
SUBMITTED TO IEEE TRANSACTIONS ON RELIABILITY, VOL. XX, NO. XX, XXXX 2023 1

UniAda: Universal Adaptive Multi-objective
Adversarial Attack for End-to-End Autonomous

Driving Systems
Jingyu Zhang, Jacky Wai Keung, Senior Member, IEEE, Yan Xiao, Yihan Liao, Yishu Li, and Xiaoxue Ma

Abstract—Adversarial attacks play a pivotal role in testing
and improving the reliability of deep learning (DL) systems.
Existing literature has demonstrated that subtle perturbations
to the input can elicit erroneous outcomes, thereby substantially
compromising the security of DL systems. This has emerged
as a critical concern in the development of DL-based safety-
critical systems like Autonomous Driving Systems (ADSs). The
focus of existing adversarial attack methods on End-to-End (E2E)
ADSs has predominantly centered on misbehaviors of steering
angle, which overlooks speed-related controls or imperceptible
perturbations. To address these challenges, we introduce Uni-
Ada—a multi-objective white-box attack technique with a core
function that revolves around crafting an image-agnostic adver-
sarial perturbation capable of simultaneously influencing both
steering and speed controls. UniAda capitalizes on an intricately
designed multi-objective optimization function with the Adaptive
Weighting Scheme (AWS), enabling the concurrent optimization
of diverse objectives. Validated with both simulated and real-
world driving data, UniAda outperforms five benchmarks across
two metrics, inducing steering and speed deviations from 3.54◦ to
29◦ and 11 km/h to 22 km/h on average. This systematic approach
establishes UniAda as a proven technique for adversarial attacks
on modern DL-based E2E ADSs.

Index Terms—Adversarial Attacks, White-box Attacks, Multi-
objective Optimization, Autonomous Driving, Deep Learning

I. INTRODUCTION

AUTONOMOUS driving has brought about a transfor-
mative shift in the driving experience, showcasing the

immense potential to significantly reduce accidents attributed
to human errors and alleviate traffic congestion challenges [1].

There are two main approaches to implementing the ADS:
modular [2] and End-to-End (E2E) [3]. Fig. 1 gives a simple
architecture overview of these two systems. The conventional
modular approach decomposes the system into interconnected
modules encompassing perception, decision-making, planning,
and control [2], [4], [5]. Recent advancements in deep learning

This work is supported in part by the General Research Fund (GRF)
of the Research Grants Council of Hong Kong, the industry research
funds of City University of Hong Kong (7005217, 9220097, 9220103,
9229029, 9229098, 9678149), National Natural Science Foundation of China
(No.62025604), and in part by Shenzhen Science and Technology Program
(No. KQTD20221101093559018). (Corresponding author: Yan Xiao.)

Jingyu Zhang, Jacky Wai Keung, Yihan Liao, Yishu Li and Xiaoxue
Ma are with Department of Computer Science, City University of
Hong Kong, Hong Kong SAR (e-mail: jzhang2297-c@my.cityu.edu.hk;
Jacky.Keung@cityu.edu.hk; yihanliao4-c@my.cityu.edu.hk; yishuli5-
c@my.cityu.edu.hk; xiaoxuema3-c@my.cityu.edu.hk)

Yan Xiao is with School of Cyber Science and Technology, Shen-
zhen Campus of Sun Yat-sen University, Shenzhen, China (e-mail: xi-
aoy367@mail.sysu.edu.cn).

Fig. 1: Overview of Modular ADS pipeline (top) and E2E
Deep Learning-Based ADS pipeline (bottom)

have spurred interest in E2E methods, which combine multiple
modules into a single deep neural network (usually CNN-
based) model. E2E ADSs predominantly input sensor data
(e.g., RGB images) and directly output numerical control ac-
tions such as steering and acceleration. While E2E ADSs have
exhibited remarkable success [6]–[9], they remain susceptible
to malicious input data, including misleading corner cases or
adversarial examples [10]–[13].

Existing studies have delved into generating transformed or
adversarial images as inputs to reveal the misleading prediction
of the ADS under test [10]–[13]. Usually, transformed images
result from noticeable transformations applied to original in-
puts. Adversarial examples [14]–[18] involve subtle impercep-
tible perturbations to original data, avoiding human detection.
These studies explore diverse transformations or perturbations
to the input images and analyze their impact on steering
actions. These range from modifying weather conditions [11],
[19], [20] to introducing small black occlusions [13]. However,
these efforts fall short in comprehensively testing ADSs,
marked by three limitations.

• Limited Vehicle Controls Testing: Existing studies [10]–
[12], [21] mainly concentrate on attacking steering con-
trol, while neglecting speed-related controls. This falls
short of testing the security of real-world driving. No-

SUBMITTED TO IEEE TRANSACTIONS ON RELIABILITY, VOL. XX, NO. XX, XXXX 2023 2

tably, no literature exists on targeting image inputs solely
to trigger errors in both steering and acceleration controls
for E2E ADSs based on deep learning.

• Constrained Testing Scenarios: Current testing sce-
narios lack diversity. For instance, SelfOracle proposed
by Stocco et al. [22] exclusively focuses on highway
scenarios, excluding intersections, traffic lights, pedestri-
ans, and other vehicles. Similarly, attack techniques like
DeepBillboard [10] and PhysGAN [12] concentrate on
driving scenarios containing billboards. The state-of-the-
art technique, DeepManeuver [21], exclusively perform
attacks within a simulator, lacking the testing of real-
world scenarios.

• Image-specific or Unnatural Perturbations: Many ex-
isting techniques generate perturbations or transforma-
tions specific to individual images [11], [13], [19], [20].
Alternatively, they produce perturbations easily detectable
by humans, such as unnatural billboard replacements
[10], [12], [21]. These limitations prompted our explo-
ration of an adversarial perturbation—a subtle, human-
imperceptible modification capable of consistently induc-
ing errors in both speed and steering controls across a
sequence of images (e.g., a driving record).

In addressing these shortcomings, we design UniAda that
leverages adaptive multi-objective learning to generate uni-
versal adversarial perturbations for ADSs. Notably, we term
an adversarial perturbation as universal when it consistently
triggers errors larger than a predefined threshold across most
images sampled from the data distribution [23], [24], thereby
transcending image-specific constraints. There could still exist
a limited number of images within the distribution where the
generated universal perturbation fails to trigger errors surpass-
ing the predefined threshold. In our paper, we focus on the case
where the distribution represents the set of images describing
a driving scenario (e.g., car stops for a jaywalking pedestrian).
To demonstrate the universality, we report the percentage of
images that our generated perturbation attacks successfully by
the Success Rate metric with four different tested thresholds
for both objectives. The results have shown that UniAda can
successfully attack 96.3% images with steering error larger
than 3.5◦, which is a substantial improvement compared to
baselines.

More specifically, UniAda optimizes a multi-objective func-
tion during perturbation generation. To achieve universality,
UniAda establishes a joint optimization function through the
summation of multi-objective functions associated with each
image within the input driving record.

Through iterative gradient descent, the joint function is
minimized, facilitating the search for the perturbation. The re-
sultant perturbation consistently triggers errors across multiple
model predictions for most input images.

Departing from rudimentary uniform weighting or exhaus-
tive grid search for objective weights, we propose the Adaptive
Weighting Scheme (AWS), inspired by Chen et al. [25]. AWS,
a gradient-based weight adjustment method, strives to balance
varying objective weights to ensure all objectives are trained
at a similar rate.

This empowers UniAda to iteratively determine the opti-
mal weight combination, enhancing the acquisition of shared
feature representations for diverse objectives. To test the ef-
fectiveness of AWS, we proposes a variant of UniAda, dubbed
UniEqual, which shares the identical algorithm concepts but
omits the use of AWS. We also conduct statistically analysis
(i.e., t-test) to intuitively show the difference between UniAda
and UniEqual, which implies that AWS brings a statistically
significant improvement in most cases.

We evaluate UniAda on 14 urban driving videos selected
from four datasets (i.e„ Carla100 [8], Kitti [26], Udacity [9],
Dave [27]) for two objectives (Steering and Acceleration) with
three victim ADSs (i.e, CILRS, CILR, MotionTransformer).
Our results demonstrate UniAda’s superiority over five bench-
marks (DeepManeuver [21], DeepBillboard [10], Perturbation
Attack [28], FGSM [15], UniEqual) in terms of key evaluation
metrics—Mean Error and Success Rate. Notably, UniAda
achieves the highest mean error in steering (29.2◦ for CILRS,
25.6◦ for CILR, and 3.54◦ for MotionTransformer), which is
6.6◦, 8.6◦ and 2.93◦ higher than the single-objective state-
of-the-art method DeepManeuver. Furthermore, compared to
multi-objective techniques (i.e., Perturbation Attack, FGSM
and UniEqual), UniAda emerges as the most effective solution
for both objectives on average for all three models in almost
all cases.

