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Abstract—Deep neural networks (DNNs) have been widely
and successfully adopted and deployed in various applications
of speech recognition. Recently, a few works revealed that these
models are vulnerable to backdoor attacks, where the adversaries
can implant malicious prediction behaviors into victim models by
poisoning their training process. In this paper, we revisit poison-
only backdoor attacks against speech recognition. We reveal
that existing methods are not stealthy since their trigger pat-
terns are perceptible to humans or machine detection. This
limitation is mostly because their trigger patterns are simple
noises or separable and distinctive clips. Motivated by these
findings, we propose to exploit elements of sound (e.g., pitch
and timbre) to design more stealthy yet effective poison-only
backdoor attacks. Specifically, we insert a short-duration high-
pitched signal as the trigger and increase the pitch of remaining
audio clips to ‘mask’ it for designing stealthy pitch-based triggers.
We manipulate timbre features of victim audio to design the
stealthy timbre-based attack and design a voiceprint selection
module to facilitate the multi-backdoor attack. Our attacks can
generate more ‘natural’ poisoned samples and therefore are more
stealthy. Extensive experiments are conducted on benchmark
datasets, which verify the effectiveness of our attacks under
different settings (e.g., all-to-one, all-to-all, clean-label, physical,
and multi-backdoor settings) and their stealthiness. Our methods
achieve attack success rates of over 95% in most cases and are
nearly undetectable. The code for reproducing main experiments
are available at https://github.com/HanboCai/BadSpeech_SoE.

Index Terms— Backdoor attack, backdoor learning, speech
recognition, Al security, trustworthy ML.
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I. INTRODUCTION

PEECH recognition has been widely and successfully

deployed in many mission-critical applications [1], [2],
[3]. In general, obtaining well-performed speech recognition
models requires training on large-scale annotated datasets and
substantial hardware resources. Accordingly, developers and
users usually exploit third-party resources, such as open-source
datasets, training platforms, checkpoints, and crowdsourced
data collection [4], to alleviate training burdens.

However, recent studies revealed that outsourcing (parts of)
training procedures (e.g., data collection) may also introduce
new security risks to DNNs [5]. Arguably, the backdoor attack
is one of the most emerging yet threatening threats [6]. The
backdoor adversaries can implant hidden backdoors to victim
DNNs by introducing a few poisoned training samples contain-
ing adversary-specified trigger patterns. The adversaries can
activate the embedded backdoor via triggers during the infer-
ence process of backdoored models to maliciously manipulate
their predictions. However, the backdoored models behave
normally on benign testing samples. Accordingly, victim users
can hardly notice backdoor threats.

Currently, most of the existing backdoor attacks are
designed against image or text classification [7], [8], [9],
[10], [11], [12]. However, the backdoor analysis in speech
recognition is left far behind. In particular, the few feasible
attacks in this area are preliminary, whose trigger patterns
are simple noises [13], [14], [15], [16], [17] or separable
and distinctive audio clips [18], [19], [20]. Accordingly, these
attacks are perceptible to humans or can be easily detected
and alleviated by algorithms [16], [21]. It raises an intriguing
question: Is it possible to design an effective attack against
speech recognition that is stealthy to both human and machine
detection?

The answer to the aforementioned question is positive.
Arguably, the core of an effective and stealthy attack is to
design more ‘natural’ trigger patterns. In this paper, we gen-
erate more naturally poisoned samples by modifying the
elements of sound. We tackle trigger design from two perspec-
tives, including pitch and timbre. Specifically, we first increase
the pitch of selected audio samples and then insert a short yet
high-pitched signal to generate their poisoned version for the
pitch-based attack. The pitch-increased background audio can
hide the inserted signal due to audio masking. This method is
dubbed pitch boosting and sound masking (PBSM); For the
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timbre-based attack, we edit the timbre features of selected
samples to generate their poisoned counterparts. In particular,
we design a voiceprint selection module that enables the
selection of diverse timbre features for timbre transformation,
to further improve its effectiveness under the multi-backdoor
setting. We call this method voiceprint selection and voice
conversion (VSVC). The poisoned samples generated by our
PBSM and VSVC are natural and sample-specific. As such,
they can bypass both human inspection and machine detection.
In conclusion, our main contributions are three-fold:

« We reveal the stealthiness deficiency of existing attacks
against speech recognition and its potential reasons.

« We propose two simple yet effective backdoor attacks
against speech recognition (i.e., PBSM and VSVC) via
elements of sound. The poisoned samples of both PBSM
and VSVC are more natural and therefore stealthy to both
human inspection and machine detection.

« Extensive experiments are conducted to verify the effec-
tiveness of our attacks under different settings (e.g.,
all-to-one, all-to-all, clean-label, physical, and multi-
backdoor settings) and their resistance to defenses.

The rest of this paper is structured as follows. In Section II,
we briefly review related works about speech recognition
and backdoor attacks. Section III illustrates our two stealthy
backdoor attacks based on elements of sound, i.e., pitch
boosting and sound masking (PBSM) and voiceprint selection
and voice conversion (VSVC), in detail. The experimental
results of our attacks are presented in Section IV. We conclude
this paper in Section VI at the end.

II. RELATED WORKS
A. Speech Recognition

Speech recognition (SR) plays a vital role in many crit-
ical applications [22], allowing devices to comprehend and
interpret human speech. Early speech recognition methods
were mostly based on Gaussian mixture models (GMMs) and
hidden Markov models (HMMs) [23]. However, these methods
suffered from relatively high error rates in practice.

Recently, advanced SR methods were all based on deep
neural networks (DNNs) due to their high learning capacities.
For example, Hinton et al. [24] applied DNNs to acous-
tic modeling and achieved promising performance in the
TIMIT [25] phoneme recognition task, marking a break-
through in the field of speech recognition with DNNSs.
De Andrade et al. [26] applied long short-term memory
(LSTM) networks in speech recognition tasks, motivated by
the strong temporal nature of speech data. Besides, inspired
by the tremendous success of ResNet in image classifica-
tion [27], Vygon and Mikhaylovskiy [28] proposed a novel and
effective keyword discovery model with the ResNet backbone.
Recently, Berg et al. [29] exploited the Transformer structure
in speech recognition and achieved remarkable performance.
Gazneli et al. [30] proposed an end-to-end strategy without
requiring pre-processing speech data to simplify the speech
recognition tasks. Specifically, they adopted one-dimensional
convolutional stacks and Transformer-type encoder blocks to
process and classify speech data.
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B. Backdoor Attacks

Backdoor attack is an emerging yet critical training-phase
threat [6]. In general, the adversaries intend to implant hidden
backdoors into the victim model by maliciously manipulating
the training procedures (e.g., samples or loss). The back-
doored model will behave normally on predicting benign
testing samples whereas its predictions will be misled to
adversary-specified target classes whenever its backdoor is
activated by the trigger pattern contained in attacked testing
samples.

