the correct synchronization for old comments. More formally,
we define the MatchedLevelsNum as below:

MatchedLevelsNum = isMatchyy + isMatchy) + isMatchs), 9)

where isMatch(;) denotes whether the matching algorithm designed by HebCUP at the level
i is satisfied. If it is satisfied, return 1; otherwise, return 0.

e NonLetterCount: Ignoring the meaningless symbols in code, i.e., “.”, “<con>" and “@”, it
counts the number of non-letter sub-tokens® in the union set of respective distinctive sub-
token sets of the old and new code sequence. The intuition of this feature is that the more
non-letter sub-tokens in the changes between old and new code, the more difficulties for
HebCUP to sense the correct correspondences between code changes and comment changes.
More formally, the NonLetterCount can be defined as below:

NonLetterCount = CountNonLe”erToken((S/"'d -5y (5% - S/”d)) (10)

where §'¢¢ and $¢¢ denote the sets of sub-tokens in a new code sequence and an old code
sequence, respectively; CountnonLerterToken denotes the function of counting for non-letter
sub-tokens in a given set.

e LongestChangedSeq: It is the length of the longest continuous changed sub-sequence
in the code change sequence after ignoring the code edits whose si”d and s;Cd are both
meaningless symbols, i.e., “.”, “<con>" and “@”. The motivation of designing this feature is
that HebCUP has difficulty in finding the relationship between code changes and comment
changes when the length of the continuously changed code sub-sequence is long [50].

e TotalChangedNum: Ignoring the code edits whose sfd and s;Cd are both meaningless sym-

bols, i.e., %, “<con>" and “@”, it is the total number of code edits with non-equal actions in
a code change sequence:

TotalChangedNum = Nyepiace + Ninsert + Ndelete- (11)
3 A non-letter sub-token refers to the sub-token with characters apart from a-z and A-Z, such as “link1” and “&&”.
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Table 4. The Feature Values of the CCI Sample Shown in Listing 1

ReplaceRate MatchedLevelsNum NonLetterCount LongestChangedSeq TotalChangedNum
0.5 3 0 2 2

The principle behind this feature is that the more changed sub-tokens exist in the code
change sequence, the more difficulty for HebCUP to correctly replace the sub-tokens in old
comments when synchronizing [50].

To interpret our proposed features more clearly, we illustrate the CCI sample shown in Listing 1
as an example and list each feature value of the sample in Table 4. As can be seen, the Replac-
eRate value of the CCI sample is 0.5, because it contains one code edit with the “replace” action
among a total of two code edits with non-equal actions after ignoring the code edits whose sfd and
s;Cd are both meaningless symbols. The MatchedLevelsNum value is 3, because HebCUP can find
all matching levels of tokens, sub-tokens, and sub-tokens without <con> between code changes
and the old comment according to its program running result. The NonLetterCount value is 0, be-
cause there is no non-letter sub-token in the code change sequence after ignoring the meaningless
symbols. Both the LongestChangedSeq and TotalChangedNum values are 2, since the longest con-
tinuous changed sub-sequence and the total changed code edits are both {<“the”,this”,‘replace”>,
<“@”, “onos”, “insert”>} after ignoring the meaningless symbols.

Subsequently, we perform a series of statistical tests on the training set to further prove and
quantify the correlation between those features and the class label (i.e., either heuristic-prone
or non-heuristic-prone). Since the features we proposed are continuous variables and the class
label is a binary variable, we employ the Point-Biserial Correlation Coefficient (PBCC), a
measurement suitable for evaluating the correlation between a binary variable and a continuous
variable [48], to measure the degree of correlation between each feature and the class label. The
larger the absolute value of the correlation coefficient, the larger the degree of correlation, and
the sign of the correlation coefficient represents the positive or negative correlation. According to
Table 5, we find that ReplaceRate is the most relevant feature to discriminate heuristic-prone and
non-heuristic-prone samples, while TotalChangedNum is the least relevant feature, but still has
a relatively great correlation with the class label. In addition, since the distribution of features in
each category is unknown, we conduct a series of Mann-Whitney U tests [56] to evaluate whether
the correlation between features and the class label is statistically significant. In addition, we also
utilize the Benjamini-Hochberg (BH) procedure to adjust p-values because we perform multiple
independent tests, adjusting p-values with BH helps us to control for the fact that sometimes small
p-values (less than 0.05) happen by chance, which could lead us to incorrectly reject the true null
hypotheses [22]. As can be seen in Table 5, the last four features statistically significantly correlate
with the label at the significance threshold of 0.05, 0.01, 0.005, and 0.001, and the first feature sta-
tistically significantly correlate with the label at the significance threshold of 0.05, 0.01, and 0.005.
Figure 8 presents the training sample distribution of each category by violin plots among each
proposed feature, where the white point represents the median value, and the black box indicates
the interquartile range. Intuitively, heuristic-prone samples tend to have higher ReplaceRate and
MatchedLevelsNum values, while non-heuristic-prone samples generally have higher NonLetter-
Num, LongestChangedSeq, and TotalChangedNum values. The distribution of samples indicates
the intuitions behind our proposed features are correct.

4.5 Multi-Subsets Ensemble Learning

After labeling the samples and extracting the five features, the ith CCI sample for category predic-
tion can be represented as M; =(x;,y;), where x,-=(x}, xf e, x?) is a 5-dimensional feature vector,
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Table 5. The Description of Our Proposed Five Features

30:19

Features Description PBCC (p-value)
ReplaceRate Ratio of code .edits‘with the “replace” action among those with 03641 (2.51¢-3)
non-equal actions in a code change sequence.
Th f hing levels of H P th isfi
MatchedLevelsNum e number of matching levels of HebCUP that are satisfied by a 03510 (7.47¢-5)
CCI sample.
The number of non-letter sub-tokens in the union set of respective
NonLetterCount distinctive sub-token sets of the old and new code sequences. 03150 (5.61e-8)
LongestChangedSeq Length of the longest continuous changing sub-sequences between —0.2758 (1.14¢-6)
old and new code.
Total f its with non- 1 actions i
TotalChangedNum otal number of code edits with non-equal actions in a code —0.2617 (1.29¢-5)

change sequence.

®PBCC is the abbreviation of Point-Biserial Correlation Coefficient.
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Fig. 8. The distributions of heuristic-prone and non-heuristic-prone samples among each proposed feature.

and y; is its category. Then, the whole dataset of CCI samples can be represented as:

S={My,M,..., M)} (12)

where n is the number of samples in S. Since the dataset S contains more non-heuristic-prone
samples (i.e., the majority class samples) than heuristic-prone ones (i.e., the minority class samples)
as stated in the statistics of Section 4.3, the prediction model trained on the imbalanced dataset
will focus more on the non-heuristic-prone samples, and are prone to predict the testing samples
as non-heuristic-prone. However, accurately classifying the heuristic-prone samples is critical for
boosting the performance of our proposed CBS approach, because the comments of more samples
can be correctly synchronized by HebCUP. Inspired by Wu et al’s study [90], we propose a Multi-
Subsets Ensemble Learning (MSEL) algorithm to alleviate the class imbalance problem for category
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prediction. More formally, the MSEL algorithm can be defined as below:

9; = F(x;) (13)

where the ; denotes the predicted category via the MSEL algorithm for the sample x;, F is the
function describing the MSEL algorithm. Algorithm 1 lists the detailed process, and Figure 9 shows
the overall framework of the MSEL algorithm, which consists of two stages with multiple steps.

The offline training stage includes the two steps, i.e., Balanced Multi-Subsets Construction and
Ensemble Learning on Multi-Subsets.

e Balanced Multi-Subsets Construction: According to the ratio of the non-heuristic-prone
samples to the heuristic-prone ones, we set the number of constructed subsets to be K =
[NmajO,/Nmmor + 0.5J, where Np,qjor is the number of the majority class samples (i.e.,
non-heuristic-prone samples) and Ny, inor is the number of the minority class samples (i.e.,
heuristic-prone samples) (Line 2). Then, we randomly choose N,inor non-heuristic-prone
samples without replacement K — 1 times to obtain K — 1 chunks (Lines 4-5), and the remain-
ing non-heuristic-prone samples are used as the last chunk (Line 7). Therefore, the K chunks
are mutually exclusive, and each chunk, except for the last chunk,* contains the same num-
ber of non-heuristic-prone samples. Finally, we construct K balanced subsets by merging
each chunk with all heuristic-prone samples (Line 9).

e Ensemble Learning on Multi-Subsets: After constructing multiple balanced subsets, we train
a classifier hi on each subset Sy (Line 12). Therefore, we can obtain multiple trained base
classification models with heterogeneous decision boundaries.