We summarize the key contributions of this paper as fol-
lows:

(1) We propose UniAda, a novel attack technique for DL-
based E2E ADSs that can generate multi-objective universal
adversarial perturbations for the input driving video. UniAda is
effective in triggering errors on three state-of-the-art DL-based
E2E ADSs for both steering and acceleration controls tested
with both simulated and real-world data. To the best of our
knowledge, we are the first to conduct imperceptible image-
agnostic offline attacks to induce multi-objective misbehaviors
for E2E ADSs.

(2) We propose a new strategy, Adaptive Weighting Scheme
(AWS), employed in UniAda for balancing different objectives
in a real-time manner, which maintains consistent training
rates for each objective. The effectiveness of AWS is validated
by comparing UniAda with the equal-weighted counterpart,
UniEqual.

(3) We validate the effectiveness of the multi-objective
attack, by comparing it with single-objective counterparts.
Additionally, we assess UniAda’s effectiveness in urban traffic
under both simulated and real-world driving environment.

II. RELATED WORK

A. Deep Learning in Autonomous Driving

The integration of deep learning into E2E autonomous sys-
tems [29]–[31] traces back to the late 1980s, Pomerleau et al.
[32] built the Autonomous Land Vehicle in a Neural Network
(ALVINN) system which uses a shallow three-layer network.
Later in 2016, Bojarski et al. [6] trained a Convolutional
Neural Network (CNN) to directly map raw image pixels from
a single front-facing camera to steering commands. Similarly,
in the context of the Udacity self-driving car challenges [9],

SUBMITTED TO IEEE TRANSACTIONS ON RELIABILITY, VOL. XX, NO. XX, XXXX 2023 3

researchers embarked on constructing cutting-edge agents that
interpret sensor inputs to govern vehicle operations. More re-
cently, Codevilla et al. [8] introduced an innovative conditional
imitation learning framework, which takes RGB images, speed
measurements and navigation instructions as inputs, generating
steering and acceleration-related car controls as outputs.

B. Attack Deep Learning Systems

In the realm of contemporary software development, the
widespread integration of deep learning has yielded satisfac-
tory outcomes. However, extensive research [12], [15], [17],
[33]–[39] has demonstrated that many deep learning models
remain susceptible to intentional adversarial attacks designed
to provoke misbehavior in these models. A prevalent form of
such attacks involves the use of adversarial examples, charac-
terized by imperceptible or quasi-imperceptible perturbations
from the original inputs. By feeding the adversarial examples
to the deep learning model, the model can produce different
predictions from the original ones. This explores and reveals
the vulnerabilities of the deep learning systems.

Out of all the vulnerabilities, the offline white-box attack
poses the most significant threat to deep learning systems, due
to the full access to the targeted model and potential iterative
interactions with it [40].

Both offline attacks and white-box attacks are categorized
within the realm of adversarial attacks. Offline attacks [15],
[28], [41], [42] apply the adversarial perturbation on a pre-
acquired fixed dataset, where the attack performance is com-
monly evaluated by the prediction error between original and
adversarial prediction. Specifically, offline attacks exploit the
vulnerabilities without requiring a real-time interaction with
the target system, allowing attackers to carefully analyze and
manipulate models to design the attack technique.

In the field of white-box attacks [43], [44], information
regarding internal model structures and parameters are avail-
able for the attack techniques to trigger erroneous behavior,
primarily beneficial for software verification. This in-depth
understanding enables the attacker to formulate highly tar-
geted and effective adversarial perturbations to manipulate
the model’s behavior. In the context of attacking DNNs,
white-box attacks normally modify original inputs by using
gradients computed with respect to relevant metrics, thereby
inducing erroneous prediction (e.g., misclassification). For
example, FGSM [15] utilizes gradient-based white-box attacks
in image classification tasks such that the perturbed image
will be wrongly classified, e.g., a perturbed dog image will be
misclassified as cat by the DNN model with high accuracy.

In this paper, we focus on an offline white-box gradient-
based attack strategy, which generates adversarial perturba-
tions aimed at inducing misbehavior in DNN-based End-to-
End autonomous driving systems.

C. Offline Attacking Autonomous Driving Systems

In the domain of offline attacks on DNN-based Autonomous
driving systems, a plethora of methodologies has been pro-
posed. Many of these approaches, such as [10]–[13], [19], are
designed to generate adversarial images as sensor inputs, with

the objective of triggering errors in the targeted ADSs. These
methods seek transformations from original images that result
in transformed or adversarial images, capable of inducing
model misbehavior. For instance, DeepXplore [13] employs
neuron coverage and differential behavior-based metrics within
a white-box testing framework to create transformed images
that mislead the steering angle predictions of ADSs. These
transformed images might exhibit different lighting conditions
or incorporate small black occlusions when compared to the
originals.

The aforementioned studies primarily focus on image-
specific transformations, in which they apply distinct transfor-
mations to different images, rendering a single transformation
ineffective across multiple images. In recent work, some stud-
ies [10], [12], [21], [45] have pushed beyond this constraint
by seeking transformations capable of consistently inducing
model misbehavior, affecting sequences of images (i.e., driving
records). Notably, Von et al. (DeepManeuver) [21], Zhou
et al. (DeepBillboard) [10] and Kong et al. (PhysGAN) [12]
utilize variants of prediction differences as target metrics to
generate adversarial perturbations. These methods identify a
universal perturbation pattern that can persistently provoke
misbehavior on steering predictions across a sequence of
driving images. However, their focus is confined to specific
testing scenarios involving billboard appearances and targeting
steering angle misbehavior exclusively. Moreover, DeepMa-
neuver exclusively performs attacks within a simulator.

The majority of these techniques concentrate on single-
objective attacks on E2E ADSs, primarily aiming at mis-
leading steering predictions. Beyond steering angle, speed-
related controls bear equal significance in driving scenarios.
This paper introduces a multi-objective attack strategy for E2E
ADSs, generating perturbations that remain imperceptible to
human eyes, yet consistently elicit model misbehavior across
multiple controls. We also propose an adaptive weighting
scheme to balance the influence of each objective, ensuring
comparable training rates and higher efficiency in finding
complementary perturbation patterns.

III. PRELIMINARIES

Adversarial Attacks: In this section, we provide a concise
and formulated overview of adversarial attacks, covering both
image classification and regression problems. Additionally, we
elucidate the concept of universal perturbation.

In adversarial attacks, the generated perturbation τ can
trigger errors in the model prediction. By adding a subtle
τ to the input sample x (e.g., an RGB image), a model
m trained with optimal parameter µ can make a different
prediction (mostly wrong) from the original. Specifically, for
image classification problems, we wish to find a vector τ that
can induce the CNN model to predict different class labels for
x and x+ τ , satisfying:

m(x+ τ ;µ) ̸= m(x;µ) s.t. ∥τ∥p ≤ ϵ (1)

where ∥ · ∥p indicates the Lp norm, and L0, L2 and Linf

are commonly used metrics [15], [24]. The constraint is to
ensure x+ τ and x are visually the same to human eyes. For

SUBMITTED TO IEEE TRANSACTIONS ON RELIABILITY, VOL. XX, NO. XX, XXXX 2023 4

Fig. 2: Examples of adversarial attacks on image classification and regression tasks. Pixel values of perturbation τ are scaled
for visibility.

regression problems, the goal of the adversarial attack is to find
τ that maximizes the discrepancy between the two numerical
predictions, satisfying:

argmax
τ

|m(x+ τ ;µ)−m(x;µ)| s.t. ∥τ∥p ≤ ϵ (2)

Normally, in regression problems, the attack is considered
successful if the prediction difference is larger by a predefined
threshold [46].

Fig. 2 gives examples of adversarial attacks on the image
classification model (Fig. 2(a) with ϵ = 15) and autonomous
driving regression model (Fig. 2(b) with ϵ = 2). Specifically,
for the classification task, the CNN model is very vulnerable
to a subtle perturbation, which changes its prediction from
Labrador Retriver with 41.82% confidence to Saluki with
27.46% confidence. For the regression task, we show an
example of a CNN-based E2E autonomous driving model
that predicts the steering angle value from the image. The
added imperceptible perturbation changes its prediction from
0.1◦ to 21◦. The above example shows that CNN models are
vulnerable to such attacks.