Currently, most of the existing attacks are designed against
image classification. These attacks can be divided into differ-
ent sub-categories based on different criteria, as follows:

1) Poisoned-Label and Clean-Label Attacks: Backdoor
attacks can be divided into poisoned-label [7], [12], [31] and
clean-label attacks [32], [33], [34] based on whether the target
label of poisoned samples is consistent with their ground-
truth one. In general, poisoned-label backdoor attacks are more
effective compared to the clean-label ones since the ‘robust
features’ related to the target class contained in poisoned
samples of clean-label attacks will hinder the learning of
trigger patterns [11]. However, clean-label attacks are more
stealthy since victim users can identify and filter out poisoned
training samples by examining the image-label relationship.

2) All-to-One and All-to-All Attacks: We can separate exist-
ing attacks into all-to-one and all-to-all attacks based on the
property of the target label [7]. Specifically, all poisoned
samples will be assigned the same target label in all-to-one
attacks, while the target label of all-to-all attacks is determined
based on the ground-truth one of the poisoned samples. For
example, the all-to-all adversaries usually adopt y/ = (y + 1)
mod K, where K is the number of all classes, y" and y indicate
the target label and ground-truth label of the poisoned sample,
respectively. Arguably, all existing (poisoned-label) backdoor
attacks can be generalized to all-to-all attacks, although it will
probably decrease attack effectiveness [6].

3) Single-Backdoor and Multi-Backdoor Attacks: Differ-
ent from the single-backdoor attacks where the adversaries
only implant a single backdoor to the victim models, multi-
backdoor methods [7], [35], [36], [37] intend to embed
multiple backdoors simultaneously. In general, it is non-trivial
to implant multiple backdoors, although we can easily inject
a single backdoor. It is mostly because the learning of one
backdoor may affect that of the others [37]. As such, multi-
backdoor attacks may fail if triggers are not ‘strong’ enough.

4) Digital and Physical Attacks: Different from previous
digital attacks where all poisoned samples are obtained com-
pletely in the digital space, the physical space is also involved
in their generation in the physical attacks. Chen et al. [38]
proposed the first physical backdoor attack where they
exploited the glasses as physical trigger against facial recog-
nition. A similar idea was also discussed in [39]. Recently,
Li et al. [40] revealed that existing digital attacks will fail in
the physical space and proposed a physical attack enhancement
inspired by the expectation over transformation [41]. Most
recently, Xu et al. [42] designed a more stealthy poison-only
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physical backdoor attack using spatial transformations (e.g.,
rotation) with a specific parameter as trigger patterns.

Recently, there have also been a few backdoor attacks
against speech recognition. Specifically, Liu et al. [13]
reversed potential training samples of a given speech recog-
nition model, based on which to implant hidden backdoors;
Kong and Zhang et al. [17] designed trigger patterns based
on audio steganography; Zhai et al. [14] designed the first
backdoor attack against speaker verification via clustering
techniques; Koffas et al. exploited ultrasonic pulses as audio
triggers; In [18], [19], and [20], sounds from the natural
environment (e.g., music and noises) were adopted as trigger
patterns; Shi et al. [15] developed an optimization scheme to
generate more effective audio triggers; Most recently, a con-
current work [43] designed stealthy style-based triggers for
audio backdoor attacks via style transformations. However,
all existing attacks are perceptible to humans or can be
easily detected and alleviated by algorithms. How to design
an effective backdoor attack against speech recognition that
is stealthy to both human and machine detection is still an
important open question and worth further exploration.

Besides, we also notice that there are also a few works
exploited backdoor attacks for positive purposes (e.g., copy-
right protection and model interpretability) [44], [45], [46].
These works are out of the scope of this paper.

III. THE PROPOSED METHODS

The sound elements primarily include pitch, timbre, and
loudness [47]. In this paper, we discuss how to design more
natural yet effective acoustic trigger patterns based on pitch
and timbre, respectively. We omit the loudness-type trigger
design since it has minor variation and therefore may not
contain sufficient information for effective backdoor attacks.

A. Preliminaries

1) Elements of Sound: The elements of sound consist of
pitch, timbre, and loudness [47]. Pitch denotes the perceived
frequency of a sound, ascending with higher frequencies.
Timbre, the ‘color’ of sound, is shaped by the harmonic
content and the envelope, endowing distinct acoustic identities
to different instruments or vocal sources, even at identical
pitches and volumes. Loudness, often correlated with the
amplitude of a sound, is a perceptual attribute that denotes the
perceived strength or intensity of the sound. In neural network
audio processing, the models tend to prioritize learning com-
plex features such as pitch and timbre over subtle amplitude
variations. This is because neural networks are designed
to generalize and often deemphasize simpler variations in
favor of more distinct acoustic properties. Accordingly, our
discussion primarily focuses on pitch and timbre (instead of
loudness), as their intricate variations are crucial for speech
recognition.

2) Threat Model: In this paper, we focus on poison-
only backdoor attacks against speech recognition, where the
adversaries can only modify their released poisoned training
dataset. The victim users will exploit the poisoned dataset to
train their models with user-specified settings. Accordingly,
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TABLE I
THE DEFINITION OF COMMON SYMBOLS

Symbol Description

D benign dataset

D poisoned dataset
Dy benign subset
Dp poisoned subset

G generator of poisoned samples
fo model parametrized by 6

L loss function

x benign sample

Y the label of benign sample
¥ poisoning rate

t trigger pattern

N the number of samples in dataset D
K the number of categories

we assume that the adversaries cannot change and have no
information on the training process (e.g., model structure,
loss, and training schedule). This is one of the most difficult
settings for backdoor attacks, with the most expansive threat
scenarios (e.g., using third-party samples, training facilities,
or models) [6].

3) Adversary’s Goals: In summary, the backdoor adver-
saries have three main goals, including (1) effectiveness,
(2) stealthiness, and (3) persistence. Specifically, effectiveness
requires that backdoored models can predict poisoned testing
samples as the adversary-specified target label, no matter what
their ground-truth label is; Stealthiness ensures that the attack
cannot be detected by human inspection or simple machine
detection. For example, trigger patterns should be stealthy and
the poisoning rate should be small; Persistence seeks that the
attack is still effective under more difficult settings (e.g., under
potential adaptive defenses and physical-world settings).

4) The Main Pipeline of Poison-Only Backdoor Attacks:
In general, how to generate the poisoned dataset D given
its benign version D = {(x;, y;)}/, is the main problem
of poison-only backdoor attacks. Considering a classification
problem with K -categories, the D contains two separate sub-
sets, including the benign subset Dj, and the poisoned subset
Dy (.e., D =D, UD),). Specifically, Dy, is randomly sampled
from D containing (1 — y) - N samples, where y is dubbed
‘poisoning rate’. D, £ {(Gx(x),G,(»))|(x,y) € D\Dp},
where G, : X — & and Gy : Y — ) are adversary-assigned
poisoned instance generator and poisoned label generator,
respectively. For example, G,(x) = x + ¢t where ¢ is the
trigger based on additive noises [48]; Gy(y) = yr where yr
is the target label in all-to-one attacks [6], G,(y) = (y + 1)
mod K in most of the existing all-to-all attacks [7]. After D
is generated and released, the victim users will use it to train
their model fp : YV — [0, 11X via ming z(x,y)e'f) L(>(fo(x),y).