For the online testing stage, with the input of the five features extracted from the testing sample
M;est, each base classification model returns its predicted category, which counts as one vote
(Lines 15-17). Finally, the MSEL algorithm counts the votes and assigns the category with the
most votes to My.s; (Line 18), thereby classifying for M.

5 EXPERIMENTS FOR CATEGORY PREDICTION

This section describes the experiments for category prediction, including the experimental setup,
evaluation metrics, and experimental results.

5.1 Experimental Setup

Since there is no previous study on the CCI sample category definition and classification, here we
adopt some widely used machine learning classifiers to plug in the MSEL algorithm as baselines
in this field. Specifically, we investigate the performance of the five machine learning classifiers,’
i.e,, Decision Tree [16], Random Forest [15], LightGBM [39], Naive Bayes [70], and Multi-Layer
Perceptron (MLP) [28] in this article, where their inputs are our proposed features introduced in
Section 4.4. Our adoption of these classifiers is inspired by a similar task of comment classifica-
tion, in which they have been proved to be effective [17, 63, 64, 95]. Besides, we also adopt Bi-
directional Long Short-Term Memory (Bi-LSTM) [32, 72] and Convolutional Neural Net-
work (CNN) [11] as extra classifiers to extract the semantics of code changes and old comments
directly in the category classification for CCI samples.°

41If the last chunk accounts for less than half the size of other chunks, it merges into the second last chunk, thus the last
chunk will be larger than other chunks; otherwise, we remain it intact, and the last chunk will be smaller compared with
other chunks.

SWe adopt sci-kit learn toolkit [65] to implement the Decision Tree, Random Forest, Naive Bayes, and Multi-Layer Percep-
tron. We adopt the official library [39] to implement Light GBM.

®We adopt TensorFlow [8] to implement the Bi-LSTM and CNN classifiers.
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Fig. 9. The overview of the Multi-Subsets Ensemble Learning (MSEL) algorithm.

More specifically, for the construction of the Bi-LSTM classifier, we use four embedding layers
to vectorize old code, new code, edit actions, and old comments, respectively. Then, the embedded
old code, new code, and edit actions of each sample are concatenated horizontally for alignment,
such that we can capture the code change semantics. Next, the Bi-LSTM network accepts the
embeddings of each pair of code change and its associated old comment, and inputs them into
their respective layers with two concatenated LSTMs (i.e., Bi-LSTM) for each. After horizontally
propagating the semantics of code change and old comment from the two directions, respectively,
their embeddings are concatenated together and go through a softmax layer to obtain the output
labels. Whereas for the construction of the CNN classifier, we replace the Bi-LSTM structures with
1-dimensional CNN structures in the Bi-LSTM classifier, and keep other structures with no change.

Given the labeled training and validation set as described in Section 4.3, we merge them together
as a mixed dataset, and employ the 10-fold cross-validation on it to evaluate each base classifier
embedded in the MSEL algorithm in terms of the metrics described in Section 5.2. The 10-fold cross-
validation divides the mixed dataset into 10 consecutive folds. Each fold (i.e., 8,941 samples) is
used once for evaluation while the remaining nine folds (i.e., 80,476 samples) are used for training,
thereby ensuring each fold is used as both the training and validation data. For the deep learning
classifiers in particular, we train the models with 50 epochs and randomly select 10% of data for
in-training-validation in each fold. Besides, we adopt an early stopping strategy that if the loss of
in-training-validation stops decreasing for three epochs, the model will stop training.

Since hyper-parameter tuning is essential in machine learning and deep learning experiments,
we generate candidated hyper-parameter settings (see Table 6 for details) according to a series
of relevant hyper-parameter optimization studies [27, 37, 42, 81, 94], and control the capacity of
them based on a given budget threshold (i.e., the tuneLength) for evaluation. The budget threshold
refers to the number of different values to be evaluated for each hyper-parameter. As suggested by
Kuhn [46], we use a budget threshold of 5. For each 10-fold cross-validation, we can only obtain an
evaluation result of one classifier with one hyper-parameter combination. As such, to explore the
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ALGORITHM 1: The MSEL Algorithm

Input: (1) The training set S;qin containing Ny,inor heuristic-prone samples and Ny, qjor non-
heuristic-prone samples; (2) A testing sample M;s;.
Output: The predicted category y;.s; of the testing sample M;s;.

1: /*offline training stage®/
2: Compute the number of subsets K = [Nmajor/Nmim,, + 0.5J;
3. fork =1to K do
4 if k < K then
5: chunky = the randomly chosen N,,i,or samples from the non-heuristic-prone samples
without replacement;
6. else
7 chunky = the rest of non-heuristic-prone samples;
8: end if
9:  Construct the kth subset S by merging chunk; and all heuristic-prone samples;
10: end for
11: fork =1toK do
12:  Train the base classifier h; on the subset Si;
13: end for
14: /*online testing stage*/
15: for k = 1to K do
16:  yk ., = The predicted category of M., by the base classifier hy;
17: end for
18: Majority voting among {y},,, Y2 ---» Ys,} to get the final prediction result of Myes;;
19: return The predicted category of Myes:;
Table 6. Hyper-Parameter Tuning for Category Prediction
Classifier HyperI;I}; Ezmeter Hyper-parameter Description Candidated Values
Naive Bayes var_smoothing For calculation stability. {0, 1e-9, 1e-7, le-5, le-3}
Random Forest max_depth The maximum depth of the tree. {7,9, 11, 13, 15}
n_estimators The number of trees in the forest. {50, 100, 150, 200, 250}
Decision Tree | max_depth The maximum depth of the tree. {7,9, 11, 13, 15}
max_depth The maximum depth of the tree. {7,9, 11, 13, 15}
LightGBM n_estimators The number of trees in the forest. {50, 100, 150, 200, 250}
learning_rate The boosting learning rate. {0.001, 0.005, 0.01, 0.05, 0.1}
MLP hidden_layer_sizes | The number of neurons in the hidden layer. | {32, 64, 128, 256, 512}
learning_rate_init | The initial learning rate used. {0.001, 0.005, 0.01, 0.05, 0.1}
Bi-LSTM units Dimensionality of the output space. {32, 64, 128, 256, 512}
learning_rate The initial learning rate used. {0.001, 0.005, 0.01, 0.05, 0.1}
kernel_size The length of the 1D convolution window | {1, 3, 5, 7, 9}
CNN filters Dimensionality of the output space. {32, 64, 128, 256, 512}

learning_rate

The initial learning rate used.

{0.001, 0.005, 0.01, 0.05, 0.1}

best hyper-parameter combination of each classifier and compare them with each other, we utilize
the grid search [14] such that we can conduct an exhaustive search through our manually specified
set of the hyper-parameter space [81]. The tuned classifier that obtains the best performance is
selected and plugged into the MSEL algorithm of CBS for online testing.
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Table 7. The Evaluation Metrics for Category Prediction

Predicted
Actual — —
heuristic-prone | non-heuristic-prone
heuristic-prone TP FP
non-heuristic-prone FN TN
Precision TP/(TP+FP)
Recall TP/(TP+FN)
F1 — Score 2 X Precision X Recall/(Precision + Recall)

5.2 Evaluation Metrics for Category Prediction

We employ Precision, Recall, and F1-Score to evaluate the effectiveness of the MSEL algorithm
with different base classifiers, and Table 7 lists the definitions of the metrics. In our experiment,
the heuristic-prone samples are regarded as positive, and the non-heuristic-prone samples are re-
garded as negative. In Table 7, TP (True Positive) is the number of heuristic-prone samples that
are correctly predicted to be heuristic-prone, FP (False Positive) is the number of non-heuristic-
prone samples that are wrongly predicted to be heuristic-prone, FN (False Negative) is the num-
ber of heuristic-prone samples that are wrongly predicted to be non-heuristic-prone, and TN (True
Negative) is the number of non-heuristic-prone samples that are correctly predicted to be non-
heuristic-prone.