For a Universal Perturbation [24] (i.e., image-agnostic),
the goal is to seek a numerical vector τ that can successfully
fool almost all datapoints sampled from X, where X denotes
a distribution of data. In regression problems, a universal
perturbation τ satisfies:

|m(x+ τ ;µ)−m(x;µ)| > δ

s.t. ∥τ∥p ≤ ϵ for most x ∈ X
(3)

In our paper, X is a distribution of images, represented by
a driving record. We attack three CNN-based autonomous
driving models (introduced in Section VI-B2) that perform
a multi-output regression task, which takes an RGB image
as input and outputs continuous numerical steering angle and
acceleration prediction.

IV. THREAT MODEL

Our work focuses on attacking DNN-based autonomous
driving models in the image regression domain. We consider
four types of threat model in this work: adversarial falsifica-
tion, adversary’s knowledge, adversarial specificity, and attack
frequency [40].

Adversarial Falsification: For intentional attack, the at-
tacker can design an adversarial example (x + τ) to fool
the model m into making a wrong decision. However, this

manipulated example is not visually different from x to a
human observer. For unintentional attack, the attacker can
unintentionally send an input x̂ that is sampled from a dis-
tribution different from the training distribution. Specifically,
x̂ has a label y, and m(x̂) ̸= y. In this case, the model fails
on x̂ due to the distribution shift.

Our goal is to perform intentional attack on regression
problem, which adds a subtle perturbation τ on sample image
x to cause misbehavior on autonomous driving model m. The
adversarial image is similar to the original image and conforms
to the training distribution.

Adversary’s Knowledge: Based on the available knowl-
edge to the model, attacks can be categorized into white-
box, grey-box and black-box. They correspond to full access,
partial access and no access to the model internal structure and
parameter information. In our paper, we perform white-box
gradient-based attacks, where we know the model architec-
ture, hyperparameters, model weights. We generate adversarial
examples by calculating model gradients with our designed
objective function.

Adversarial Specificity: This includes targeted attacks and
non-targeted attacks. For targeted attacks, the attacker mis-
guides DNN to a specified prediction output (e.g., specified
predicted class for classification problem, bigger/smaller pre-
dicted values for regression problems). In non-targeted attacks,
the adversarial output can be arbitrary except the original one.

We construct a targeted adversarial sample that follows
specified attack direction. For example, we ask UniAda to
construct an adversarial sample that can induce the model to
turn right (i.e., to predict bigger steering value) instead of turn
left.

Attack Frequency: This contains one-step attacks and
iterative attacks, which differs from the number of interactions
with the victim model. We use iterative attacks that take
multiple times to update the adversarial examples to reach
a better performance.

V. METHODOLOGY

A. UniAda Overview

This section outlines UniAda, which employs adaptive
objective weights to create a universal adversarial pertur-
bation. This perturbation consistently misleads the targeted
model across multiple images, impacting several car controls
simultaneously. The overview of UniAda is shown in Fig. 3.
Given a driving video encompassing dozens of images and

SUBMITTED TO IEEE TRANSACTIONS ON RELIABILITY, VOL. XX, NO. XX, XXXX 2023 5

Fig. 3: UniAda Overview: Our attack technique contains two main optimization streams. The first one is the Universal Multi-
objective Attack (in green) to generate a perturbation that is influential to multiple images and multiple car controls (i.e.,
steering S and acceleration A). The second one is the Adaptive Weighting Scheme (in yellow), which iteratively balances the
objective weights to ensure similar training rates. Best viewed in colour.

initial objective weights, UniAda commences the perturbation
discovery through parallel optimization streams: Perturba-
tion Optimization and Objective Weight Optimization. These
streams evolve in tandem during each iteration step t.

In the perturbation optimization stream, each image inside
the input video is fed into the autonomous driving model. This
yields predictions for each car control, specifically steering
angle and acceleration, as depicted in step (1) ADS. Utiliz-
ing these predictions, UniAda computes individual losses for
each car control (LS , LA). Drawing from these losses and
the prevailing objective weights a′S , a

′
A, UniAda in step (2)

computes the joint optimization function (detailed explanations
can be found in Section V-B). Subsequently, employing a
gradient-based methodology, UniAda derives the joint func-
tion’s derivative with respect to the image, and the resultant
gradient G serves as the current perturbation proposal. G is
then leveraged to update the universal multi-objective pertur-
bation for the subsequent time step t+ 1.

Simultaneously, the weight optimization procedure starts,
enabling the dynamic adjustment of weights for each objective.
At a given step t, UniAda employs the ongoing objective
weights a′S , a

′
A, coupled with the losses (LS , LA), to calculate

four variables within step (3) Adaptive Weighting Scheme.
These variables contribute to the AWS loss. Subsequently,
UniAda computes gradients of the AWS loss fi with respect to
each objective weight ai. These gradients facilitate a gradient-
based update mechanism, resulting in refreshed balanced
weights at the following time step. Details for Adaptive

Weighting Scheme are elaborated in Section V-C.
To generate universal multi-objective perturbations, both

optimization processes iteratively proceed until the maximum
number of epochs is reached.

B. Universal Multi-objective Attack

We design the loss function [12] for each objective i
to maximize the difference between original and adversarial
model predictions:

Li(X
n
ori, τ) =

1

β
exp

{
− 1

β
(mi(X

n
ori + τ)−mi(X

n
ori))× di

}
∀n ∈ {1, ..., N}

(4)
The hyperparameter di = ±1 is the attack direction for
objective (car control) i, which is set to be −1/1 if we would
like to attack in the negative/positive direction (adversarial
prediction is learned to be smaller/larger than the original).

Notations encompass τ for perturbation at time t, Xn
ori

signifying the nth image frame inside the input video Xori,
and mi(X

n
ori + τ) representing the prediction of autonomous

driving model m for objective i from the perturbed adversarial
image Xn

ori+τ . β signifies the sharpness parameter. N denotes
the total number of images of the input driving record. Similar
to DeepBillboard, we use original prediction as the attack
reference.

Notably, prior work solely concentrated on perturbations
inducing deviations in the model’s steering angle predictions,

SUBMITTED TO IEEE TRANSACTIONS ON RELIABILITY, VOL. XX, NO. XX, XXXX 2023 6

disregarding speed-related car control objectives. To generate
a universal perturbation capable of concurrently influencing
multiple car controls, we devise a multi-objective loss as
follows:

O(Xn
ori, τ) =

C∑
i=1

aiLi(X
n
ori, τ) ∀n ∈ {1, ..., N} (5)

where C denotes the number of objectives, and parameter
ai reflects the weight assigned to objective i. In our case,
there are two objectives, steering and acceleration, denoted
by i = S and i = A, respectively. Diverging from a fixed
ai, UniAda introduces the Adaptive Weighting Scheme for
real-time updates to ai, effectively balancing each objective’s
contribution.

To generate a universally applicable perturbation that con-
sistently impacts all input images, UniAda find τ by optimiz-
ing the subsequent joint optimization function:

argmin
τ

N∑
n=1

O(Xn
ori, τ) (6)

The generation of perturbation integrates the joint objective
for all image frames within the video. Utilizing a gradient-
based technique, UniAda minimizes this joint function, itera-
tively refining τ .

C. Adaptive Weighting Scheme

During the multi-objective optimization process O =∑C
i aiLi (as depicted in Equation 5), it is critical to select

an appropriate weight for each objective. In our context,
they significantly affect the contribution of each individual
objective to the perturbation proposal. In the simplest case, one
may opt for equal weighted objectives, where each objective
is assigned a weight of ai = 1

C . In this case, the optimization
process may not capture the importance of each objective
accurately. Another option involves using computationally
expensive grid search methods [47], which systematically
explore a predefined set of values for each objective weight
and select the combination that maximizes performance. How-
ever, it becomes computationally impractical for problems
with a large parameter space. In our case, we employ an
adaptive method [25] dubbed Adaptive Weighting Scheme
(AWS), where ai can vary at each time step t during the
perturbation optimization process. AWS is a complementary
component integrated into the multi-objective optimization
process, allowing us to determine the optimal value for each
ai at each time step t. This ensures a balance in the contri-
bution of each objective for optimal perturbation searching.
Specifically, AWS updates each objective weight based on its
gradient to the AWS loss (Equation 7) at each step t. AWS
operates by assigning larger weights to objectives contributing
less (indicating under-training) and smaller weights to those
that are overly trained. Through AWS weight updates, both
objectives collectively contribute to the perturbation, ensuring
effective triggering of errors in both steering and acceleration
controls, rather than confining influence to just one.

The AWS loss is formulated to capture differences between
the weighted gradient norm for each objective i (reflecting

Algorithm 1 Adaptive Weighting Scheme.