5) The Definition of Common Symbols: For convenience,
we summarize the commonly used symbols in Table I. We will
follow the same definition in the remaining paper.
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The main pipeline of attacking via our pitch boosting and sound masking (PBSM). The PBSM consists of three main stages, including attack,

training, and inference. The attack stage is the core of PBSM, containing two steps (i.e., pitch boosting and signal injection). In the first step, we exploit
short-time Fourier transform to convert the original audio from the time domain to the frequency domain and increase the pitch of the overall audio; In the
second step, we identify the position of the highest-amplitude segment in the audio where we insert an adversary-specified high-pitched signal.

B. The Design Philosophy of Our Attacks

Arguably, the core of designing effective and stealthy back-
door attacks against speech recognition is generating more
‘natural’ trigger patterns. As described in Section III-A, the
models tend to exploit complex features such as pitch and
timbre for classification in neural network audio processing.
However, the human auditory system is not sensitive to these
changes or does not rely on them for recognition [49], [50].
Inspired by this difference, we propose to generate more
naturally poisoned samples by modifying sound elements,
including pitch and timbre. We call our methods ‘pitch boost-
ing and sound masking (PBSM)’ and ‘voiceprint selection and
voice conversion (VSVC)’. Their design details are as follows.

1) The Design Philosophy of PBSM: Firstly, the human
auditory system has a limited ability to distinguish subtle pitch
variations, especially in complex auditory environments [51].
Secondly, the human ear is not sensitive to sound masking,
meaning that in a complex mix of sounds, subtle changes can
be easily overshadowed by other sounds [52]. Accordingly,
we can modify the pitch and covertly implant signals via sound
masking to generate stealthy yet effective poisoned samples.

2) The Design Philosophy of VSVC: The human auditory
system is consistent in its understanding of the same sentence
read by different people (with different timbres). However,
DNNs may learn and capture timbre characters for predictions.
Accordingly, we can manipulate timbre features to generate
stealthy yet effective poisoned samples.

The technical details of PBSM and VSVC are in
Section III-C and Section III-D, respectively.

C. Attack via Pitch Boosting and Sound Masking

Arguably, the most straightforward approach to designing
pitch-type triggers is to insert sound clips with a very high
(or low) frequency in a random position of the victim audio.
However, these triggers can be easily filtered out by removing
clips with the highest and lowest frequencies. Besides, these
triggers are also perceptible to humans since the inserted
trigger is most likely different from its surrounding audio clips
in the poisoned samples. To tackle these problems, in this
paper, we propose to first increase the pitch of selected audio
samples and then insert a short yet high-pitched signal to the

position with the highest sound energy. In this way, we can
exploit sound masking mechanism [52] to generate stealthy
yet effective poisoned samples. This method is dubbed attack
via pitch boosting and sound masking (PBSM).

The pitch boosting makes our attack resistant to trigger
filtering (as shown in our experiments). The filtering cannot
decrease the pitch of poisoned audio since these triggers are
natural, although it may remove the high-pitched short signal.
Besides, our insertion strategy improves the stealthiness of
triggers for both human inspection and machine detection.
Specifically, the inserted high-pitched signal is less perceptible
to humans due to sound masking while it can bypass classical
detection methods based on finding common audio clips since
the insert position is usually sample-specific. In other words,
different poisoned samples have different insert positions.

In general, our PBSM has two main steps, including (1)
pitch boosting and (2) signal injection, to generate poisoned
samples. The details of this process is described in Algorithm 1
and the main pipeline of PBSM is shown in Figure 1.

1) Step 1: Pitch Boosting: A feasible method for pitch
boosting is to increase the frequency of selected audio samples.
Accordingly, we first perform a short-time Fourier transform
(STFT) [53] on the original audio to convert it from the time
domain to the frequency domain. After that, in the frequency
domain, we multiply the original frequency values by an
adversary-specified pitch-shifting coefficient p (p > 1), lead-
ing to a new audio waveform with a boosted pitch. Specifically,
we can express the short-time Fourier transform as x y = F(x)
(Line 1 in Algorithm 1), where x s is the frequency-domain
representation of x. The process of increasing pitch can be
expressed as xp = p - Zl.L:”O x ;@ (Line 3 in Algorithm 1).
Specifically, in the aforementioned equation, L, represents the
number of points in the frequency domain, the transformation
factor p is represented as p = 2"-P/12_ and n_p denotes the
number of semitones (i.e., the step of pitch shifting).

2) Step 2: Signal Injection: This process consists of two
main stages, including (1) location identification and (2) signal
insertion. In the first stage, we identify the location of the
high-amplitude segments in the audio signal. We select the
high-amplitude clips since they have stronger energy and
can provide better masking effects. Specifically, to find these
positions, we iterate through each audio segment to identify the

Authorized licensed use limited to: Hohai University Library. Downloaded on June 01,2024 at 00:51:48 UTC from IEEE Xplore. Restrictions apply.



5856

Algorithm 1 The Algorithm of Pitch Boosting and Sound
Masking (PBSM)
Require: Benign audio x and high-pitch signal h.

I: xg = F(x) // Short-time Fourier transformation.

2: for i in range(xf) do

3: xXp=p- Zl 20X f(’) /I Pitch boosting in the frequency
domain.

4: end for .

5: T = argmax(Zﬁ*L |xp@|) 4+ L // Calculate the position

of high-aimplitude segments.
6: xr =xp") @ h // Insert a high-pitch signal.
7. x; = F~(x,) // Tnverse Fourier transformation.
Ensure: Poisoned audio x;.

position of the segment with the highest energy in the entire
audio sample. The position T of high-amplitude segments can

be obtained by: T = argmax(Z’+L (')l) + L (Line 5 in

Algorithm 1), where L is the high-amplitude length. In the
second stage, we insert an adversary-specified high-pitched
signal h in the selected position 7'. Specifically, this process
can be denoted by x, = xp") @ h (Line 6 in Algorithm 1),
where x, is the inserted audio signal after signal injecting,
xpT) is the audio segment at position 7', and @ denotes the
injection operation with the high-pitched signal 2. We conduct
the inverse Fourier transformation F ! [53] to obtain poisoned
audio with pitch-type triggers by turning frequency-domain
signals back to the time domain (Line 7 in Algorithm 1).

D. Attack via Voiceprint Selection and Voice Conversion

To design timbre-type triggers, we can exploit a ‘timbre
transformer’ trained on the audio of an adversary-specified
target people (e.g., the adversary himself) for voice conver-
sion [54]. Specifically, we can assign the poisoned instance
generator G as the (pre-trained) timbre transformer.