Precision is the ratio of the correctly predicted heuristic-prone samples to all predicted
heuristic-prone samples.

Recall is the ratio of the correctly predicted heuristic-prone samples to all actual heuristic-prone
samples.

F1-Score is the harmonic mean of Precision and Recall.

Since the proportion of categories in each fold may vary more or less, we aggregate the TP/FP/
TN/FN instances across the 10 folds and then compute precision, recall, and F1-Score, rather than
computing these three metrics for each fold and then averaging them, thereby obtaining a more
accurate evaluation for each classifier.

5.3 Experimental Results

Table 8 presents the performance of the MSEL algorithm with different base classifiers, where the
hyper-parameters of these classifiers are fully tuned before conducting the comparison. The best
hyper-parameter combinations are listed in the last column. According to our observation, we
have the following findings:

(1) LightGBM performs best in terms of F1-Score. Besides, it also ranks second in terms of Recall
and ranks third in terms of Precision. This indicates that MSEL with LightGBM can reach the best
balance between increasing the true positive rate and decreasing the false positive rate.

(2) Naive Bayes performs the best in terms of Recall. However, its performance on Precision
and F1-Score are the lowest among seven classifiers. It indicates that the MSEL algorithm with the
Naive Bayes as the base classification model tends to predict the samples to be heuristic-prone,
which can recognize more heuristic-prone samples but with lots of false positives.

(3) CNN obtains the best performance on Precision, and the second best performance on F1-
Score. Nevertheless, it does not perform well on Recall comparing with other classifiers, where it
ranks sixth. This indicates that MSEL with CNN has the highest true positive rate but can classify
out relatively small number of true heuristic-prone samples.

(4) F1-Score is the harmonic mean of Precision and Recall, which is a more comprehensive
metric for the evaluation of category prediction for CCI samples. Therefore, although Naive Bayes
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Table 8. The Performance of the MSEL Algorithm with Different Base Classifiers Across the
10-fold Cross-validation

Classifier Precision Recall F1-Score Best Hyper-parameter Combination

Naive Bayes 47.69%  91.07%  62.60% {*var_smoothing”: 1e-9}

Random Forest  59.36% 88.89%  71.18% {“max_depth”: 13, “n_estimators”: 200}

Decision Tree 59.46%  88.68%  71.19% {*max_depth”: 15}

LightGBM 59.69%  90.57%  71.96% {“max_depth”: 11, “n_estimators”: 250, “learning_rate”:0.1}
MLP 56.77%  87.81%  68.96% {*hidden_layer_sizes”: 512, “learning_rate”:0.01}
Bi-LSTM 60.20% 85.36%  70.60% {“units”: 128, “learning_rate™:0.01}

CNN 61.00% 86.88% 71.68% {“filters”: 32, “kernel_size”:3, “learning_rate”:0.01}

performs better in terms of Recall, and CNN performs better in terms of Precision, LightGBM is
selected as the base classifier of the MSEL algorithm for its best performance in terms of F1-Score.

LightGBM embedded in the MSEL algorithm performs the best on the category prediction
for CCI samples. Thus, LightGBM is selected as the base classifier of the MSEL algorithm
in our CBS approach.

6 EXPERIMENTS FOR CODE-COMMENT SYNCHRONIZATION

In this section, we illustrate the experiments of code-comment synchronization, which contains
the experimental setup, evaluation metrics, and experimental results.

6.1 Experimental Setup

After evaluating and selecting the best base classifier, we re-train the MSEL algorithm on the whole
mixed dataset. Then the trained MSEL algorithm is applied to the testing set to conduct the cate-
gory prediction for CCI samples. Finally, with the HebCUP and trained CUP’, the CBS approach
can be constructed as a whole. In this section, we compare the performance of CBS, CUP, and
HebCUP on the testing set in terms of Accuracy, Recall@5, AED, RED, BLEU-4, and ESS ratio. As
such, we can explore whether the category prediction can further boost the code-comment syn-
chronization performance via the comprehensive assessment. Subsequently, we design a CBS-R
approach with random classification for all CCI samples, and make a comparison with CBS to
verify whether the effect of the category prediction model is significant. Finally, we further de-
vise a CBS-Max approach with completely correct classification for all CCI samples, and make a
comparison with CBS to report the maximum capability of the CBS approach.

6.2 Evaluation Metrics

As we mentioned above, we utilize Accuracy, Recall@5, AED, RED, BLEU-4, and ESS ratio as our
evaluation metrics to assess the performance of each model. The first five metrics are utilized by
the previous studies as we illustrated in the Section 3.2. The last metric, ESS ratio, is first proposed
in this paper to evaluate the ratio of samples whose edit distances are reduced after the code-
comment synchronization. These samples can be referred to as Effectively Synchronized Samples
(ESS) because their synchronized comments are closer to the reference comments, which can be
regarded as effective synchronizations. This metric measures the ratio of samples (i.e., code meth-
ods) that code-comment synchronizers can relieve the effort of developers, the higher, the better.
The difference between ESS Ratio and AED as well as RED is the measuring granularity, where

"Here we re-train the CUP with the same hyper-parameters and training strategies as recorded in its original paper [53].
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the former is on the sample-level while the latter two are on the sub-token-level. As the comple-
mentary metrics of AED and RED, ESS ratio can be formally defined as below, where N denotes
the total number of the samples, Nrp_qirf<o denotes the number of samples whose edit distances
are reduced.
NED_diff<o
N
Considering the existence of CUP in our proposed CBS approach, we run the experiment ten
times and report confidence interval (i + 0) at the confidence level of 95% for each of the metrics,?
because training for CUP has the randomness characteristic due to its deep learning-based struc-
ture, and we also hope to obtain a stable result. More formally, we show the computation of 1 and
0 as below, where p is the sample mean, 6 is the range around p that we estimated, y.g25(Ne — 1) is
the two-tails t distribution table value with the degrees of freedom of N, —1 at the confidence level
of 95%,° s is the sample standard deviation, N, is the number of experiments, and v; represents the
value of Accuracy, Recall@5, AED, RED, BLEU-4, or ESS ratio in the ith experiment.

ESS ratio = (14)

_ Ly, (15)
H= N, £ Vi,
s
0= t N, —-1), 16
i 0.025( ) (16)
N
1
s =\ N o7 2@ A (17)

i=1

6.3 Experimental Results

Visualizations: In Table 9, we list a detailed description for the performance of CBS. The rows of
HebCUP Side and CUP Side demonstrate their respective code-comment synchronization perfor-
mance on their assigned testing samples (i.e., samples predicted as heuristic-prone are piped into
the HebCUP side for code-comment synchronization while samples predicted as non-heuristic-
prone are piped into the CUP side). After combining the performance of HebCUP Side and CUP
Side, the final performance of CBS is displayed in the last row. Since we run the experiment ten
times to eliminate the randomness of CBS and CUP, we report the confidence interval as we men-
tioned in Section 6.2 for each evaluation metric. However, HebCUP need not be reported in this way
due to the heuristic characteristic. Table 10 presents the performance of CBS, CUP, and HebCUP
in terms of Accuracy, Recall@5, AED, RED, BLEU-4, and ESS ratio on the testing set also via con-
fidence intervals. In order to investigate whether the superiority of our proposed CBS approach
towards the two baselines is statistically significant, we conduct the Wilcoxon signed-rank test
[88] on the experiment results for each evaluation metric. We adopt Wilcoxon signed-rank test
because it is a paired difference test without the assumption that the paired samples are normally
distributed. Similarly, our comparisons between each approach and CBS are paired in each exper-
iment and their distributions are also unknown to us. In addition, we also utilize the Benjamini—
Hochberg (BH) procedure to adjust p-values for the same reason as we mentioned in Section 4.4
[22]. In Table 10, the performance value labeled with a star (*) indicates CBS statistically signifi-
cantly outperforms the baseline in terms of the corresponding metrics. Besides, the row of CBS-R
demonstrates the performance of CBS when the samples are randomly assigned, which is a lower

8The adoption of the confidence level at 95% is a follow of statistical convention [21, 44].
9We adopt t distribution to approximate the distribution of the repetitive experimental results of CBS because its population
distribution is unknown [13].
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Table 9. The Performance of Our Proposed CBS Approach on the Testing Set

Approach Accuracy (%) Recall@5 (%) AED RED BLEU-4  ESS ratio (%)
HebCUP Side 59.51[2062.00/3465] 60.72 2.050 0.729 81.77 69.52
CUP Side 8.83 £ 0.34[506.80 + 19.53/5739] 20.54 + 040  4.474+£0.045 1.018 £0.010 67.96 +£0.21  15.53 + 1.14
CBS 27.91 £ 0.21[2568.80 + 19.53/9204] 35.67 £0.25  3.561 £0.028 0.937 £ 0.007 73.16 +0.13  35.85 + 0.71

®The number of correct synchronizations are presented in square brackets via the format of “[ i + @/assigned testing

»

samples]”.