Require: X̂ - mini-batch images at search time t
Require: ai - the weight of objective i at time t
Require: L0

i - initial loss for objective i
Require: lrgrad - hyperparameter, learning rate for AWS update
Require: γ - hyperparameter, strength of rebalance
1: for x in X̂ do
2: Compute Li(x),

∂Li(x)
∂x

∀i
3: end for
4: Compute AWS variables N i

X̂
, NX̂ , li, qi, f

grad
i ∀i at time t

5: Conditionally Update ai ← ai − lrgrad × fgrad
i

6: Normalize
∑

i ai = 1

objective i’s perturbation pattern’s impact on the universal
perturbation) and the target norm (representing the desired
influence of objective i’s perturbation on the universal per-
turbation). This target influence considers weighted gradient
norms of other objectives (N X̂) and the extent of misbehavior
in objective i compared to other objectives (qi)

γ . The AWS
loss fi for each i is expressed as follows:

fi =
∣∣N i

X̂
−N X̂ × (qi)

γ
∣∣ (7)

where fi consists of four variables, N i
X̂

, N X̂ , li, qi, with
li utilized in the computation of qi. These four variables
represent the objective-specific norm, objective-average norm,
the loss ratio that captures the inverse training rate for i,
and the relative inverse training rate for i, respectively. The
hyperparameter γ controls the strength of rebalance; larger
γ exerts greater restoring force to pull objectives back to
similar training rates. Detailed formulae for each variable are
presented below.

1. N i
X̂

= EX̂

[
∥ai ∂Li(x)

∂x ∥2
]
: the objective-specific norm1.

X̂ ⊆ Xori + τ denotes the mini-batch image set at the time
t, and x ∈ X̂ . N i

X̂
denotes the average of weighted gradient

norms over all images inside the mini-batch at time t. We treat
each image equally when computing the average.

2. N X̂ = Ei

[
N i

X̂

]
: an objective-average norm that aver-

ages the objective-specific norms across all objectives.
3. li =

EX̂ [Li(x)]

L0
i

: the loss ratio that captures the inverse
training rate for the objective i. A smaller value indicates a
higher training rate. Numerator is the batch average loss for
objective i at time t. The denominator denotes the initial loss
for the objective i, which is the mean loss of the original
prediction of i at time zero over all images in the given video.
The ratio is used to deal with different loss scales. With the
inclusion of this variable, the objective weights are adjusted
according to the misbehavior performance of i for the current
mini-batch images.

4. qi = li
Ei[li]

: the relative inverse training rate for the
objective i, where Ei[li] is the mean loss ratio over different
objectives. A smaller qi gives UniAda a hint that the objective
i is trained too much (i.e., loss Li decreases too fast) compared
to others, in which AWS will decrease its weight.

Algorithm 1 summarises the AWS process. For each image,
AWS computes objective loss Li(x) and its gradient (Lines 1-
3), retaining them for AWS variable computation (Line 4).

1∥ · ∥2 denotes Euclidean norm, it is computed after flattening the three-
dimensional input matrix to a 1D vector.

SUBMITTED TO IEEE TRANSACTIONS ON RELIABILITY, VOL. XX, NO. XX, XXXX 2023 7

TABLE I: UniAda Hyperparameters: describe the meaning of
each hyperparameters and their values used in the experiments.

Notation Description Value

lr Perturbation searching learning rate 0.2

lrgrad AWS learning rate 0.005

bs Batch size 5

β Sharpness parameter in multi-objective loss 2

Epochs Number of Epochs 250

γ AWS parameter controlling rebalance strength 10

θ Perturbation gradient rescale threshold 0.3

ϵ Maximum perturbation to the image {2, 5}

Line 5 performs objective weights update if the new weight
is positive. The positive weight constraint is grounded in the
necessity for Li(x) and O(x) to be positively correlated, en-
suring the minimization of Li ∀i during O(x) minimization.
Finally, the updated weights are normalized to ensure their
summation equates to 1 (Line 6).

D. Generating Adversarial Perturbations

The above two sections constitute two main optimization
streams: the perturbation optimization by the joint objective
(Equation 6) in the universal multi-objective testing, and the
objective weight optimization by AWS. Both streams operate
in a gradient-based manner and are iteratively updated at each
step t. The algorithm details are summarized in Algorithm
2, structured across four main stages: Input, Initialization,
Perturbation Searching (comprising two optimization streams),
and the Output stage. We elaborate on the details below.

Input: The algorithm requires four key inputs outlined in
the Require lines. These inputs encompass the input video
Xori, the autonomous driving model m responsible for pre-
dicting values across multiple car controls, the attack direction
di corresponding to each objective i, and hyperparameters
hyper. Table I explains the role and selected values of each
hyperparameter.

Initialization: Lines 1-5 initialize all variables needed.
Specifically, Line 1 creates a variable X to store all original
image frames within the video. Line 2 initializes the universal
multi-objective perturbation τ as a tensor of zeros, whose
dimension is the same as the input image. Line 3 initializes
objective weights ai uniformly. Line 4 computes initial loss
L0
i for objective i, which is used to compute the AWS variable

li. Lastly, Line 5 sets the training time t as zero.
Perturbation Searching: For each epoch, UniAda shuffles

all video images (Line 7) and implements learning rate decay
by a predefined schedule (reduced by a factor of 0.8 every
50 epochs, as standard in the DL community [48]) to avoid
local optima (Line 8). During each step t of searching, UniAda
iterates over mini-batches with batch size bs (Lines 9-10). It
subsequently computes single objective loss (Line 11), multi-
objective loss (Line 12), and corresponding gradients with
respect to each image (Line 13). Line 14 involves compu-
tation and storage of gradient norms used to determine AWS

Algorithm 2 UniAda.
Require: Xori - input video
Require: m - the targeted autonomous driving model
Require: di ∈ {+1,−1} - Direction of attack: accelerate/decelerate, left-

/right
Require: hyper − {lr, lrgrad, bs, β, Epochs, γ, θ, ϵ}, dictionary of input

hyperparameters
1: X = copy(Xori)
2: τ = zero(X[0].shape)
3: ai =

1
C
∀i ∈ {1, ..., C}

4: Compute L0
i ∀i

5: t = 0
6: for epoch in Epochs do
7: random.shuffle(X)
8: Adjust lr, lrgrad for each 50 epochs
9: for X̂ in X do

10: for x in X̂ do
11: Li(x) =

1
β
exp

{
− 1

β
(mi(x)−mi(xori))× di

}
∀i

12: O(x) =
∑C

i=1 aiLi(x)

13: Compute ∂O(x)
∂x

14: Compute ∥ai ∂Li(x)
∂x
∥2 ∀i

15: end for
16: G = 1

len(X̂)

∑
x∈X̂

∂O(x)
∂x

17: Conditionally Rescale G
18: Update τ ← Clipϵ(τ − lr ∗G)
19: Update X← Process(Xori + τ)

20: Compute N i
X̂
, NX̂ , li, qi, f

grad
i ∀i

21: Conditionally Update ai ← ai − lrgrad × fgrad
i

22: Renormalize
∑

i ai = 1
23: t = t+ 1
24: end for
25: end for
26: return τ

variable N i
X̂

. After completing traversal across all mini-batch
images in X̂ , UniAda generates gradient proposals ∂O(x)

∂x for
each image x in the mini-batch, alongside weighted gradient
norms ∥ai ∂Li(x)

∂x ∥2 for each image and objective i. Line 16
calculates average gradient proposals across X̂ . In instances
where gradients are too minimal to impact perturbation τ ,
inducing sluggish search, UniAda rescales average gradients G
by G = G× θ

∥G∥2
if ∥G∥2 < θ and ∥G∥2 ̸= 0 (Line 17). This

amplifies gradient magnitude, elevating its influence during
addition to τ . Subsequently, Line 18 updates total perturbation
τ via gradient descent, enforcing a maximum perturbation size
of ϵ to maintain imperceptibility. Afterward, all image frames
within X undergo updates, subject to processing for perceptual
fidelity (Line 19). This entails confining pixel values within the
range [0, 255]. Lines 20-22 encapsulate the AWS procedure,
as described in Algorithm 1. These steps iteratively unfold
until the maximum epoch limit is attained.

Output: Upon reaching the maximum epoch count, UniAda
yields a universal multi-objective perturbation τ for the input
video.

VI. EXPERIMENTS

We evaluate UniAda on three widely-used multi-output
autonomous driving models with 14 driving videos. The goal
of our evaluation is to answer the following research questions.

A. Research Questions

RQ1. UniAda Effectiveness: How effective is UniAda in
generating adversarial perturbations?