Assume that there are multiple timbre candidates for selec-
tion. Arguably, the design of timbre-type single-backdoor
attacks is straightforward, where the adversaries can arbitrarily
choose any single timbre they desire. However, the design of
multi-backdoor attacks is challenging since simply selecting
multiple timbres at random to design triggers has limited
attack effectiveness (as we will show in the experiments).
It is mostly because there can be many similarities between
timbres. On the one hand, this similarity makes it harder for
DNNSs to learn backdoors, since similar poisoned samples have
different (target) labels. On the other hand, this similarity
may lead to false backdoor activation by attacked models
at the inference process. Motivated by these understandings,
we propose a voiceprint selection module to alleviate these
challenges.

In general, our voiceprint selection module consists of three
main stages, including (1) feature extraction, (2) similarity
calculation, and (3) timbre selection. The main pipeline of our
voiceprint selection and voice conversion (VSVC) is shown in
Figure 2. Its technical details are as follows.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

1) Step 1: Feature Extraction: Following the most classi-
cal method, we exploit X-vectors [55] to extract voiceprint
features of each timbre candidates, i.e., S;k) <~ V(Cp),
where Cy is the speech data for the k-th speaker, V denotes
the process of extracting X-vectors converting each speech
into a d-dimensional feature vector, and Sék) represents the
voiceprint embedding for the k-th speaker. For K candidates,
we ultimately obtain a matrix S, = [Sgl), e, SéK)] € RIxK
with d rows and K columns (Lines 1-3 in Algorithm 2).

2) Step 2: Similarity Calculation: In this step, we calculate
the distance between the features of each timbre pair (i, j)
as their similarity. Specifically, to represent the voiceprint
distances between K candidates, we construct a similarity
matrix Sim of size K2, where each element Sim[i][j] is
computed as d (Séi), ng )) (Lines 4-7 in Algorithm 2) with
the distance metric d. In this paper, we assign d as £;-norm
for simplicity.

3) Step 3: Timbre Selection: In this step, we select M candi-
dates with maximum distances, based on the similarity matrix
calculated in the previous step. We design a greedy search
method to select suitable candidates (Lines 9 in Algorithm 2).
Specifically, we select the two timbres with the greatest
distance in the similarity matrix to add to the selected set Cyy.
After that, we select the timbre that has the greatest distance
from all the timbres in the selected set from the remaining
candidates and add it to the selected set. We repeat the above
process until the selected set Cys contains M timbres.

4) Step 4: Generating the Poisoned Dataset via Voice
Conversion: In this step, we first train a voice conversion
model G (Line 10 in Algorithm 2), based on the selected set
Cpm obtained in the previous step. For each audio x, G(x, i)
can convert its timbre to that of i-th element in Cys. After
that, we select M adversary-specified target labels {y(') M
Each target label is associated with a timbre backdoor. The
generated poisoned dataset D contains (M +1) disjoint subsets,
including one benign subset D), and M poisoned subsets (i.e.,
(DY ). Specifically, DY 2 {(G(x, i), y\)I(x, y) € DI}
where D ¢ D, D N D(“ # (Vi # j) (Lines 11-14
in Algorithm 2), and D, = D — Ul ID(I) (Line 15 in

Algorithm 2). In particular, y; £ ‘?D\‘ the

poisoning rate of i-th timbre-type backdoor.

IV. EXPERIMENTS
A. Main Settings

1) Dataset Description: We adopt the most classical
datasets, i.e., Google Speech Command Dataset (SCD) [56],
LibriSpeech [57], and VoxCelebl [58], for our evaluations.
Specifically, SCD consists of 30 common English speech
commands. Each command is spoken by multiple individuals
in various ways, resulting in a total of 64,728 samples. The
dataset has a 16kHz sampling rate where each sample lasts
approximately one second. Specifically, we selected 23,726
audio samples with 10 labels (dubbed ‘SCD-10") and 64,721
audio samples with 30 labels (dubbed ‘SCD-30’) for a compre-
hensive comparison; For the LibriSpeech dataset, we extract
speech segments from its development set (2,703 speech seg-
ments from 40 speakers in total); For the VoxCelebl, we select
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Fig. 2. The main pipeline of attacking via our voiceprint selection and voice conversion (VSVC). The VSVC consists of three main stages, including attack,
training, and inference. The attack stage is the core of VSVC, containing four steps (i.e., feature extraction, similarity calculation, timbre selection, and voice
conversion). In the first step, we adopt X-vectors to extract voiceprint features of each timbre candidate; In the second step, we measure the similarity of each
timbre pair based on their distance; In the third step, we select the desired number of timbres based on the principle of smallest similarity; In the fourth step,
we generate the poisoned training dataset of the (multi-backdoor) timbre-type attack via voice conversion.

TABLE I

COMPARISONS BETWEEN DIFFERENT ATTACKS. IN THIS TABLE, WE EXPLOIT THE ‘CHECKMARK’ TO INDICATE WHETHER A METHOD
HAD A PARTICULAR PROMISING PROPERTY OR CONSIDERED A SPECIAL SETTING
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speech segments from 50 speakers with the largest sample
size on the original VoxCelebl-H (18,354 speech segments
from 50 speakers in total). Besides, to ensure consistent
experimental settings, we trim all segments to 1 second.

2) Baseline Selection: We compared our PBSM and VSVC
with four representative speech backdoor attacks, including (1)
position-independent backdoor attack (PIBA) [15], (2) dual
adaptive backdoor attack (DABA) [18], (3) backdoor attack
with ultrasonic (dubbed ‘Ultrasonic’) [16], and (4) backdoor
attack via style transformation (dubbed ‘JingleBack’) [43].
As shown in Table II, all baseline attacks only had limited
promising properties or considered limited settings.

3) Model Structures: As the poison-only backdoor attacks,
we assume that the adversaries have no information about
the victim model. To evaluate the effectiveness across dif-
ferent DNNs, we evaluate all attacks under four classical
and advanced DNN structures, including LSTM [59], ResNet-
18 [27], KWT [29], and EAT [30]. Specifically, LSTM and
ResNet-18 are classical models designed for sequential and
non-sequential data, respectively; KWT and EAT are advanced
speech recognition models, where KWT exploited transformer
structure and EAT was designed in an end-to-end manner.

4) Attack Setup: For all attacks, we set the poisoning rate as
0.01. We randomly select the target label for all datasets (‘left’
on SCD-10 and SCD-30, ‘id84’ on Librispeech, and ‘id10020’
on Voxcelebl). For our PBSM method, we increase the pitch
by 5 semitones. The length of high-amplitude segments is set

to 100 milliseconds. For our VSVC method, we select the
VCTK dataset [60] as the timbre candidates dataset and we
employ StarGANv2-VC [61] as the voice conversion frame-
work. In particular, we evaluate the single-backdoor VSVC
in our main experiments for a fair comparison. The results
of multi-backdoor VSVC are included in Section IV-C.6;
For DABA [18] and PIBA [15], we follow the same set-
tings described in their original papers; For the ultrasonic
attack [16], we set the duration of the trigger to 100 mil-
liseconds; For JingleBack [43], we exploit the third style used
in its paper since it led to the best attack performance. Note
that this method may reach better stealthiness if we use other
styles introduced in their paper, whereas it will decrease its
attack effectiveness as the sacrifice.

