
Using Eye Tracking Technology to Analyze the Impact of

Stylistic Inconsistency on Code Readability

Qing Mi, Jacky Keung, Jianglin Huang, Yan Xiao
Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong

Qing.Mi@my.cityu.edu.hk, Jacky.Keung@cityu.edu.hk, jianhuang7@cityu.edu.hk, yanxiao6-c@my.cityu.edu.hk

Abstract—A number of research efforts have focused in the
area of programming style. However, to the best of our knowl-
edge, there is little sound and solid evidence of how and to
what extent can stylistic inconsistency impact the readability and
maintainability of the source code. To bridge the research gap, we
design an empirical experiment in which eye tracking technology
is introduced to quantitatively reflect developers’ cognitive efforts
and mental processes when encountering the inconsistency issue.

Index Terms—programming style, stylistic inconsistency, eye
tracking technology, code readability, program comprehension

I. CONTEXT AND PROBLEM STATEMENT

Programming style can be viewed as a kind of personal

preferences when writing the source code, which commonly

relates to the program’s visual appearance (e.g., naming of

variables, how and when to use comments, indentation and

alignment). Due to different experiences and personalities,

developers usually have their very own programming styles,

yet these individually preferred programming styles may well

conflict with each other. When collaborating, it is highly likely

to degrade the readability and maintainability of the source

code being produced. The problem is referred to as stylistic
inconsistency in our previous research [2]. However, to the best
of our knowledge, there is little valid and reliable evidence

of how and to what extent stylistic inconsistency affects the

comprehensibility of the source code, which is the fundamental

problem that should be resolved first in this context. Thus, we

carefully plan an empirical experiment with which to bridge

the research gap. The expected contribution of our work is

two-fold: 1) Provide solid evidence of the impact of stylistic

inconsistency on source code comprehension. 2) Present a

useful and reusable research framework for analyzing the

influences different stylistic factors have upon code readability.

To accurately reflect developers’ cognitive efforts required

to comprehend a given program, we introduce eye tracking

technology to capture ocular indices (e.g., gaze position, pupil

size) as objective measurements. Basically, eye movements can

be characterized as a sequence of fixations and saccades.

• Fixation: a spatially stable gaze on an object of interest

that lasts for a certain period of time. The information

acquisition and processing mainly occurs during fixations,

which is the most relevant index to our experiment.

• Saccade: a quick and simultaneous movement of both

eyes from one location to another.

Eye tracking technology is an affordable and easy-to-use

approach enabling us to identify what a developer is indeed

viewing, for how long, and in what order, which already

has broad applications in the domain of usability evaluation,

cognitive interface design, and so forth. However, there are

only a few studies introduce eye tracking techniques and tools

into the context of software engineering research. Rodeghero

et al. [3] presented a novel tool for source code summarization

based on the findings of eye tracking study. Fritz et al. [1]

investigated how biometric sensors (i.e., eye tracking, EDA,

EEG) can be used to measure developers’ perceived difficulty

while working on a change task. Considering their success, we

employ eye tracking technology in this study. The fine-grained

measurements can establish effective relations between cog-

nitive processes and program comprehension, which provide

more credible evidence for our analysis as compared to the

tradition techniques such as survey and think-aloud strategy.

II. PROPOSED METHODOLOGY

In this section, we present a detailed description of the

controlled experiment, which is designed to empirically inves-

tigate the impact of stylistic inconsistency on code readability.

A. Independent Variables

The primary independent variable is the presence or absence

of stylistic inconsistency. Note that programming style is

essentially a multifaceted concept [2]. In this study, we focus

solely on typographic characteristics that represent the physi-

cal layout of the source code (e.g., indentation, alignment).

B. Dependent Variables

As is shown in Table I, a group of subjective and objective

measurements is proposed to represent code readability, which

is the primary dependent variable in this study. In addition

to the traditional measurements (e.g., NASA-TLX) that have

been widely used in cognitive research, we introduce a novel

variable, namely visual effort. The general consensus is that

ocular indices could effectively reflect individuals’ cognitive

responses and mental processes when solving a given task.

C. Secondary Variables

Secondary variables are a special type of independent vari-

ables that may affect the relationship between the primary

independent variables and the dependent variables. In this

study, we consider the following secondary variables:

• Development Experience: the level of professionalism.

The two possible values are expert and novice according

to the number of years involved in programming activity.

2017 IEEE International Conference on Software Quality, Reliability and Security (Companion Volume)

978-1-5386-2072-4/17 $31.00 © 2017 IEEE

DOI 10.1109/QRS-C.2017.102

579

2017 IEEE International Conference on Software Quality, Reliability and Security (Companion Volume)

978-1-5386-2072-4/17 $31.00 © 2017 IEEE

DOI 10.1109/QRS-C.2017.102

579

Authorized licensed use limited to: National University of Singapore. Downloaded on September 23,2021 at 12:00:56 UTC from IEEE Xplore. Restrictions apply.