SUBMITTED TO IEEE TRANSACTIONS ON RELIABILITY, VOL. XX, NO. XX, XXXX 2023 8

To evaluate the effectiveness of UniAda in generating per-
turbations that trigger errors in multiple controls, we compare
its performance on 14 driving videos (7 simulated and 7 real-
world videos) with four existing methods (DeepManeuver,
Perturbation Attack, DeepBillboard, FGSM) on two evaluation
metrics (mean error and success rate).
RQ2. Adaptive Weighting Scheme Effectiveness: How can
the Adaptive Weighting Scheme assist the attack performance?

To assess the effectiveness of AWS, we introduce a variant
of UniAda dubbed UniEqual, wherein objectives are assigned
equal weights during the perturbation search process. By
comparing UniEqual with UniAda, we can observe the ex-
act impact of AWS. Furthermore, we graphically depict the
trajectory of each objective weight to provide insights into
the operation of AWS. We also conduct the statistical analysis
(t-test) to show the significance of the improvement.
RQ3. Multi-objective Attack Effectiveness: Does the multi-
objective adversarial attack improve the attack effectiveness
for all objectives simultaneously compared to the single-
objective attack?

Attacking multiple objectives together may yield a better
result for each objective than single-objective attacks, since at-
tacking diverse objectives can offer shared insights sometimes,
yielding a more comprehensive and effective perturbation
pattern. To answer this question, we compare the effectiveness
of the adversarial perturbation generated by the multi-objective
loss (Equation 5) with those by single objective loss (Equation
4).

B. Experimental Setup

This section provides a comprehensive overview of our ex-
perimental setup, encompassing datasets, victim autonomous
driving models, baseline methods, evaluation metrics, and
hyperparameters.

1) Dataset: Our experimentation is grounded in the use
of 14 driving videos in total, with 7 simulated videos and
7 real-world videos. For the simulated videos, we extracted
all 7 videos from the Carla100 dataset [8], which contains
realistic simulated driving data (e.g., RGB images, steering
and speed-related control data) captured by the central camera
with 100 hours of driving from an urban town of the Carla
simulator (version 0.8.4). For the real-world videos, we ex-
tracted: (1) Two videos from Dave testing dataset [27] which
contains 45,568 real-world driving images to test the NVIDIA
Dave model; (2) Three videos from Udacity self-driving car
challenge dataset [9] that contains 101,396 real-world driving
images captured by a dashboard-mounted camera of a human-
driven car; (3) Two videos from Kitti dataset [26] which
contains 14,999 real-world driving images from six different
scenes captured from a VW Passat station wagon equipped
with four cameras.

Our manual selection of videos captures various scenarios
under urban traffic, such as different weather conditions and
different driving maneuvers. Further details regarding these 14
videos are summarised in Table II.

2) Autonomous Driving Model: In the assessment, we
select three end-to-end autonomous driving models for testing:

TABLE II: Descriptions for the selected videos

Videos (No. of Imgs) Description

Carla Pedestrian (18) Stop for a pedestrian, clear sunset

Carla White Car (36) Stop for the front white car, wet noon

Carla Black Car (22) Stop for the front black car, clear noon

Carla Gray Car (42) Stop for the front gray car, clear sunset

Carla Blue Car (43) Driving Straight, following a blue car, clear sunset

Carla Red Light (66) Stop for the front red light, wet noon

Carla Light-blue Car (21) Stop for the front light-blue car, clear noon

Dave Curve1 (34) Turning left at crossroad, clear noon

Dave Straight1 (54) Driving straight, urban two-way road, clear noon

Udacity Straight1 (21) Stop for a white SUV, urban one-way road, clear noon

Udacity Straight2 (22) Driving Straight, urban one-way road, clear noon

Udacity Curve1 (15) Turning left, urban two-way road, dusk

Kitti Curve1 (21) Turning Right, urban one-way road, clear noon

Kitti Straight1 (21) Driving Straight, urban one-way road, clear noon

CILRS, CILR, and MotionTransformer. Table III lists the
dataset used for training and validation and the performance of
models. Following common practice [13], [49] in autonomous
driving research, we report Mean Square Error (MSE) between
actual and predicted values as a measure of model accuracy.
For consistency, we compute MSE on steering in radians and
acceleration in [0,1] for all models on their provided validation
sets.

CILRS and CILR are conditional imitation learning models,
proposed by Codevilla et al. [8]. CILR uses the ResNet percep-
tion module as the backbone to extract information from RGB
inputs. CILRS extends CILR architecture with an additional
speed prediction head to incorporate speed-related features
into the representation. They achieve outstanding performance
in Carla’s simulated urban traffic scenarios. Both models are
trained using 10 hours of expert demonstrations and validated
on a 2-hour subset (extracted from the Carla100 dataset). For
both models, we use public-available pre-trained weights 2.
Readers can refer to the original work [8] for training details
(e.g., training objectives, hyperparameter settings). On the
provided validation set, both models achieve 0.0002 MSE in
steering and approximately 0.03 MSE in acceleration.

MotionTransformer (MT) [50] utilizes RGB and optical
flow images to learn both position and motion information.
It employs two ResNet backbones for feature extraction from
RGB and optical flow images, followed by a transformer
encoder to distill knowledge from both. We use public-
available pre-trained weights provided by the original work
3. During their training process (please refer to the original
work [50] for training details), the first 90% of samples from
the Udacity self-driving car challenge dataset are used for
training, and the remaining 10% is used for validation. On
the validation set, MT achieves 0.002 MSE in steering and
0.0079 in acceleration, surpassing the widely-used steering
angle prediction model, NVIDIA’s DAVE2 [6], which only
achieves 0.0449 MSE in steering based on our experiments.

2https://github.com/felipecode/coiltraine
3https://github.com/chingisooinar/AI_self-driving-car

SUBMITTED TO IEEE TRANSACTIONS ON RELIABILITY, VOL. XX, NO. XX, XXXX 2023 9

Train & Val set Model Performance (MSE)
Steering Acceleration

Carla100 CILR 0.0002 0.0382

Carla100 CILRS 0.0002 0.0343

Udacity MT 0.0020 0.0079

TABLE III: Model Performance (MSE) on the provided vali-
dation set.

For the experimentation, only RGB input undergoes pertur-
bation, while other inputs (if there exists) remain unchanged.
To maintain consistency and simplicity, we convert the output
steering values from radians into degrees (◦) and acceleration
values into speed values (km/h) according to the data docu-
mentation.

3) Baseline: We test five baselines to evaluate the effec-
tiveness of UniAda. To ensure a fair comparison, for all
methods, we set a uniform maximum perturbation, we set the
attack surface to the whole image, and we perform targeted
adversarial attacks. We use the best hyperparameter values
reported in their paper for experiments.

Fast Gradient Sign Method (FGSM): Proposed by Good-
fellow et al. [15], FGSM is a one-step gradient-based attack
approach to craft image-specific adversarial perturbations. To
facilitate a meaningful comparison with UniAda, we extend
FGSM to perform targeted attacks on multiple car controls
by employing an equal-weighted multi-objective loss (same
loss as UniEqual) as the optimization criterion during the
perturbation search.

DeepBillboard (DB): Introduced by Zhou et al. [10], Deep-
Billboard represents an iterative state-of-the-art attack method.
It performs targeted attacks (intentionally misleads the model
to steer left or right) and consistently misleads the model’s
steering predictions. The adversarial perturbation pattern gen-
eration process is intrinsically linked to the constraint applied
to the steering angle. Due to this inherent constraint, unlike
FGSM, it is challenging to extend DeepBillboard to multiple
objectives. Consequently, we present the steering angle results
exclusively.

DeepManeuver (DM) [21] is a state-of-the-art gradient-
based adversarial test generation approach for autonomous
vehicles. It generates a perturbation patch on the predefined
attack surface, consistently misleading the model’s steering
prediction into the targeted direction (i.e., turn left or right).
Similarly, we exclusively report steering results due to the
design of its algorithm.

Perturbation Attack (PA) [28] assesses the impact of
image-specific perturbation attacks and patch attacks on the
3D object detector. The former applies the attack to the
entire image while the latter achieves the attack by applying
a small patch to the input image. To enable a meaningful
comparison with UniAda, we utilize the perturbation attack
and an equal-weighted multi-objective loss (the same loss as
UniEqual, enabling the specifications of attack directions) as
the optimization criterion to induce misbehavior in car controls
instead of 3D bounding boxes.

UniEqual: A variant of UniAda, sharing an identical uni-

Fig. 4: Adversarial images with different ϵ values.

versal multi-objective attack algorithm. However, UniEqual
assigns equal weights to different objectives, omitting the use
of AWS. Similar to UniAda, it is an iterative attack method
designed to generate a universal multi-objective perturbation.