5) Training Setup: We extract the log-Mel spectrogram of
each audio sample as an input feature, which can graphically
characterize a person’s speech feature in a combination of
temporal and frequency dimensions. All models are trained
for 100 epochs. We set the learning rate of EAT and LSTM as
0.0001 and 0.005, respectively. We set the learning rate of the
remaining models as 0.01. As for the optimizer selection, the
EAT and KWT models are trained using the Adam optimizer,
while the default optimizer for the other models is SGD.
We run each experiment three times and calculate their average
to reduce the side effects of randomness.

6) Training Facilities: We conduct all our experiments on a
server running Ubuntu 18.04, equipped with a single NVIDIA
GeForce RTX 3090 GPU with 24GB of VRAM.
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TABLE III

THE BENIGN ACCURACY (BA) AND ATTACK SUCCESS RATE (ASR) OF METHODS ON THE SCD-10 DATASET. WE MARK THE BEST RESULTS AMONG
ALL INAUDIBLE ATTACKS (i.e., ULTRASONIC, JINGLEBACK, PBSM, AND VSVC) IN BOLDFACE

Model] Metric), Method— | No Attack | PIBA DABA | Ultrasonic JingleBack PBSM — VSVC
(Ours)  (Ours)
LSTM BA (%) 93.68 93.54 92.13 93.21 92.63 93.32 93.43
ASR (%) - 95.23 99.76 98.61 91.31 92.11 99.61
ResNet-18 BA (%) 95.11 94.32 94.10 94.97 94.55 94.85 94.93
ASR (%) - 96.43 99.87 99.33 95.52 95.78 97.57
KWT BA (%) 91.35 90.21 90.10 91.11 91.19 91.27 90.96
ASR (%) - 96.24 99.54 97.13 91.52 94.39 99.22
EAT BA (%) 93.33 93.21 92.61 93.12 93.10 93.23 93.31
ASR (%) - 97.32 99.21 99.12 87.39 90.13 92.32

TABLE IV

THE BENIGN ACCURACY (BA) AND ATTACK SUCCESS RATE (ASR) OF METHODS ON THE SCD-30 DATASET. WE MARK THE BEST RESULTS AMONG
ALL INAUDIBLE ATTACKS (i.e., ULTRASONIC, JINGLEBACK, PBSM, AND VSVC) IN BOLDFACE

Model| Metric), Method— | No Attack | PIBA DABA | Ultrasonic JingleBack fgfrl:; X()Su\;sc)
LSTM BA (%) 92.62 92.51 91.18 92.13 92.57 92.56 91.91
ASR (%) - 95.04  99.16 98.12 98.45 96.21 98.01

ResNet-18 BA (%) 95.20 93.21 92.13 94.32 94.76 94.71 94.85
ASR (%) - 98.34  99.98 97.53 93.39 96.63 93.01

KWT BA (%) 91.13 90.62  89.19 90.33 90.20 90.45 90.21
ASR (%) - 94.21 99.45 97.13 93.54 94.02 97.03

EAT BA (%) 94.51 9433  93.13 94.23 94.35 94.01 94.38
ASR (%) - 92.12 9943 95.32 81.06 92.51 93.12

7) Evaluation Metrics: Following the most classical set-
tings in existing works [6], we adopt benign accuracy (BA)
and attack success rate (ASR) to evaluate the effectiveness of
all attacks. Specifically, the BA measures the proportion of
benign testing samples that can be correctly classified, while
the ASR denotes the proportion of poisoned testing samples
that can be maliciously predicted as the target label. The higher
the BA and the ASR, the more effective the attack; To evaluate
the stealthiness, we invite 30 people to determine whether the
poisoned audio samples (5 for each attack) of an attack sound
natural. The proportion of poisoned samples that are regarded
as natural audio by humans is dubbed natural rate (NC). The
higher the NC, the more stealthy the attack.

B. Main Results

1) Attack Effectiveness: As shown in Table III-VI, the
attack success rates (ASRs) of our PBSM and VSVC are
sufficiently high in all cases. For example, the ASRs are larger
than 90% on SCD datasets and are 95% on Librispeech and
Voxcelebl datasets. The attack performance of our VSVC is
on par with or even better than all baseline attacks except for
DABA in some cases. For example, in the SCD-10 dataset,
the ASR of VSVC is 8% higher than that of JingleBack when
attacking LSTM and KWT models. Besides, our attacks have
minor adverse effects on benign accuracy. The decreases of
benign accuracy compared to the model training with benign
dataset are less than 1% in all cases for our attacks. In contrast,

both DABA and JingleBack have a relatively high impact on
benign accuracy. These results verify the effectiveness of our
attacks.

2) Attack Stealthiness: We notice that the ASRs of baseline
attacks (especially DABA and Ultrasonic) are higher than
those of ours in some cases. However, it comes at the expense
of stealthiness. As shown in Table VII, the natural rates of all
baseline attacks other than Ultrasonic are significantly lower
than our PBSM and VSVC. For example, the natural rates of
PIBA, DABA, and JingleBack are all 0% while those of our
PBSM and VSVC are near 100%. Ultrasonic has a similar
natural rate to that of benign samples simply because humans
cannot hear ultrasound. However, it does not mean that this
attack is stealthy. The victim users can still easily identify this
attack by checking the spectrogram of samples (as shown in
the area of the black dashed box in Figure 3d and Figure 31).
Users can also filter out ultrasonic trigger signals to depress
this attack. These results verify the stealthiness of our attacks.

In conclusion, our attacks can preserve high effectiveness
while ensuring stealthiness. In contrast, existing baseline meth-
ods can be easily detected and defended.

C. Ablation Study

In this section, we discuss the effects of key parameters,
including target label, poisoning rate, high-pitch signal, and
timbre, of our PBSM and VSVC. We adopt SCD-10 as an
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TABLE V

THE BENIGN ACCURACY (BA) AND ATTACK SUCCESS RATE (ASR) OF METHODS ON THE LIBRISPEECH DATASET. WE MARK THE BEST RESULTS
AMONG ALL INAUDIBLE ATTACKS (i.e., ULTRASONIC, JINGLEBACK, PBSM, AND VSVC) IN BOLDFACE

Model| Metric), Method— | No Attack | PIBA DABA | Ultrasonic  JingleBack PBSM — VSVC
(Ours)  (Ours)
LSTM BA (%) 99.28 98.94  98.95 99.01 98.17 99.10 98.96
ASR (%) - 98.12 99.26 98.21 98.33 98.81 99.63
ResNet-18 BA (%) 99.12 98.83 98.25 99.26 98.18 99.06 98.34
ASR (%) - 9720  98.65 98.57 98.52 95.53 99.54
KWT BA (%) 97.39 97.11 97.21 97.17 97.01 97.38 97.32
ASR (%) - 97.76 98.12 96.92 98.17 96.18 98.75
EAT BA (%) 98.28 97.21 97.31 98.89 97.16 98.17 98.18
ASR (%) - 97.77 99.01 94.01 94.23 95.89 99.66