TABLE I
DEPENDENT VARIABLES ADOPTED IN THIS STUDY AND THE CORRESPONDING MEASUREMENTS

Dimension Dependent Variable Measurement Description

Subjective Self-Report Effort NASA-TLXa Participant ratings for perceived workload.

Objective

Comprehension Test
Accuracy Correct answer rate for comprehension test.

Answer Time Average response time for completing the given task.

Fixation The total number of fixations on the given program. More fixations indicate less efficiency.

Saccade The total number of saccades. More saccades indicate more searching effort.

Visual Effort Gaze Time The amount of time spent viewing the given program. Longer duration indicates more difficulty.

Pupil Dilation The percentage change in pupil diameter. Larger pupil indicates more cognitive effort.

Blink Rate The relative change (from baseline) in blink rate. Lower blink rate indicates higher mental load.
aNASA Task Load Index: a widely used rating scale for assessing subjective mental workload.

• Style Preference: the preference of programming style,

which is used to determine if familiarity with a particular

programming style has an effect on experimental results.

D. Hypothesis

We then generate null hypothesis according to our research

objective in a parameterized form. H0: There is no significant

difference in X between different Y when performing compre-

hension tasks, where X is one of the dependent variables (i.e.,

self-report effort, comprehension test, visual effort), and Y is

one of the independent variables (i.e., stylistic inconsistency,

development experience, style preference). By replacing the

parameters, we can obtain the corresponding null hypothesis.

E. Stimuli and Task Design

The stimuli shown to the participants are a series of code

snippets conforming to different programming styles. As we

focus solely on the influences of typographic variations, all

other respects are deliberately made equal. To avoid the

carryover effects, we carefully plan a between-subjects design.

All participants are evenly divided into two groups. In the

Control Group, participants come to a set of code snippets

with a consistent programming style, whereas in the Treatment
Group, the code snippets alternate with different programming

styles to simulate a scenario of stylistic inconsistency. The

primary task for participants is to answer the questions accom-

panied by each code snippet. To alleviate the learning burden,

each task is designed to take only a short time to complete.

F. Experimental Procedure

Referring to previous studies (including but not limited to

[1], [3]), the procedure of our experiment is designed as fol-

lows: 1) Participants are expected to sign an informed consent

form. 2) Calibrate eye tracker (i.e., the device used to track

eye movement in an unobtrusive way) for each participant due

to varying eye characteristics. 3) The experimental procedure

and main tasks are introduced to participants, but not the

true objective. Also, participants are told that they are free

to withdraw from the experiment at any time they want. 4)

A pilot experiment is performed to familiarize participants

with the equipment and the corresponding workflow. The data

obtained in this stage will be discarded without any analysis.

5) In order to guarantee a consistent performance, participants

are required to rest 1-2 minutes at intervals for relaxation.

6) For each task, participants are instructed to view a certain

code snippet, and then complete a post-hoc comprehension test

that consists of 1-2 objective questions. Both the code snippet

and the questions are displayed on one screen. Eye movement

data is implicitly captured as the participants solving the given

task. 7) After each task, participants are required to report their

comprehension effort using NASA-TLX. 8) A post-experiment

questionnaire is conducted to collect the participants’ demo-

graphics (e.g., age, gender, ethnicity, education, development

experience, style preference). During the entire experimental

procedure, stage 5-7 may appear several times sequentially.

III. CONCLUSIONS

As no conclusive evidence in literature has shown that

how and to what extent stylistic inconsistency degrades code

readability and maintainability, we carefully plan a controlled

experiment to bridge this research gap, in which eye tracking

technology is introduced to capture participants’ cognitive

responses and mental processes. We believe that our results

will be beneficial for both researchers and practitioners to

better understand the stylistic inconsistency issue, and take

further actions to improve code readability as the ultimate goal.

ACKNOWLEDGMENTS

This work is supported in part by the General Research

Fund of the Research Grants Council of Hong Kong (No.

125113, 11200015 and 11214116), and the research funds of

City University of Hong Kong (No. 7004683 and 7004474).

REFERENCES

[1] T. Fritz, A. Begel, S. C. Müller, S. Yigit-Elliott, and M. Züger. Using
psycho-physiological measures to assess task difficulty in software devel-
opment. In Proceedings of the 36th International Conference on Software
Engineering - ICSE 2014, pages 402–413, New York, New York, USA,
2014. ACM Press.

[2] Q. Mi, J. Keung, and Y. Yu. Measuring the stylistic inconsistency
in software projects using hierarchical agglomerative clustering. In
Proceedings of the The 12th International Conference on Predictive
Models and Data Analytics in Software Engineering, PROMISE 2016,
pages 5:1–5:10, New York, NY, USA, 2016. ACM.

[3] P. Rodeghero, C. Liu, P. W. McBurney, and C. McMillan. An
Eye-Tracking Study of Java Programmers and Application to Source
Code Summarization. IEEE Transactions on Software Engineering,
41(11):1038–1054, nov 2015.

580580

Authorized licensed use limited to: National University of Singapore. Downloaded on September 23,2021 at 12:00:56 UTC from IEEE Xplore. Restrictions apply.