4) Evaluation Metrics: In this section, we introduce the
evaluation metrics utilized in our experimentation. To assess
the attack effectiveness of the generated examples, we adhere
to established practices [10], [46] and employ two widely-used
metrics for the offline evaluation of ADS models: Mean Error
(ME) [45] and Success Rate (SR) [46], as defined below for
each objective i:

MEi =
1

N

N∑
n=1

[di × (mi(X
n
ori + τ)−mi(X

n
ori))] (8)

SRi =
1

N

N∑
n=1

I(di × (mi(X
n
ori + τ)−mi(X

n
ori)) > δi) (9)

The variables mentioned above are detailed in Section III.
I is an indicator function that returns 0 or 1. Notably, the
evaluation metrics are designed to capture the power of the
attack. Larger metric values signify more effective attacks. In
order to punish incorrect attack directions (i.e., situations when
the attacker wishes the car to turn right but the attack algorithm
misleads the car into turning left), the use of sign-invariant
operators such as absolute or squared values in the metrics is
avoided.

Mean error ME indicates the average strength of our attack
on the input video. Success rate SR provides a hierarchy of
performance by segmenting results based on different thresh-
olds. More specifically, the success rate measures the propor-
tion of image frames in the video that have been successfully
attacked. An attack is deemed successful if the discrepancy
between the prediction made on the generated adversarial
image and the original prediction surpasses a predetermined
threshold. Thresholds for steering and acceleration are denoted
as δS and δA, respectively. By testing various threshold values,
we gain hierarchical insights into how the universal adversarial
perturbation impacts a sequence of model predictions.

5) Hyperparameters: For the baseline methods, we use
the best hyperparameters reported in their paper for the ex-
perimentation. Hyperparameters for UniAda are outlined and
explained in Table I.

To ensure the generated perturbations remain imperceptible
to humans, we set the maximum perturbation to ϵ=2 for

SUBMITTED TO IEEE TRANSACTIONS ON RELIABILITY, VOL. XX, NO. XX, XXXX 2023 10

Fig. 5: Adversarial Images generated by UniAda: The first/second row is adversarial images generated from simulated/real-
world videos. Blue/Red arrows indicate the adversarial/original steering angle predicted from the image. The bottom right
shows the acceleration error.

simulated videos and ϵ=5 for real-world videos. This value
is chosen to strike a balance between inducing misbehavior
and maintaining the visual similarity between the original
and perturbed images. In Fig. 4, we illustrate examples of
adversarial images produced with perturbations of different
ϵ values. Notably, for simulated images with ϵ=2 and real-
world images with ϵ=5, the perturbed image closely resembles
the original. For higher ϵ values, the distinction between an
adversarial image and its original counterpart becomes more
evident.

Reproducibility. The trained model, framework, and data
are available at https://github.com/UniAdaRepo/UniAda/.

C. Results and Analyses

In this section, we present our results and analyses to
address the research questions. For all methods, the targeted
attack directions are set to dS=1 (steering to the right) and
dA=1 (acceleration). Positive/Negative error values indicate
alignment/misalignment with the specified attack directions.
All experiments are repeated five times and average results
are reported.
Visualization of Generated Adversarial Images: We provide
visualizations of example adversarial images generated by
UniAda in Fig. 5 for both simulated and real-world data. The
top/bottom row displays adversarial images generated from
simulated/real-world dataset. Red/blue arrows represent the
original/adversarial steering angle prediction. The bottom-right
corner of each image indicates the acceleration error.
RQ1. UniAda Effectiveness. We evaluate the effectiveness
of UniAda in comparison to four baselines: DeepManeuver,
Perturbation Attack, DeepBillboard and FGSM, using two
evaluation metrics across 14 videos and 3 ADSs.

Mean Error Results: Results for simulated and real-
world data are presented in Table IV and Table V. UniAda
outperforms all four baselines in both steering angle and
acceleration objectives in the average results for both simu-
lated and real-world data. For simulated videos, under CILRS,
UniAda causes an average steering error of approximately
29.2◦, which is 6.6◦, 9.1◦, 12.6◦ and 28.2◦ greater than DM,
DB, PA, and FGSM, respectively. For acceleration, UniAda

leads to an acceleration error of around 22.3 km/h, surpassing
PA and FGSM by 3.4 km/h and 11.5 km/h, respectively.
For CILR, UniAda maintains its leading position for both
objectives, causing an average steering error of 25.6◦, with a
maximum error of 43.4◦ under “Red Light”. For acceleration,
it reaches an average error of 19.6 km/h. Among the four
baselines, for both models on average, DM demonstrates the
best performance, while FGSM performs the worst. DB and
PA secure middle positions. Delving into the performance of
individual videos, we found that under the CILR “Light-blue
Car” video, UniAda is slightly outperformed by DB in MES

by around 3.4◦. Similarly, in CILRS “Pedestrian”, UniAda
is slightly outperformed by DM by 0.6◦. However, DB and
DM can only target one objective at a time, making them less
functional compared to UniAda. Furthermore, when consider-
ing other videos and the average result, UniAda consistently
outperforms them by a significant margin.

For real-world videos, UniAda reaches the best performance
on average, with 3.54◦ in MES and 11.0 km/h in MEA,
which is about triple MES of DB. Only in one case ("Kitti
Curve1") DB slightly outperforms UniAda by 0.24◦. On
average, PA performs the best among four baselines, but is
9.47 km/h and 0.85◦ smaller than UniAda. DM yields the
worst performance, resulting in 0.61◦ in MES , which may be
attributed to the fact that DM is designed for online testing
within simulators.

Targeted Attack Effectiveness: From Table IV, all meth-
ods demonstrate positive error values, indicating their ef-
fectiveness in misleading CILRS and CILR in the intended
direction. However, when attacking the MT model (Table V),
all methods except UniAda occasionally generate adversarial
samples that mislead the model into unintended directions,
thereby failing to accomplish targeted attacks. Additionally, all
techniques achieve a relatively low error compared to attacking
CILRS and CILR. The weak performance in attacking the
MT model may be attributed to the fact that, according to
our settings, only the RGB input undergoes perturbations,
whereas the MT model extracts features from both RGB and
optical flow images. Out of 7 videos, FGSM induces MT
to decelerate in 3 cases, and 2 cases for PA (i.e., negative

SUBMITTED TO IEEE TRANSACTIONS ON RELIABILITY, VOL. XX, NO. XX, XXXX 2023 11

TABLE IV: Mean Error Result Table: mean error results for 7 simulated videos of all six techniques, tested with CILRS and
CILR models. Last line indicates the average result over 7 videos. Best results are highlighted in bold. We approximate the
floating steering angle to degrees ◦ in MES and floating acceleration to km/h in MEA for a more straightforward attack
effect. - denotes unavailable results.

Videos Metrics CILRS CILR
UniAda DM DB PA FGSM UniEqual UniAda DM DB PA FGSM UniEqual

Carla MES 39.9 40.5 32.0 32.6 1.40 39.5 30.1 23.9 12.7 22.5 0.20 30.0
Pedestrian MEA 22.9 - - 16.1 15.6 23.2 13.3 - - 11.6 9.70 13.2

Carla MES 25.6 18.1 20.5 16.1 1.40 24.6 19.6 10.4 9.79 11.1 0.90 19.5
White Car MEA 22.0 - - 20.7 15.6 21.1 15.4 - - 14.6 12.9 14.8

Carla MES 18.6 6.25 5.47 13.5 0.70 9.63 19.6 12.3 6.81 9.51 1.20 13.8
Black Car MEA 23.8 - - 16.8 8.70 23.9 25.4 - - 18.6 6.00 21.3

Carla MES 23.7 11.8 5.88 12.0 0.70 7.08 14.8 2.21 12.0 11.8 1.20 13.3
Gray Car MEA 17.4 - - 13.9 6.90 14.7 18.2 - - 16.5 5.06 18.1

Carla MES 28.6 24.8 26.1 14.5 1.40 22.3 31.2 18.5 9.68 15.1 0.10 30.7
Blue Car MEA 22.6 - - 21.9 8.74 22.5 24.3 - - 21.2 8.28 23.8

Carla MES 41.9 38.9 35.4 21.2 0.70 41.2 43.4 31.9 36.5 17.9 0.60 42.7
Red Light MEA 26.3 - - 23.1 11.0 26.2 26.3 - - 21.8 9.20 26.4

Carla MES 25.9 17.5 15.0 6.37 0.70 11.2 20.4 19.6 23.8 5.25 0.80 7.85
Light-blue Car MEA 21.0 - - 19.9 8.74 22.0 14.0 - - 0.91 0.92 4.16

Average MES 29.2 22.6 20.1 16.6 1.00 22.2 25.6 17.0 15.9 13.3 0.71 22.6
MEA 22.3 - - 18.9 10.8 21.9 19.6 - - 15.0 7.44 17.4

TABLE V: Mean Error Result for 7 real-world driving videos
of all six techniques with MotionTransformer model under test.
Avg. denotes the average results over 7 videos.