Table 10. The Performance of Our Proposed CBS Approach and Baselines on the Testing Set

Approach Accuracy (%) Recall@5 (%) AED RED BLEU-4 ESS ratio (%)
HebCUP 25.71[2367.00]* 26.39* 3.742* 0.985* 71.96* 31.99*
CUP 20.16 + 0.73[1855.90 + 67.03]* 32.28 £0.74"  3.606 = 0.050" 0.949 £ 0.013* 71.99 + 0.24* 28.30 + 1.21"
Ours

CBS-R 22.79 + 0.24[2094.40 + 11.05]* 29.12 £ 0.22"  3.676 + 0.021*  0.968 + 0.005° 71.80 + 0.01*  30.85 + 0.87"
CBS 27.91 + 0.21[2568.80 + 19.53] 35.67 + 0.25 3.561 + 0.028 0.937 +0.007 73.16 + 0.13 35.85 = 0.71

CBS-Max 30.88 + 0.09[2842 =+ 8.55/9204] 38.97 £ 0.31 3.378 £0.031  0.889 £0.008 75.51 +0.14  37.93 +0.74
W/T/L

- HebCUP 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0
- CUP 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0
- CBS-R 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0

®The number of correct synchronizations are presented in square brackets via the format of “[1 + ], where the
number of total testing samples is 9,204. Besides, *refers to the CBS outperforms the corresponding approach
statistically significantly and their p-values all equals to 1.95e-3 < 0.005.

limit customized by ourselves. And the row of CBS-Max presents the best performance that CBS
can reach when the categories of all samples can be correctly predicted. The rows of -HebCUP, -
CUP, -CBS-R under the W/T/L (Win/Tie/Loss) record how many experiments CBS obtains a win,
tie, and loss compared to CUP, HebCUP, and CBS-R in terms of each evaluation metric.

Results: We have the following findings from the Tables 9 and 10:

(1) According to Table 9, 3,465 (37.65%) samples are predicted to be heuristic-prone while 5,739
(62.35%) samples are predicted to be non-heuristic-prone by the MSEL algorithm among the whole
testing set of 9,204 samples in total. On the basis of the sample allocation results, HebCUP Side
achieves an average score of 59.51% in terms of Accuracy, 60.72% in terms of Recall@5, 2.050 in
terms of AED, 0.729 in terms of RED, 81.77 in terms of BLEU-4, and 69.52% in terms of ESS ratio on
the 3,465 predicted heuristic-prone samples, while CUP Side achieves an average score of 8.83%,
20.54%, 4.474, 1.018, 67.96, and 15.53% in terms of Accuracy, Recall@5, AED, RED, BLEU-4, and
ESS ratio on the 5,739 predicted non-heuristic-prone samples. Combining the above performance
of the two models, CBS finally achieves an average score of 27.91% in terms of Accuracy, 35.67%
in terms of Recall@5, 3.561 in terms of AED, 0.937 in terms of RED, 73.16 in terms of BLEU-4, and
35.85% in terms of ESS ratio.

(2) Similar to the experimental results on the validation set in Section 3.4, CUP still outperforms
HebCUP in terms of Recall@5, AED, RED, and BLEU-4, whereas HebCUP has its superiority in
terms of Accuracy and ESS ratio on the testing set as shown in Table 10.

(3) Comparing with the two baselines, CBS performs the best in terms of all evaluation metrics
as shown in Table 10. Specifically, CBS outperforms HebCUP by 8.53% in terms of Accuracy, 35.16%
in terms of Recall@5, 4.85% in terms of AED and RED, 1.67% in terms of BLEU-4, and 12.09% in
terms of ESS ratio. CBS also outperforms CUP by 38.41% in terms of Accuracy, 10.52% in terms of
Recall@5, 1.24% in terms of AED and RED, 1.62% in terms of BLEU-4, and 26.69% in terms of ESS
ratio.

(4) The row of CBS-R in Table 10 shows the performance of CBS with random category clas-
sification. We find that CBS outperforms CBS-R by 22.48% in terms of Accuracy, 22.50% in terms
of Recall@5, 3.12% in terms of AED and RED, 1.89% in terms of BLEU-4, and 16.20% in terms of
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ESS ratio. This demonstrates that the accurate category prediction is substantially significant to
CBS for code-comment synchronization. Besides, the row of CBS-Max in Table 10 shows the upper
limit of CBS. As can be seen, the Accuracy, Recall@5, BLEU-4, and ESS ratio of CBS can reach to
90.35%, 91.53%, 96.89%, 94.53% of those of CBS-Max. Both AED and RED values of CBS can reach
to 105.44% of those of CBS-Max.!?

(5) The row of -HebCUP, -CUP, and -CBS-R under W/T/L in Table 10 shows that CBS outper-
forms HebCUP, CUP, and CBS-R ten times in terms of all evaluation metrics. The Wilcoxon signed-
rank test also shows that CBS statistically significantly outperforms CUP, HebCUP, and CBS-R for
all evaluation metrics at the significance threshold of 0.05, 0.01, and 0.005, where the p-values for
each are all equal to 1.95¢-3.!

(1) CBS statistically significantly outperforms CUP and HebCUP in terms of all evaluation
metrics, because of the classifying before synchronizing strategy.

(2) The accurate category prediction is substantially significant to CBS for code-comment
synchronization.

7 FURTHER EXPLORATION FOR CBS

In this section, we propose a series of Research Questions (RQs) to further analyze the perfor-
mance of CBS.

7.1 RQ1: How Do Other Classifiers Influence the Performance of CBS?

Motivation: Although we have selected LightGBM as the base classifier of the MSEL algorithm
due to its achievement of the highest F1-Score under the 10-fold cross-validation, exploring the
performance of CBS with other classifiers is also necessary. Thus, we also list their corresponding
experimental results (reported by confidence intervals) in Table 12 to do further analysis. In ad-
dition, since the code-comment synchronization results depend heavily on the sample allocation
guided by the MSEL algorithm, we also present Table 11 to demonstrate the category prediction
results of the MSEL algorithm with different base classifiers on the testing set.

Results: According to Table 11, still, LightGBM embedded in MSEL performs better than other
classifiers in terms of F1-Score on the testing set, Naive Bayes achieves the highest Recall value.
Decision Tree substitutes CNN and performs best in terms of Precision. Except for the Bi-LSTM
and CNN, the performance of the rest of the classifiers is almost consistent with those under the
10-fold cross-validation. It is worth noting that, comparing with the 10-fold cross-validation, the
performance of Bi-LSTM and CNN drops a lot on the testing set. Thus, we infer that the patterns
learned by Bi-LSTM and CNN directly from code changes and old comments do not match those
in the test set, leading to the overfitting of these two models. The unmatched pattern learned may
attribute to the difficulty in directly learning on the raw data, which is not intuitive enough to
capture the differences between heuristic and non-heuristic samples, especially compared with our
proposed features. On the contrary, other classifiers exploit our proposed features can intuitively

0The ratio here exceeds 100% because, as we mentioned in Section 3.2, for RED and AED, the smaller, the better.
105.44%=0.937/0.889 (i.e., the RED of CBS/the RED of CBS-Max, taking RED an example), which illustrates CBS-Max is
better than CBS in terms of RED and AED.