TABLE VI

THE BENIGN ACCURACY (BA) AND ATTACK SUCCESS RATE (ASR) OF METHODS ON THE VOXCELEB1 DATASET. WE MARK THE BEST RESULTS AMONG
ALL INAUDIBLE ATTACKS (i.e., ULTRASONIC, JINGLEBACK, PBSM, AND VSVC) IN BOLDFACE

. . . PBSM VSVC
Model] Metric), Method— No Attack | PIBA DABA | Ultrasonic JingleBack (Ours) (Ours)
LSTM BA (%) 94.37 93.23 92.65 93.69 92.50 94.13 94.15
ASR (%) - 98.96 98.12 99.43 99.18 99.57 99.81
ResNet-18 BA (%) 96.34 93.95 93.65 93.78 92.51 95.45 95.67
ASR (%) - 95.61 99.78 98.12 98.92 99.35 99.98
KWT BA (%) 95.30 94.96 94.26 94.11 94.61 94.75 94.63
ASR (%) - 99.02 99.77 98.58 97.37 98.05 99.85
EAT BA (%) 95.52 94.65 93.15 94.05 94.45 95.38 95.49
ASR (%) - 98.13 99.34 97.11 93.63 96.84 99.94

TABLE VII TABLE VIII

THE NATURAL RATES (%) CALCULATED BY HUMAN VALIDATION OF
SAMPLES GENERATED BY DIFFERENT METHODS

THE ATTACK SUCCESS RATE (%) w.r.t. DIFFERENT BOOSTED
SEMITONES ON THE SCD-10 DATASET

Benign | PIBA  DABA  Ultrasonic  JingleBack ‘ l:gusrlg XOSLXSC)
100 | 0 0 100 0 | 973 100

example for our discussions. Unless otherwise specified, all
settings are consistent to those stated in Section IV-A.

1) Effects of the Poisoning Rate: To explore the influences
of the poisoning rate on our attacks, we conduct experiments
with poisoning rates ranging from 0.5% to 2.0% against all
four model structures. As shown in Figure 4, the attack success
rates (ASRs) of both PBSM and VSVC increase with the
increase of the poisoning rate, although our attacks can reach
promising attack performance by poisoning only 1% training
samples. However, the benign accuracy (BA) will decrease
with the increase of the poisoning rates to some extent, i.e.,
there is a trade-off between ASR and BA. The adversaries
should assign a suitable poisoning rate based on their needs.

2) Effects of the Target Label: To verify that our PBSM and
VSVC are still effective under different target labels, we con-
duct experiments with ResNet-18. As shown in Figure 6, the
attack success rates of both PBSM and VSVC are similar
across all evaluated target labels. Specifically, the ASRs are
larger than 93% in all cases, while the decrease of benign
accuracy compared to ‘no attack’ is less than 1%. These results

Sﬁgii& LSTM  ResNet-18 KWT  EAT
1 5.13 33.61 38.17 3791
3 70.61 69.70  79.08 46.17
5 80.74 85.65 82.13  73.09
7 86.09 89.35 83.19 8161

show that target labels have minor effects on our attacks. The
adversaries can select any target class based on their needs.

3) Effects of the Pitch Boosting: In this part, we show
that pitch boosting used in our PBSM itself can serve as
the pitch-type trigger and explore its effects. Specifically,
we increase the pitch range from one semitone to seven
semitones and evaluate the attack success rate (ASR). The
example of the spectrograms of samples with different boosted
semitones is shown in Figure 5. As shown in Table VIII, the
ASR increases with the increase of semitones, as we expected.
Specifically, the ASRs are larger than 80% in three out of all
four cases when we boost five semitones. However, we have
to notice that excessive pitch boosting can lead to significant
sound distortion and therefore decrease attack stealthiness.

4) Effects of the Short-duration High-pitch Signal: To
verify that inserting a high-pitch signal is critical for our
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Fig. 3. The spectrograms of different samples. In this example, we present the visualization of two benign audio (with the labels ‘left’ and ‘right’) and their
poisoned versions generated by different attacks. As shown in this figure, we can easily detect the abnormalities of poisoned samples generated by PIBA,
DABA, and ultrasonic from spectrogram areas marked in the black box. However, we cannot detect anomalies in JingleBack and our attacks directly through
the spectrogram.
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Fig. 4. The performance of our PBSM and VSVC on the SCD-10 dataset under different poisoning rates.

PBSM, we compare its attack success rate to that of its TABLE IX
pitch-only variant where we only increase the pitch with- THE ATTACK SUCCESS RATE (%) OF PITCH-ONLY ATTACK AND PBSM
out adding the high-pitch signal. As shown in Table IX, ATTACK ON THE SCD-10 DATASET

although the pitch-only method can have some attack effects, Method), Model—> | LSTM  ResNet-18 KWT  EAT
introducing a high-pitch signal can significantly improve Pitch-Only 80.74 85.65 8213 73.09
the attack effectiveness. Specifically, the attack success rate PBSM 9211 9578 9439 90.13

of PBSM is 10% higher than that of its pitch-only vari-

ant }1)?3 Sals[ cases. These results verify the effectiveness of 5) Effects of the Timbre: To verify that our VSVC is still
our ) effective with different timbres, we conducted experiments
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Fig. 5.

(h) right (3 Semitones)

(i) right (5 Semitones) (j) right (7 Semitones)

The spectrograms of samples whose pitch is boosted with different semitone. In this example, we present the visualization of two benign audio

(with the labels ‘left’ and ‘right’) and their boosted versions. As shown in this figure, the fundamental frequency variations in the spectrogram become more

pronounced as the semitone increases.

Algorithm 2 The Algorithm of Voiceprint Selection and Voice
Conversion (VSVC)

Require: Benign dataset D, the number of backdoors M, poi-
soning rates for M poisoned subsets {yi}l.ni |» the number
of timbre candidates K, timbre candidates Cg, and target
tabels | “”}M

abels \yr7y

for k in rangle_(K ) do

1:

2: S_e < V(Cy); // Extract the voiceprint features.

3: end for

4: for i in range(K) do

5: for j in range(K) do

6: Sim[i][j] = d(S_e?, S_eV)) // Generate a simi-
larity matrix based on the distance between each pair.

7: end for

8: end for

9: Cyy = GreedySearch(Sim, M) /I Select M suitable
timbre candidates.

10: G = Train(Cyy) // Training the voice conversion model.

11: for i in range(M) do _

122 D & Extract(D— ') DY, yi-|DI) I/ Extract M
disjoint subsets for poisoning. _

3 DY A (G, i), Y, y) € DY} /iGenerate
voice-converted poison samples.

14: end for .