Videos Metrics MotionTransformer
UniAda DM DB PA FGSM UniEqual

Dave MES 7.25 1.54 1.88 5.69 0.94 5.73
Curve1 MEA 14.3 - - 5.21 2.54 3.97
Dave MES 1.01 -0.01 0.25 0.30 -0.08 0.63

Straight1 MEA 4.68 - - -5.35 -7.55 -2.33
Udacity MES 8.15 7.47 7.31 8.11 4.51 7.99

Straight1 MEA 16.5 - - 10.1 3.55 6.18
Udacity MES 2.75 -0.25 -0.01 0.73 0.14 1.57

Straight2 MEA 10.3 - - -4.65 -2.06 1.29
Udacity MES 1.97 -3.09 -2.18 1.07 0.83 1.94
Curve1 MEA 12.2 - - 3.00 1.99 -2.35

Kitti MES 2.90 2.76 3.14 2.90 0.84 3.10
Curve1 MEA 7.20 - - 1.41 0.34 -0.59

Kitti MES 0.74 -4.16 -2.45 0.09 0.54 0.63
Straight1 MEA 11.7 - - 1.01 -1.65 1.75

Avg. MES 3.54 0.61 1.13 2.69 1.10 3.08
MEA 11.0 - - 1.53 -0.41 1.13

MEA, which contradicts the intended acceleration target). In
teams of steering angle, FGSM incorrectly induces the MT
to turn left instead of right as instructed in one case, while
PA, DB, and DM do so in zero, three, and four instances,
respectively. Notably, FGSM exhibits more successful targeted
attacks than state-of-the-art DB and DM, while also achieving
a larger average MES than DM does. One possible reason
for DB could be attributed to its algorithm design, which
updates the perturbation based on the absolute steering error,
neglecting its sign. Meanwhile, DM is originally designed
for online testing within a simulated environment, thereby
lacking the ability to generalize effectively to real-world data.
Moreover, both DM and DB apply a single, image-agnostic
perturbation across the entire video, whereas FGSM and PA
generate unique perturbations to each image (image-specific).
This may potentially limit DB and DM’s efficacy in targeted
attacks on models with complex architectures.

Success Rate Results:
The success rate, indicating the percentage of adversarial

images successfully exhibiting misleading behavior under a
specified threshold, is assessed for different bounds. In Table

VI, we select four different bounds for each objective to assess
the hierarchy of performance, with δS=3.5◦, 14◦, 21◦, 28◦

for the steering angle and δA=4.6, 13.8, 23.0, 32.2 km/h for
acceleration.

UniAda consistently outperforms four baseline methods
across all thresholds and all models, except for the case when
δS=28◦ under MT model. For example, UniAda successfully
attack CILRS model to produce a steering prediction error of
at least 28◦ for 45.4% of tested images, compared to DM’s
38.9%, DB’s 34.3%, PA’s 15.1% and FGSM’s 0% at the same
threshold. For MT model, UniAda can trigger errors on much
more images than baselines for acceleration, with at most
43.5% more images than the second best (i.e., PA). FGSM
fails to produce a successful attack under nearly half of the
tested thresholds.

Result 1: UniAda consistently outperforms all four baseline
methods in Mean Error on average for all ADS models. For
Success Rate, UniAda demonstrates the best performance
under 23 out of 24 cases on average. Compared with the
state-of-the-art technique, DM, UniAda achieves a mean
steering error improvement of 6.6◦ in CILRS, 8.6◦ in CILR,
and 2.93◦ in MT model.

RQ2. Adaptive Weighting Scheme Effectiveness. To
assess the effectiveness of the Adaptive Weighting Scheme
(AWS), we introduce a variant of UniAda dubbed UniEqual,
which utilizes the same universal multi-objective attack al-
gorithm but employs equal-weighted objectives during the
perturbation search process (i.e., UniEqual omits the use of
AWS).

Observing the Mean Error results in Table IV and Table V,
it is evident that UniAda consistently outperforms UniEqual in
both steering and acceleration objectives on average across all
ADS models. This indicates that AWS effectively enhances the
attack performance in both objectives simultaneously. While in
certain videos, UniEqual might achieve a slightly higher attack
error in one objective, it becomes apparent that it is due to the

SUBMITTED TO IEEE TRANSACTIONS ON RELIABILITY, VOL. XX, NO. XX, XXXX 2023 12

TABLE VI: Mean Success Rate Result average over all testing videos for three ADSs: CILRS and CILR results are averaged
over 7 Carla100 videos. MT results are averaged over 7 real-world driving videos. We tested thresholds δS=3.5, 14, 21, 28 in
degrees and δA=4.6, 13.8, 23.0, 32.2 in km/h.

Methods
CILRS CILR MT

δS 3.5 14 21 28 3.5 14 21 28 3.5 14 21 28
δA 4.6 13.8 23.0 32.2 4.6 13.8 23.0 32.2 4.6 13.8 23.0 32.2

UniAda SRS 96.3 89.5 76.5 45.4 90.5 75.3 62.2 45.1 33.5 12.3 8.34 5.34
SRA 74.7 67.4 62.3 49.2 67.8 61.1 55.7 43.9 83.7 31.6 2.72 0.00

DM SRS 87.6 67.2 52.5 38.9 83.4 57.3 33.5 19.6 27.9 11.2 8.32 5.34
SRA - - - - - - - - - - - -

DB SRS 83.3 48.8 45.6 34.3 66.1 41.7 29.2 20.2 28.2 11.2 8.32 6.02
SRA - - - - - - - - - - - -

PA SRS 86.2 54.6 24.3 15.1 82.0 38.6 18.6 11.0 30.7 11.9 7.68 5.38
SRA 67.4 60.8 52.3 41.2 55.2 48.0 41.7 28.7 40.2 9.56 0.68 0.00

FGSM SRS 3.99 0.00 0.00 0.00 1.32 0.00 0.00 0.00 9.89 3.67 0.79 0.00
SRA 43.6 35.4 28.8 18.3 37.2 27.5 21.6 11.4 16.8 0.00 0.00 0.00

UniEqual SRS 83.4 57.9 48.0 37.6 84.2 57.3 47.1 38.8 32.0 11.6 8.06 6.02
SRA 73.7 65.9 60.1 47.6 59.4 52.6 47.3 36.3 28.3 5.85 0.00 0.00

TABLE VII: P-value results of Mean Error under CILRS, CILR and MT: results are shown in bold if they have a p-value
≤ 0.05, The positive/negative/equal signs indicate that UniAda has a better/worse/equal performance versus UniEqual.

Videos CILRS CILR Videos MotionTransformer
MES MEA MES MEA MES MEA

Carla Pedestrian 7.61E-01(+) 1.67E-01(-) 8.88E-01(+) 3.95E-03(+) Dave Curve1 2.58E-08(+) 1.18E-09(+)
Carla White Car 3.49E-02(+) 3.19E-02(+) 8.05E-01(+) 2.64E-02(+) Dave Straight1 1.20E-02(+) 1.71E-03(+)
Carla Black Car 5.93E-03(+) 7.85E-01(-) 4.39E-02(+) 1.53E-02(+) Udacity Straight1 1.28E-02(+) 1.27E-10(+)
Carla Gray Car 6.28E-07(+) 7.48E-07(+) 7.40E-05(+) 9.25E-01(+) Udacity Straight2 2.29E-03(+) 1.43E-05(+)
Carla Blue Car 3.58E-02(+) 5.38E-01(+) 4.99E-05(+) 1.73E-08(+) Udacity Curve1 6.03E-01(+) 4.08E-15(+)
Carla Red Light 4.37E-02(+) 8.62E-01(+) 2.97E-03(+) 1.50E-01(-) Kitti Curve1 1.75E-01(-) 3.00E-04(+)

Carla Light-blue Car 4.28E-07(+) 3.81E-01(-) 2.63E-04(+) 1.05E-05(+) Kitti Straight1 4.75E-04(+) 3.76E-12(+)
Average 2.72E-06(+) 2.63E-01(+) 8.89E-04(+) 1.43E-04(+) Average 2.71E-05(+) 1.08E-09(+)

TABLE VIII: P-value results of Success Rate under CILRS,
CILR, and MT. ’NA’ denotes unavailable results due to the
same performance of UniAda and UniEqual.