"The p-values are the same here because Wilcoxon signed-rank test only takes into account the signs of the differences
of values of every pair of data, and it does not take into account how large is such a difference. In our comparison, CBS
outperforms each of the other approaches on all evaluation metrics, and each experiment, thus the p-values via Wilcoxon
signed-rank test are the same.
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Table 11. The Category Prediction Results of the
MSEL Algorithm with Different Base Classifiers on
the Testing Set

Classifier Precision Recall F1-Score
Naive Bayes 49.78% 89.17%  63.89%
Random Forest 59.50% 86.07% 70.36%
Decision Tree 59.87% 85.77% 70.52%

LightGBM 59.51% 87.11%  70.71%
MLP 59.57% 83.79% 69.64%
Bi-LSTM 49.73% 68.85% 57.74%
CNN 53.24% 70.45% 60.65%

Table 12. The Code-comment Synchronization Performance of CBS with Different Base
Classifiers on the Testing Set

Classifier Accuracy (%) Recall@5 (%) AED RED BLEU-4 ESS Ratio (%)
Naive Bayes 27.57 £ 0.22[2537.20 + 20.04] 34.65 £ 0.25 3.625 £ 0.028  0.954 +0.007  72.65 + 0.14 35.62 £ 0.71
Random Forest 27.79 + 0.24[2557.60 + 22.16] 35.61 £0.28 3.563 £0.028  0.938 + 0.007  73.19 £ 0.13 35.70 £ 0.73
Decision Tree 27.77 + 0.21[2555.70 + 19.15] 35.58 £ 0.27 3.580 +£0.029  0.942 +0.008  73.01 +0.14 35.77 £ 0.72

LightGBM 27.90 + 0.21[2567.80 + 19.53]  35.67 £ 0.25 3.562 + 0.028 0.937 + 0.007 73.16 +0.13 35.85 + 0.71
MLP 27.69 + 0.23[2549.00 + 21.50] 35.49 £ 0.26 3.564 £ 0.030  0.938 £ 0.008  73.15 + 0.14 35.62 £ 0.72
Bi-LSTM 25.47 + 0.24[2344.60 + 22.27] 33.71 £ 0.27 3.567 £0.027  0.939 £0.007  72.79 £ 0.12 32.89 £0.72
CNN 25.70 + 0.22[2366.10 + 20.70] 34.05 £ 0.27 3.564 +£0.031  0.938 £ 0.008  72.84 +0.13 32.77 £0.73

®The performance on each metric is recorded via confidence interval ( + ) as introduced in Section 6.2, and the
number of correct synchronizations are presented in square brackets, where the number of total testing samples is 9,204.

learn the differences between heuristic and non-heuristic samples, where their learned patterns
can also be easily generalized to the unseen data.

On the other hand, as shown in Table 12, using LightGBM as the base classifier of the MSEL
algorithm makes CBS perform best in terms of all evaluation metrics. We can also observe that
the performance of CBS is approximately positively related with the F1-Score of category predic-
tion models, which further indicates that CBS choosing the classifier with the highest F1-Score to
embed in MSEL is reasonable.

In addition, as shown in Tables 10 and 12, CBS with all base classifiers, except for Naive Bayes,
Bi-LSTM, and CNN, outperforms HebCUP and CUP in terms of all evaluation metrics. Even for
using Naive Bayes as the base classification model, CBS still performs better than CUP and HebCUP
in terms of Accuracy, Recall@5, BLEU-4, and ESS ratio. Besides, although Bi-LSTM and CNN do
not exploit our proposed features, adopting them in CBS still outperforms HebCUP and CUP on
Recall@5, BLEU-4, AED, RED and ESS ratio. Above results indicate that as long as the classifier
embedded in the MSEL algorithm has some ability in the category prediction for CCI samples, CBS
is definitely able to further boost the performance of code-comment synchronization.

7.2 RQ2: How Does the Multi-Subset Ensemble Learning (MSEL) Influence the
Performance of CBS?

Motivation: In this study, we propose a Multi-Subsets Ensemble Learning (MSEL) algorithm
to alleviate the class imbalance problem in the category prediction for CCI samples. The class
imbalance problem would result in lots of actual heuristic-prone samples being predicted to be
non-heuristic-prone due to their low percentage (around 23%-25% shown in Table 3) in the over-
all dataset, thus causing a great loss on the accurate code-comment synchronization of our CBS
approach. Therefore, we validate the effectiveness of the MSEL algorithm in this subsection.
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Table 13. The Experimental Results for Exploring the Effect of MSEL Algorithm

(A) The Category Prediction Result with/without MSEL Algorithm

Structure Precision Recall F1-Score

The individual LightGBM 74.05%(1527/2062) 64.51%(1527/2367) 68.95%

MSEL With LightGBM 59.51%(2062/3465) 87.11%(2062/2367) 70.71%

(B) The Code-Comment Synchronization Results of CBS with/without MSEL Algorithm

Structure Accuracy (%) Recall@5 (%) AED RED BLEU-4 ESS Ratio (%)
CBS without MSEL 25.49 + 0.25[2346.1 + 22.89] 34.55+0.39 3.510 £ 0.035 0.924 +£0.009 73.38 £0.16 33.26 + 0.83
CBS with MSEL 27.90 + 0.21[2567.80 + 19.53] 35.67 £ 0.25 3.562 +0.028  0.937 £ 0.007  73.16 £ 0.13  35.85 + 0.71

®The performance on each metric in (B) is recorded via confidence interval (¢ + 0) as introduced in Section 6.2, and
the number of correct synchronizations are presented in square brackets, where the number of total testing samples
is 9,204.

Results: Table 13(a) presents the category prediction results of MSEL with LightGBM and the
individual LightGBM algorithm on the testing set. As can be seen, using the multi-subsets ensem-
ble learning strategy can largely improve the Recall value (up to 87.11%), which indicates that
many more actual heuristic-prone samples (35.03% higher than using the individual LightGBM
algorithm) can be found and assigned to HebCUP for correct synchronization. Although the Pre-
cision value decreases by 19.64%, the values of Recall and F1-score increase by 35.03% and 2.55%,
respectively. It indicates that using the MSEL algorithm contributes to the overall performance
improvement of category prediction for CCI samples.

Table 13(b) presents the code-comment synchronization results (reported by confidence inter-
vals) of CBS with and without MSEL on the testing set. Despite the certain loss in terms of AED,
RED (losses by 1.46%), and BLEU-4 (losses by 0.30%), CBS with MSEL outperforms that without
MSEL in terms of Accuracy (improves by 9.49%), Recall@5 (improves by 3.23%), and ESS ratio (im-
proves by 7.79%), showing that utilizing the MSEL algorithm can largely improve the success rate
of correct synchronizations within both the first and five attempts. Simultaneously, the improve-
ment on ESS ratio demonstrates the synchronized comments of more CCI samples become closer
to their references. The difference of performance between CBS with and without MSEL originates
from the sample allocation guided by the category prediction model. More specifically, despite the
high precision, the CBS approach without MSEL finds fewer actual heuristic-prone samples (1,527
of 2,367 in total), leading to most of samples being assigned to and handled by CUP Side. As such,
CUP Side dominates the CBS framework and exhibits its advantages of the generalization capa-
bility on the large proportion of the total samples, thereby achieving better performance in terms
of AED, RED, and BLEU-4. However, since HebCUP Side only conducts the synchronization on a
small part of samples, it contributes little to Accuracy, which further declines its contribution on
Recall@5. Similarly, the ESS ratio drops due to the same reason. Thus, the CBS approach without
MSEL does not perform well on these three metrics. On the contrary, although with relatively
low precision, the CBS approach with MSEL identifies most of the actual heuristic-prone samples
(2,062 of 2,367 in total), thus causing an opposite result compared with the CBS without MSEL.