15: D, =D — M, D

16: D= Dy U (Uz]‘il D(pl))

Ensure: The poisoned dataset D generated by our VSVC.

on the SCD-10 dataset. The example of the spectrograms of
samples with different timbres is shown in Figure 7. As shown
in Table X, the ASRs of VSVC are similar across all evaluated
timbres. Specifically, the ASRs are larger than 91% in all
cases, while the decrease of benign accuracy compared to ‘no
attack’ is only about 1%. These results indicate that timbre
selection has mild effects on our attack. The adversaries can
select any timbre based on their needs.

100 100

. BA = BA

95 ASR | 95 ASR
90 90
85 85
80 80
75 75

70 yes no up down left 70 yes no up down left

(a) PBSM (b) VSVC
Fig. 6. The effects of the target label on our PBSM and VSVC attacks on

the SCD-10 dataset.

TABLE X

THE ATTACK SUCCESS RATE (%) OF OUR VSVC ATTACK WITH DIFFER-
ENT TIMBRES ON THE SCD-10 DATASET

Timbre) l\lfoe(;re‘fi LSTM  ResNet-18 KWT  EAT
@ BA (%) | 93.56 94.88 91.04 93.13
ASR (%) | 98.52 97.51 9871 91.33

®) BA (%) | 93.32 94.76 9136 9321
ASR (%) | 99.08 98.53 98.81  93.11

© BA (%) | 92.88 94.23 90.98  92.89
ASR (%) | 97.60 96.65 97.87  92.30

@ BA (%) | 93.15 94.22 90.77  92.78
ASR (%) | 98.15 96.73 98.69  92.14

© BA (%) | 92.61 94.35 9133 9239
ASR (%) | 99.17 98.92 99.08  94.47

TABLE XI

THE PERFORMANCE OF VSVC WITHOUT AND WITH VOICEPRINT SELEC-
TION UNDER THE MULTIPLE-BACKDOOR SETTING

Method| | Metric), Model—> | LSTM  ResNet-18 KWT  EAT
BA (%) 9123 9458 8854 9143
VSVC (wlo) ASR (%) 89.10 9124 9234 87.65
BA (%) 9205 9505  90.13 93.14
VSVC (wh) ASR (%) 9277 9778 9703 9378

6) Effects of the Voiceprint Selection: To verify that
voiceprint selection is critical for our VSVC under the
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The spectrograms of samples with different timbre. In this example, we present the visualization of two benign audio (with the labels ‘left’ and

‘right’) and their variants with different timbres. As shown in this figure, the spectrograms of our VSVC with different timbres remain normal to human

inspection, although there are notable differences across them.
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Fig. 8. The resistance of our PBSM and VSVC to fine-tuning.
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Fig. 9. The resistance of our attacks to model pruning.

multi-backdoor setting, we compare its attack success rate to
that of its variant where we randomly select timbre candidates
for voice conversion. In these experiments, we select three
timbre candidates for discussions. As shown in Table XI,
although the random selection variant can also have some
attack effects, the introduction of voiceprint selection can
significantly improve attack effectiveness. Specifically, the
attack success rates of VSVC are 5% higher than those of
its random selection variant in almost all cases. These results
verify the effectiveness of the voiceprint selection introduced
in our VSVC.

D. The Resistance to Potential Defenses

Currently, there are many backdoor defenses designed to
reduce backdoor threats in image classification tasks [62],
[63], [64]. However, most of them cannot be directly used
in audio tasks since they are specified for the image domain.
Accordingly, in this paper, we evaluate our attacks under three

classical and representative cross-domain defenses, including
model pruning [65], fine-tuning [66], and trigger filtering.
We conduct experiments with the ResNet-18 model on the
SCD-10 dataset for simplicity. Unless otherwise specified, all
other settings are the same as those illustrated in Section IV-A.

1) The Resistance to Fine-tuning: As a representative
backdoor-removal method, fine-tuning [66] intends to remove
model backdoors by fine-tuning it with a few local benign
samples. This method is motivated by the catastrophic forget-
ting property [67] of DNNs. In our experiments, we exploit
10% of benign training samples as our benign data and set
the learning rate as 0.005. As shown in Figure 8, the attack
success rate decreases with the increase of the tuning epoch.
However, even at the end of this process, the ASRs are still
larger than 45% for both our PBSM and VSVC. These results
verify that our attacks are resistant to fine-tuning to a large
extent.

2) The Resistance to Model Pruning: As another represen-
tative backdoor-removal defense, model pruning [65] aims to
remove model backdoors by pruning neurons that are dormant
during the inference process of benign samples. This method
is motivated by the assumption that backdoor and benign
neurons are mostly separated in attacked DNNs. As shown in
Figure 9, the attack success rates are significantly decreased
when pruning large amounts of neurons. However, it comes at
the cost of a sharp decrease in benign accuracy. Specifically,
the ASR decreases by almost the same amount as the BA for
both PBSM and VSVC. This is mostly because the assumption
of model pruning does not hold in our attacks due to their
global and complex trigger designs. These results verify the
resistance of our attacks to model pruning.

3) The Resistance to Trigger-removal Defense: To deacti-
vate the potential backdoor in attacked DNNs, the defenders
may remove its high-pitched signals, low-pitched signals, and
noises, to remove potential trigger patterns of the suspicious
testing audio. Obviously, this method has minor effects on our
VSVC since we change the global features of its poisoned
samples. However, it may defeat our PBSM since we inject
a high-pitched signal after boosting the pitch. Accordingly,
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TABLE XII

THE ATTACK SUCCESS RATE (%) OF PBSM-INFECTED DNNS ON PITCH-
BOOSTED SAMPLES WITH (W/) AND WITHOUT (W/O) INJECTING THE
HIGH-PITCH SIGNAL ON SCD-10 AND SCD-30

Method—
Dataset ], PBSM (w/o) PBSM (w/)
SCD-10 65.04% 95.78%
SCD-30 70.62% 96.63%
100 s PBSM
80 VSVC
s TUAP
60
40
20
0 LSTM ResNetl8 KWT EAT

Fig. 10. Clean-Label Attacks.

== PBSM

80 vsvC
60
40
20

O7"ISTM ResNet18  KWT EAT

Fig. 11. Over-the-Air Attacks.

TABLE XIII

THE BENIGN ACCURACY (%) OF OVER-THE-AIR ATTACKS
ON THE SCD-10 DATASET

Method|, Model— | LSTM  ResNet-18 KWT EAT
No Attack 93.51 94.87 90.31 93.21
PBSM (Ours) 92.78 94.23 90.28 92.12
VSVC (Ours) 92.81 93.56 90.03  92.22

we examine whether our PBSM attack is still effective when
using pitch-boosted samples without injecting the high-pitch
signal to query the PBSM-infected DNNs. As shown in
Table XII, our attack can still reach satisfied attack success
rates (> 65%) even without the high-pitch signals. It is mostly
because our boosted pitch can also serve as a trigger pattern (as
we mentioned in Section III-C) which cannot be removed by
trigger filtering. It verifies the resistance of our attacks again.

E. Effectiveness of Our Attacks Under Various Settings

In this section, we discuss the attack effectiveness of our
methods under more difficult settings.