In addition, we find that CBS without MSEL performs worse than HebCUP by 0.89% in terms of
Accuracy, while CBS with MSEL statistically significantly outperforms CUP and HebCUP in terms
of all evaluation metrics as we mentioned in Section 6.3. We further conduct the Wilcoxon signed-
rank test [88] with Benjamini-Hochberg (BH) for p-value adjustment [22] to analyze whether
there is a statistically significant difference between CBS without MSEL and the two baselines. The
results show that the performance superiority of HebCUP against CBS without MSEL in terms of
Accuracy is not statistically significant, where the p-value is 0.084 > 0.05. Yet, CBS without MSEL
statistically significantly outperforms CUP and HebCUP in terms of all other metrics, where the
p-values are all equal to 1.95e-3 < 0.05. Since both approaches achieve better performance compared
with the state-of-the-art baselines, we recommend practitioners to adopt the MSEL algorithm in
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Table 14. Top Performing Feature Set of Each Level Evaluated Via 10-fold Cross-validation

Level Feature Set Precision Recall F1-Score
1 MatchedLevelsNum 40.73% 100% 57.89%
2 MatchedLevelsNum; TotalChangedNum 55.82%  89.46%  68.75%
3 ReplaceRate; MatchedLevelsNum; TotalChangedNum 58.14% 90.02%  70.65%
4 ReplaceRate; MatchedLevelsNum; LongestChangedSeq; 5921% 9021%  71.49%

TotalChangedNum
ReplaceRate; MatchedLevelsNum; NonLetterCount;
LongestChangedSeq; TotalChangedNum

59.69% 90.57%  71.96%

Precision Recall F1 Score
1.00
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0.96

0.94
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Fig. 10. The category prediction results on each evaluation metric among different feature levels.

CBS approach when they prefer more correct and effective synchronizations. On the contrary, if
they prefer the CBS approach to be more generalized on CCI samples, they had better adopt the
MSEL-free version of our CBS approach.

7.3 RQ3: How Do the Proposed Features Influence the Performance of CBS?

Motivation: We propose five original features, which we adopt in the MSEL algorithm with
lightGBM, and obtain the best category prediction performance. Nevertheless, since different fea-
tures have their heterogeneous characteristics of different degrees, and different combinations
among these features will produce various performance on category prediction and further affect
the code-comment synchronization results. Therefore, we investigate the impact of our proposed
five features on CCI sample category prediction and code-comment synchronization.

Results: There are in total 31(= Ci + C2 + C: + Ci + C7) different feature combinations.
For each one, we first conduct the 10-fold cross-validation experiment on the mixed dataset
(i.e., training set + validation set) to evaluate its performance on the CCI sample category
prediction. To simplify the experimental analysis, we partition the 31 feature combinations to
five levels of feature sets (i.e., from level-1 with one feature to level-5 with five features).
Next, the best performing (evaluated by F1-Score) feature combination among each level is
selected for further comparison: {level-1: MatchedLevelsNum; level-2: MatchedLevelsNum,
TotalChangedNum; level-3: ReplaceRate, MatchedLevelsNum, TotalChangedNum; level-4:
ReplaceRate, MatchedLevelsNum, LongestChangedSeq, TotalChangedNum; level-5: Repl-
aceRate, MatchedLevelsNum, NonLetterCount, LongestChangedSeq, TotalChangedNum}, as
shown in Table 14. This step cannot be conducted directly on the testing set because before the
real comparison among the five groups, we hope to keep the testing set unseen to us.

Hereon, we narrow down the comparisons between feature combinations from 31 groups to
5 groups. Then, we adopt each selected feature combination of each level to experiment on the
testing set for CCI sample category prediction, and present Figure 10 to display the variation of
category prediction results with different levels of feature sets. We can find that CBS on feature
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Fig. 11. The code-comment synchronization performance on each evaluation metric among different feature
levels.

set level-4 performs the best in terms of Precision (59.67%), CBS on feature set level-1 performs
the best in terms of Recall (100%), and CBS on feature set level-5 performs best in terms of F1-
Score (70.71%). The feature set level-1 only includes MatchedLevelsNum, and CBS trained on
this feature can recognize all actual heuristic-prone samples, thus achieves the score of 100% on
Recall, but with very low Precision as introduced in Section 4.4. Afterward, with considering more
and more features, decision boundaries of classification gradually become rigorous, leading to an
increasing trend of the Precision and F1-Score.

Finally, we present the code-comment synchronization results of CBS with different feature
combinations on the testing set in Figure 11. We find that (1) CBS with the feature set level-1
achieves the best performance in terms of Accuracy (28.42%) and ESS ratio (36.84%) on average
but performs the worst in other metrics. Due to its extremely unbalanced performance on differ-
ent evaluation metrics, we do not recommend adopting only one feature for category prediction
in our CBS approach; (2) CBS with the feature set level-3 performs the best in terms of Recall@5
(35.72%) on average, and ranks the second in terms of Accuracy (28.07%) and ESS ratio (36.08%).
Besides, it ranks the third on RED (0.941), AED (3.574), and BLEU-4 (73.08). (3) CBS with the fea-
ture set level-5, on average, performs the best in terms of RED (0.937), AED (3.562), and BLEU-4
(73.16), ranks the second in terms of Recall@5 (35.67%), and ranks the third in terms of Accuracy
(27.90%) and ESS ratio (35.85%). The different superiority between CBS with the feature sets level-
3 and level-5 is due to their different performance in the category prediction for CCI samples.
Firstly, both feature sets achieve quite high performance on F1-Score, ranking second (70.66%) and
best (70.71%), respectively. Besides, if we do not consider the feature set level-1, CBS with the
feature set level-3 achieves the highest performance on Recall (88.31%), which causes relatively
more actual heuristic-prone samples to be allocated to HebCUP Side. Therefore, in the subsequent
code-comment synchronization, CBS with the feature set level-3 achieves higher performance in
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Table 15. The Examples where CBS Fails

1D Code Change Comments
Project: plutext/docx4j
Commit ID: 3151c¢d20c677418e5¢5f4f0a3b9bc05ce7fc3611 Old: Gets the value of the value property.

- public String getValue() { New: Gets the value of the appearance property.
1+ public AppearanceType getAppearance() { HebCUP: Gets the of the Appearance property.
return value; CUP: Gets the value of the appearance property.
+ return appearance; CBS: Gets the of the Appearance property.

}
Project: OpenGamma/Strata
Commit ID: 09358e034d05edb45dd6872234b56964d1b46701 Old Comment: Gets the price that was traded, in decimal form.

- public double getPrice() { New Comment: Gets the price that was traded, together with the trade date, optional.
2+ public Optional<TradedPrice> getTradedPrice() { HebCUP: Gets the that was traded, .
return price; CUP: Gets the price that was traded, .
+ return Optional.ofNullable(tradedPrice); CBS: Gets the price that was traded,

}

terms of Accuracy and ESS ratio, where a large amount of correctly synchronized samples fur-
ther contributes to Recall@5 and makes it higher. CBS with the feature set level-5 performs better
in terms of Precision (59.51%) but with lower Recall (87.11%), compared with feature set level-3.
Therefore, relatively more samples are allocated to CUP Side for code-comment synchronization,
and the higher RED, AED, and BLEU-4 are achieved. However, since HebCUP Side only synchro-
nizes a small part of samples in this case, it contributes little to ESS ratio and Accuracy, which
further declines its contribution to Recall@5.

In summary, we recommend practitioners to select appropriate features according to their pref-
erences when utilizing our CBS approach on the code-comment synchronization. If they prefer
more correct and effective synchronizations, they can adopt {ReplaceRate, MatchedLevelsNum,
TotalChnagedNum} to train the category classification model in CBS; while if they prefer the ap-
proach with a better generalization capability, they had better choose all five features.

8 DISCUSSION

This section discusses the situations CBS may fail and implications of improving code-comment
synchronization via category prediction of CCI samples.

8.1 Where Does CBS Fail

Based on our analysis on the experimental results of CBS, we find it fails in two situations, i.e.,
(1) misclassification, and (2) even correctly classified, CUP side may not be able to conduct the
correct synchronization. We present Table 15 with two samples to illustrate the above situations,
where tokens to be deleted in old code or old comments are highlighted in red, tokens to be added
or correctly updated are highlighted in green, and tokens that are wrongly updated are highlighted
in orange.

Sample 1 is one of the failed examples induced by misclassification. This sample is non-heuristic-
prone, but with a high ReplaceRate (0.75) and MatchedLevelsNum (3), meanwhile, with relatively
small values for NonLetterCount (0), LongestChangedSeq (2), and TotalChangedNum (3). Thus, it
is undoubtedly predicted as heuristic-prone and allocated to HebCUP Side to handle. As one of the
potential reasons, the misclassification can be summarized as a lack of discriminative features, the
currently proposed features cannot cover all samples’ characteristics, thus fails on some of them.
On the other hand, this sample also exposes one of the weaknesses of HebCUP. It has difficulties
conducting correct synchronizations when the replacement pairs cover the tokens that do not need
to be updated in old comments. For example, the replacement pair found by HebCUP in this sam-
ple is key: “value” and value: “Appearance”. However, there are two tokens of “value” in the old
comment, where the first one should be kept intact, and the second one should be updated. In this
case, HebCUP cannot tell and uniformly replaced them with “Appearance”.
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Fundamentally, the second situation can be attributed to the difficulties for some of the
CCI samples that the current code-comment synchronizers cannot handle. As we mentioned in
Section 4.3, we partition the samples into heuristic-prone and non-heuristic-prone according to
the code-comment synchronization results of HebCUP. Thus, in category prediction, samples that
cannot be correctly synchronized by HebCUP are almost allocated to CUP, where though CUP
has a more powerful generalization capability than HebCUP, there is still a great number of them
that are hard to be correctly synchronized via CUP. As such, the failure of the second situation
occurs. For example, the reference comment (i.e., new comment) in Sample 2 has a series of tokens
(e.g., “together”, “with”, “the”, “trade”, and “date”) that are not shown in both old and new code.
Thus, it is hard to infer the correct synchronization for the old comment, even for CUP with rel-
atively powerful generalization capability. When we refer to the file associated with this sample,
we find “tradedPrice” in the new code is an object of class “TradedPrice” which extends the class
“Optional” and has two values, the one is “tradeDate,” and the other one is “price”. Therefore, CCI
samples like this are nearly impossible for current state-of-the-art code-comment synchronizers
to handle successfully due to the unseen information outside the method. Therefore, combining
context information may be a potential solution for these tricky samples.

8.2 Implications

Implications for professionals: As we mentioned in Section 1, inconsistent or obsolete com-
ments (i.e., bad comments) are enormous risks during the program development and code main-
tenance, which may inject unintended bugs and hinder program comprehension. On the other
hand, such kinds of bad comments are always ignored by developers and manually modifying
them is a labor-intensive work. Hence, accurately and efficiently synchronizing comments with
code changes in an automatic manner has become vitally important. However, CCI samples in
practice are complicated. For example, some change contents in comments are not shown in the
corresponding code changes, such cases (e.g., Sample 1 in Figure 7) indeed are hard to design hand-
crafted rules to cover. Whereas other samples may have obvious replacement pairs between old
and new code, but due to some interference factors (e.g., high-frequency tokens [24, 85, 96]), those
deep learning-based approaches may fail to conduct the correct synchronization (e.g., Sample 2 in
Figure 7). Instead, heuristic-based approaches can easily handle them. To this end, this article pro-
vides a potential solution, which is classifying CCI samples before synchronizing them with code
changes.

In practice, professionals can leverage both the deep learning-based (i.e., CUP) and heuristic-
based approach (i.e., HebCUP) in code-comment synchronization via a category prediction for
each CCI sample in advance. On the other hand, the classification is based on a machine learning
model (i.e., lightGBM) and our proposed five features, thus, the classification is also very efficient.
According to our statistics on the 9,204 testing samples, the category prediction costs each of
them only 0.063 seconds at most, showing that the category prediction phase can be totally trans-
parent for professionals. However, as presented in this article, the performance of code-comment
synchronization can be largely boosted. Therefore, we claim that it is substantially beneficial for
professionals to adopt CBS for code-comment synchronization in their program development and
maintenance.

Implications for researchers: In this article, CUP and HebCUP are combined via category pre-
diction, and the extensive experiment results have proved the effectiveness of such a combination
that relies on the prediction for model proneness of CCI samples. Therefore, as the first attempt,
this work testifies the feasibility of a new direction that is different from improving a single general
model in code-comment synchronization field. To this end, this article can be seen as a footstone
and vitally important, because its methodology can be further popularized and iterated with the
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development of the code-comment synchronization field. For example, with more and more code-
comment synchronizers proposed in the future, the CCI samples can be further subdivided and
continue to improve the performance via multi-categorical classification and combination.

On the other hand, based on our definition and partition of heuristic-prone and non-heuristic-
prone samples, designing models for samples of specific categories became actionable and promis-
ing to further improve the performance. For example, CCI samples whose comment change con-
tents are not shown in the code changes are tough to handle even for current deep learning ap-
proaches, i.e., CUP, as we mentioned in Section 8.1. Therefore, the proposal of solutions for such
samples can be a way forward in the field of code-comment synchronization, such as combining
the context information around the code change snippets.

Finally, as we always highlight in this article, promoting the performance of category prediction
is also a helpful research direction. One of the most promising perspectives is exploring more dis-
criminative features to differentiate between categories because such a perspective can effectively
improve the classification results while ensuring the efficiency of code-comment synchronization.

9 THREATS TO VALIDITY

In this section, we clarify the threats to internal, external, and construct validity.

9.1 Internal Validity

Similar to a vast number of studies [17, 34, 41, 51, 100], the implementation for approaches and
evaluation metrics can be one of the threats to the internal validity in this article. For baselines
replication, we directly used the source code published in their original papers. For the implemen-
tation of the evaluation metrics that appeared in baselines, we adopted Lin et al’s [50] code to
implement Accuracy and Recall@5, since the case and punctuation marks in the comments in-
deed do not affect developers’ comprehension to code comments. Then, we adopted Liu et al’s
[53] code to implement AED, RED, and BLEU-4 except we ignored the case, since Lin et al. [50] did
not publish the source code of these metrics. Besides, to reduce the threats of the implementation
of our proposals (e.g., CBS framework and ESS Ratio), we double-checked and carefully tested the
code. Besides, we also published the whole project of CBS to enable other researchers to replicate
and extend our work. Therefore, the threat of implementation is limited.

On the other hand, artifacts adopted in this article may be another threat to the internal validity,
which is also referred to as instrumentation threats [9]. We adopted a series of third-party tools
across the whole work, such as TensorFlow [8] and sci-kit learn toolkit [65] for model construction,
and the diff tool [4] for code change alignment. Since the above artifacts are continuously tested
and widely used in both academia and industries, we believe the threats of instrumentation to the
internal validity can be minimized.

Besides, CCI samples with relatively large comment changes were filtered out by Liu et al. [53]
because they argued that these filtered samples should be handled by code summarization mod-
els to generate new comments instead of code-comment synchronization models. However, the
filtering criterion was based on their experience, leading to the adopted dataset may not cover all
the code-comment synchronization situations, thus, the selection of CCI samples may affect the
internal validity.

Last but not least, due to the restriction of time and computation resources, the tuning scopes
of hyper-parameters for base classifiers in this article are limited. Thus, other hyper-parameter
settings of lighGBM or other classifiers may yield better results, which may become one of the
threats to internal validity.
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9.2 External Validity

Threats to external validity focus on the experimental dataset used in this work. The dataset is
only built from Java repositories and consists of comments only in the granularity of the method
level, which may not be representative of all programming languages and comment types. Never-
theless, Java is undoubtedly one of the most universal and popular programming languages, while
method comments are also widely studied and referred to by researchers in other fields of program
comprehension, such as comment generation [33, 34, 47, 93] and comment classification [63, 64].
In addition, the dataset is extracted from the 1,496 popular Github repositories, which reflects a
relatively strong representation of this dataset. On the other hand, our proposed CBS approach
is also language-agnostic and can be easily applied to projects of other programming languages.
Therefore, there is little threat to external validity.