1) Attacks under the Clean-Label Setting: Although our
attacks are imperceptible, the label of the poisoned samples
usually differs from that of their clean versions. Accordingly,
users may identify the attack by inspecting the audio-label
relation when they can catch some poisoned samples. To fur-
ther demonstrate the effectiveness of our methods, we explore
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TABLE XIV

THE PERFORMANCE OF PBSM AND VSVC UNDER THE ALL-TO-ALL
SETTING ON SCD-10. IN THIS TABLE, WE PROVIDE THE RESULT PER
CLASS FOLLOWING THE SETTINGS IN BADNETS [7]

Class Accuracy (%) of PBSM VSvC
. Benign Model BA (%) ASR (%) | BA (%) ASR (%)
yes 95.70 95.71 92.19 93.75 93.36
left 97.38 96.26 91.39 96.63 95.13
off 96.57 95.04 90.08 96.18 89.70
on 97.97 97.15 96.34 96.75 94.72
g0 94.82 94.42 84.06 90.44 81.28
down 92.10 93.28 89.33 89.72 90.12
stop 96.79 97.59 93.17 95.58 94.38
no 90.87 90.48 84.52 90.87 81.35
right 96.53 95.75 92.66 94.21 93.45
up 97.11 98.16 93.02 96.32 92.65

whether they are still effective under the clean-label setting.
In these experiments, we only select samples from the target
class for poisoning instead of sampling data from all classes
and changing their label to the target one. Besides, we also
generalize TUAP [68], a representative clean-label backdoor
attack against videos, to attack audio for reference. Specif-
ically, we set the maximum perturbation size as 0.008 and
perturb the whole audio. In particular, TUAP requires a
pre-trained model to generate its trigger patterns but our
attacks do not. Specifically, we adopt a pre-trained benign
model having the same structure as the one used by adversaries
for TUAP. As shown in Figure 10, although the performances
are relatively weaker than those of attacks under the poisoned-
label setting, our attacks are still effective when poisoning
9% samples. Specifically, the average ASRs across all model
structures of PBSM and VSVC are 81% and 73%, respectively.
In particular, the performance of our attacks is on par with
those of TUAP, although they require fewer attack capacities
(i.e., having a pre-trained model). These results verify the
effectiveness of our methods under the clean-label setting.

2) Attacks under the Over-the-Air (Physical) Setting: To
evaluate the effectiveness of our attack methods in real-world
scenarios, we design a physical experiment to assess the
performance of our attacks under the over-the-air setting.
Specifically, we conduct these experiments in a room, where
we use computer speakers to play our backdoor audio and
a smartphone is used as the recording device to capture
the audio. The obtained audio is input into the attacked
DNNs for prediction. We measure the playback volume of
the audio and it is similar to that of a normal conversation.
We place the smartphone at a distance of 0.5 meters from the
speaker. As shown in Figure 11, although the performances are
relatively weaker than those of attacks under the digital setting,
our attacks are still effective in the real world. Specifically,
the average ASRs across all model structures of PBSM and
VSVC are 53% and 80%, respectively. The lower ASR of
the PBSM is mostly due to the limitations of our evaluated
device, which may not effectively capture high-pitched signals.
Besides, as shown in Table XIII, the benign accuracy of our
attacks is on par with that of the benign model. It verifies the
stealthiness of our attacks again.

3) Attacks under the All-to-All Setting: To further illustrate
the effectiveness of our PBSM and VSVC, we extend the
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Fig. 12. The t-SNE visualization of features of benign and poisoned

samples from the hidden feature space generated by PBSM-infected and
VSVC-infected models.

all-to-one attack setting to a more challenging all-to-all one,
where the target label y; of a poisoned sample (with ground-
truth class y) is set to yY = (y + 1) mod K. In particular,
we increase the poisoning rate to 15% due to the difficulty
of this task. We conduct experiments on the SCD-10 dataset
with ResNet-18. As shown in Table XIV, both PBSM and
VSVC can reach promising performance against samples from
all classes, although the performance may have some mild
fluctuations across them. These results confirm the feasibility
of our attacks under the all-to-all setting.

F. Analyzing Attacks in the Hidden Feature Space

In this section, we analyze why our PBSM and VSVC
attacks are effective from the behaviors of samples in the
hidden feature space of attacked DNNss.

1) Settings: In this section, we visualize the features of
poisoned samples generated by the backbone (i.e., the input
of fully-connected layers) of attacked DNNs via t-SNE [69].
For simplicity, we adopt 2,500 samples and exploit ResNet-18
trained on the SCD-10 dataset for our analysis.

2) Results: As shown in Figure 12, poisoned samples
(marked in black) cluster together regardless of their ground-
truth labels. In contrast, the benign samples form separate
clusters according to their ground-truth class. These phenom-
ena are consistent with predicted behaviors of the attacked
model where it ‘assigns’ the same label to all samples in
the same cluster. These results also verify the effectiveness
of our attacks, showing that they can force attacked DNNs
to learn features of triggers and ignore the benign features.
It enables attacked DNNs to minimize the distance between
poisoned samples in the feature space and associate the learned
trigger-related features with the target label.

V. POTENTIAL NEGATIVE IMPACTS AND LIMITATIONS

This paper mainly intends to design simple yet effec-
tive tools to evaluate the backdoor robustness of current
DNN-based speech recognition models. However, we rec-
ognize that our PBSM and VSVC methods resist existing
backdoor defenses and could potentially be exploited by
adversaries for malicious purposes. The adversaries may also
design similar attacks targeting other tasks, drawing inspiration
from our research. While effective countermeasures are yet to
be established, users can at least mitigate or even prohibit these
threats by exclusively using fully trusted training resources.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Our next step is to develop advanced defensive strategies
against our PBSM and VSVC attacks.

Although our attacks strike a good balance between
effectiveness and stealthiness, there are still some potential
limitations. First, our trigger patterns are manually specified
by the adversaries rather than generated through optimization.
We will discuss how to further improve our attacks by opti-
mizing trigger patterns. Secondly, we are currently randomly
selecting samples for poisoning without considering how to
select the best ones. We will explore more effective poisoning
strategies to further improve the effectiveness of our attacks
while maintaining a low poisoning rate.

VI. CONCLUSION

In this paper, we revealed that almost all existing
poison-only backdoor attacks against speech recognition are
not stealthy due to their simple trigger designs. To overcome
this deficiency, we proposed two simple yet effective attacks,
including pitch boosting and sound masking (PBSM) and
voiceprint selection and voice conversion (VSVC), inspired by
the elements of sound. Our attacks generated more ‘natural’
poisoned samples and therefore are more stealthy. We also
generalized and evaluated our attacks under more difficult
settings, such as all-to-all, clean-label, and physical ones.
However, we notice that the attack performance may have
some degrades in some cases under these settings. We will
explore how to alleviate this problem and design their defense
countermeasures in our future works. We hope that our
research can provide a deeper understanding of stealthy back-
door attacks in speech recognition, to facilitate the design of
more sure and robust speech recognition models.
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