9.3 Construct Validity

Threats to construct validity are related to the adoption of the evaluation metrics. In this paper, we
employ Accuracy, Recall@5, AED, RED, BLEU-4, and ESS ratio to evaluate the performance of code-
comment synchronization approaches. The first five metrics are summarized from the works of Liu
and Lin et al. [50, 53] whereas the last one is proposed in this work as complementation. Accuracy
and Recall@5 evaluate to what extent an approach can synchronize comments correctly. AED and
RED measure the average edits that developers need to perform to correctly update comment after
using the code-comment synchronizers. ESS ratio is a complementary metric for AED and RED,
which measures the ratio of samples whose edit distances are reduced after the synchronization.
BLEU-4 is an evaluation metric widely used in machine translation tasks [31, 66, 83, 99] and related
software engineering studies [10, 33, 34, 74], which can provide us with an effective measurement
of comment quality that is generated by code-comment synchronization approaches. Although
these automated evaluation metrics cannot perfectly represent the human judgment, they can
provide the quick and quantitative assessment of code-comment synchronization approaches.

10 RELATED WORK

In this section, we firstly discuss prior works related to code-comment synchronization, includ-
ing code summarization, comment classification, and inconsistent comment detection. Then, we
introduce previous studies on code-comment synchronization itself.

10.1 Code Summarization

Code summarization (a.k.a. comment generation) aims to generate a natural language description
of source code for code comprehension [29, 55, 69]. In recent years, more and more researchers
have devoted themselves to this field, and proposed many automatic code summarization ap-
proaches [12, 33, 34, 49, 54, 84, 89, 93]. Iyer et al. [36] for the first time proposed a deep learn-
ing method to summarize C# code snippets and SQL queries. Hu et al. [33, 34] and LeClair et al.
[47] argued that the structure information of source code should be considered. The former pro-
posed a Structural-Based Traversal (SBT) method to convert the Abstract Syntax Tree (AST)
into a specially formatted sequence, while the latter proposed to adopt Graph Neural Network
(GNN) to extract the local semantic information from the AST. Ahmad et al. [10] improved the
performance of code summarization models by using Transformer rather than Recurrent Neu-
ral Network (RNN) to capture the long-range dependencies between code tokens. Zhang et al.
[96] and WEei et al. [86] proposed to combine retrieval-based and deep learning-based methods to
generate code comments. The former retrieved the two most similar source code to the target sam-
ple from the training set to assist the prediction of the neural model, while the latter retrieved the
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comment of the most similar source code as an exemplar to guide the neural model to output a more
accurate comment. Chen et al. [17] proposed to firstly predict the comment category of source
code, and then choose the most suitable code summarization models for inferred categories to
generate code comments. Both code summarization and code-comment synchronization focus on
facilitating the program comprehension for developers, but the former generates code comments
from scratch, targeting code snippets without any comments. However, the latter synchronizes
pre-existing comments with corresponding code changes [53].

10.2 Comment Classification

Besides the source code, code comments have been considered as the most essential software arti-
facts for program comprehension and maintenance [20, 25, 26, 71]. Nevertheless, comments with
different characteristics have different goals and target audiences, and analyzing comments in a
single manner hinders the empirical understanding of both comments and associated code [63, 64].
Researchers have proposed to classify code comments into different categories to help developers
comprehend the source code better [58, 63, 64, 67, 82, 95, 97]. Haouari et al. [30] proposed the tax-
onomy of comments and used it to conduct their analysis based on 39 programmer subjects and
three open-source projects. Steidel et al. [75] adopted machine learning methods to classify com-
ments into seven categories, and further analyze and evaluate the quality of code comments. Zhai
et al. [95] constructed a comprehensive comment taxonomy to classify comments into appropriate
perspectives and granularity levels. In summary, despite the fact that comment classification has
been proposed for many years and extensively applied in various fields of software engineering,
classification for CCI samples has not been investigated yet. To the best of our knowledge, we are
the first work to analyse the categories of CCI samples and their application in code-comment
synchronization.

10.3 Inconsistent Comment Detection

Researchers have investigated the inconsistent comment detection to improve software maintain-
ability and reduce bugs when code-comment evolves [51, 59, 68, 76, 77, 79, 80, 98]. Seminal works
in this field are conducted by Tan et al. [77-79]. They first proposed an inconsistent comment de-
tection approach named iComment [77], which combined Natural Language Processing (NLP),
machine learning, and program analysis techniques. In the follow-up works, they investigated the
detection of code-comment inconsistencies concerning the specific concepts of lock mechanism
[78], function calls [78], and concurrency related interrupts [79]. Stulova et al. [76] designed a
technique and a tool, upDoc, which built a map between the code and its comment, ensuring that
changes in the code match the changes in the respective comment. Liu et al. [51] proposed a ma-
chine learning-based method to check whether the comments should be changed with the code
evolution. In addition, Cimasa et al. [18] adopted word embedding techniques to detect the incoher-
ence between source code and their associated comment. Their extensive experiments demonstrate
their method is more efficient in terms of execution time while maintaining performance very close
to the baseline. Moreover, Corazza et al. [19] created a publicly available Java dataset consisting
of 3,636 methods in three open-source software applications to investigate coherence between
the source code and associated comments. Besides, their adoption of Support Vector Machine
(SVM) with tf-idf has also been proved to be effective in code-comment incoherence detection. The
above-mentioned studies focus on code-comment inconsistency detection, while code-comment
synchronization aims to automatically synchronize comments when the associated code changes,
thereby avoiding the introduction of inconsistent comments.
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10.4 Code-Comment Synchronization

Code-comment synchronization is an emerging research field started from the year of 2020. Until
now, a total of three works [50, 53, 60] have been conducted to solve the research problem. Liu
et al. [53] and Panthaplackel et al. [60] almost simultaneously for the first time proposed their
own solution for code-comment synchronization with the code evolution. The former proposed
an LSTM-based NMT model, which integrates the information from the old code, new code, and
old comments to predict the corresponding new comments; while the latter proposed a similar
GRU-based NMT model. Subsequently, Lin et al. [50] proposed HebCUP, for which they designed
a series of heuristic rules to perform the token-level replacements based on old comments. Since
Panthaplackel et al’s [60] approach can only synchronize the comments of the functions with
return statements, and their proposed heuristic features incorporated in their approach cannot
apply to other kinds of functions, which causes that their approach is not generalized enough and
applicable as the complementary of HebCUP and hard to compare with other approaches under
the same criteria. Therefore, in our work, we only try to combine CUP and HebCUP to improve
the code-comment synchronization performance.

11 CONCLUSION

In this paper, we investigate the performance of two state-of-the-art code-comment synchroniza-
tion approaches, i.e., the deep learning-based CUP and the heuristic-based HebCUP on the unified
evaluation criteria. We find that the two approaches of different mechanisms have their heteroge-
neous characteristics and are prone to accurately synchronize different kinds of Code-Comment
Inconsistent (CCI) samples. Motivated by this finding, we define two categories (i.e., heuristic-
prone and non-heuristic-prone) for the CCI samples and propose five features to assist category
prediction. Then, we propose a composite approach named CBS, which combines the advantages
of CUP and HebCUP. CBS firstly constructs a Multi-Subsets Ensemble Learning (MSEL) classifica-
tion model based on the training samples. Then, CBS employs the trained MSEL model to predict
whether the new CCI sample can be successfully handled by HebCUP (i.e., the predicted category
of the sample is heuristic-prone). If so, CBS allocates the sample to HebCUP to conduct the code-
comment synchronization; otherwise, the sample is assigned to CUP. The experimental results
show that our composite approach CBS outperforms CUP and HebCUP that do not consider the
category prediction for CCI samples by 8.53%-38.41% in terms of Accuracy, by 10.52%-35.16% in
terms of Recall@5, by 1.24%-4.58% in terms of AED and RED, by 1.62%-1.67% in terms of BLEU-4,
and by 12.09%-26.69% in terms of ESS ratio. In summary, our research emphasizes that consider-
ing automatically category classification for CCI samples before synchronizing their comments is
conducive and can significantly boost the performance of code-comment synchronization.
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