δS 3.5 14 21 28
δA 4.6 13.8 23.0 32.2

CILRS 2.64E-04(+) 1.39E-04(+) 7.44E-05(+) 1.15E-03(+)
3.93E-02(+) 4.09E-02(+) 2.32E-02(+) 9.92E-02(+)

CILR 5.43E-02(+) 5.37E-03(+) 2.98E-02(+) 4.59E-02(+)
1.37E-03(+) 2.17E-03(+) 1.35E-03(+) 2.29E-02(+)

MT 3.40E-01(+) 9.23E-05(+) 5.56E-09(+) 7.32E-02(-)
3.72E-08(+) 7.01E-08(+) 2.97E-11(+) NA(=)

lack of focus on the other objective. For instance, in the CILRS
model videos “Black Car” and “Light-blue Car”, UniEqual
produces 23.9 km/h and 22.0 km/h acceleration error, only 0.1
km/h and 1.0 km/h higher than UniAda, respectively. However,
UniAda showcases a steering error of 18.6◦ and 25.9◦, which
is significantly higher than UniEqual, with 8.97◦ and 14.7◦,
respectively.

For real-world driving videos, UniAda consistently out-
performs UniEqual in all seven videos, with an average
improvement of 9.87 km/h in acceleration error and 0.46◦

in steering error. We can see that AWS maintains the attack
strength on steering objective while significantly improves the
attack power on acceleration. Moreover, it is noteworthy that
in 3 out of 7 cases, UniEqual performs attack in an incorrect
direction for the acceleration objective (i.e., misalignment with
the specified direction). In contrast, AWS optimizes UniAda
to successfully attack all tested videos in the correct direction

as specified. This is attributed to the AWS feature of balancing
the training rate of both objectives by adapting weights, which
is to ensure both objectives are thoroughly explored and
collectively contribute to the perturbation that significantly
affects both objectives simultaneously.

Similar conclusion applies to the Success Rate results. As
displayed in Table VI, UniAda outperforms UniEqual in all
models across all tested thresholds, except for one instance:
δS=28◦ under MT model. In this case, perturbation generated
by UniEqual can mislead slightly more images than UniAda
with only 0.68% improvement. Nevertheless, with the same
perturbation, UniAda can mislead 55.4%, 25.8%, 2.72% more
images than UniEqual at δA=4.6 km/h, 13.8 km/h, 23.0 km/h,
respectively.

Statistical Significance: We have conducted two-sample
t-tests [51] to assess whether the performance differences
between UniAda and UniEqual are statistically significant.
Specifically, we treat all five runs of results as a sample
group, with the null hypothesis stating that the means of two
populations are the same. Each evaluation metric is examined
for each driving model for both real-world and simulated
driving data. Table VII and Table VIII demonstrate the p-value
results for Mean Error and Success Rate, respectively. Individ-
ual video results offer a detailed performance comparison for
specific scenarios. To examine the statistical significance of
overall performance difference under the simulated/real-world
driving environment, we also present p-values for the average
results (for each run, we compute the average results of 7

SUBMITTED TO IEEE TRANSACTIONS ON RELIABILITY, VOL. XX, NO. XX, XXXX 2023 13

Fig. 6: Traces of mean error (left) and AWS normalized
weights (right) by UniAda attack in CILRS “Black Car”.

videos, and then perform t-tests with 5 runs as a group).
Results are shown in bold if they have a p-value ≤ 0.05,
the positive/negative/equal signs indicate that UniAda has a
better/worse/equal performance versus UniEqual. For Mean
Error p-value results, there are 30 out of 42 cases (exclude
average results) UniAda statistically significantly outperforms
UniEqual. Out of these, 8 cases come from CILRS, 10 cases
for CILR, and 12 cases for MT. Moreover, we note that for
the videos that UniEqual outperforms UniAda, the results
are not significant (e.g., “Black Car”, “Light-blue Car”). For
Success Rate p-value results, in 19 out of 23 cases, UniAda
is significantly better than UniEqual.

To illustrate how AWS functions, we demonstrate an exam-
ple plot (CILRS “Black Car”, Fig. 6) of error and weight traces
against the perturbation searching process. Each objective
weight begins at 0.5 with zero errors. During the initial
stages, the attack error in acceleration experiences a substan-
tial improvement, whereas the steering perturbation triggers
minimal errors. This discrepancy may be attributed to the
higher training rate allocated to acceleration. Consequently, the
AWS assigns more weight to the steering objective, driving up
the steering error while stabilizing the acceleration error after
around 200 steps. The objective weights reach a steady state
after approximately 600 steps. At the later stage, although the
weights are mainly allocated to steering, the acceleration error
still shows a further increase, which implies the perturbation
pattern may contain shared information that also triggers errors
in acceleration.

Result 2: AWS assists UniAda to improve the performance
in both objectives simultaneously in most cases. On average,
AWS improves MES by 7.0◦, 3.0◦, 0.46◦, and MEA by
0.4 km/h, 2.2 km/h, 9.87 km/h, for CILRS, CILR, and MT,
respectively.

RQ3. Multi-objective Attack Effectiveness. To assess the
effectiveness of the multi-objective attack, we conduct ex-
periments involving two single-objective attacks and compare
their results with UniAda for CILRS and MT models. The
single-objective attacks utilize the same algorithm as UniAda,
differing solely in the loss function employed. We report
the average results over the corresponding testing videos,
summarized in Table IX, with attack directions set at dS=1
and dA=1.

On average, UniAda consistently outperforms both single-

TABLE IX: Ablation study on CILRS and MT models, aver-
aged over testing videos

CILRS MT
LSteer LAcc UniAda LSteer LAcc UniAda

MES 23.7 - 29.2 3.26 - 3.54
MEA - 19.5 23.0 - 9.82 11.0

objective attacks. Specifically, in terms of steering, UniAda
induces a steering angle misdirection of 5.5◦ more than the
single-objective attack focused on steering (LSteer). Simi-
larly, for acceleration, UniAda generates an acceleration error
around 3.5 km/h higher compared to the single-objective
acceleration attack (LAcc). Similar results for MT model,
where single-objective attack is 0.28◦ and 1.18 km/h less
than that of UniAda. This outcome suggests that the pertur-
bation patterns sought for steering and acceleration objectives
complement each other, showcasing the advantage of multi-
objective attacks.

Result 3: Compared to single objective attacks, the multi-
objective attack boosts the performance for both objectives
simultaneously for both simulated and real-world videos.

VII. DISCUSSION

A. Transferability of Adversarial Attacks

In this section, we analyze the transferability of the gener-
ated adversarial perturbation on different autonomous driving
models. Specifically, we explore the attack effectiveness of
the perturbation generated with CILRS on CILR model for
each video in Carla100 dataset. We compare the Mean Error
results of UniAda with its two closest competitors, DM and
PA, shown in Figure 7.

As shown in the plot, for MES , the perturbation generated
by UniAda with CILRS model under test can cause the highest
error when attack CILR model in most cases. Only in the
video "Red Light", DM produces a better performance. For
MEA, UniAda outperforms PA in 5 out of 7 cases. Only
in "Pedestrian", PA outperforms UniAda by a relatively large
margin. However, we can see that all three techniques exhibit
weak transferability, a phenomenon frequently observed under
the white-box setting owing to the attack’s specificity to the
internal structure of the model [52]. Possible directions to
address this issue include using advanced gradient calculation
[53], or applying various input transformations [54]. We leave
the improvement of transferable attacks for further work.

B. Limitations

UniAda is a gradient-based approach that requires white-
box access, leading to less generalizability on DNNs with
restricted access or knowledge. Moreover, our findings on
real-world videos is limited by one victim DNN, Motion-
Transformer. The choice of MotionTransformer is due to its
complex architecture (i.e., incorporates RGB and optical flow
images to learn both position and motion information) and its
competitive performance (e.g., surpassing CNN-based DAVE2

SUBMITTED TO IEEE TRANSACTIONS ON RELIABILITY, VOL. XX, NO. XX, XXXX 2023 14

Fig. 7: Transferability of Adversarial attacks: Mean Error
results in Steering (top) and Acceleration (bottom) of UniAda,
DM, PA. Note that DM results for MEA is not available.

model). Our findings are also limited to the parameter space
we explored, capturing key factors influencing the techniques’
performance but is still limited in scope.

C. Threats to Validity

Internal Validity: The threats to internal validity can be
attributed to the implementation quality of baselines and re-
producibility of our method. To mitigate this, we open-source
our implementation to facilitate checking and reproducibility.

External Validity: The first threat to external validity to
our experimental conclusions is our selected datasets (i.e., 7
simulated videos from Carla100 dataset, 7 real-world videos
from Dave, Kitti, and Udacity datasets) and DNN models
(i.e., CILRS, CILR, MT). We tried to alleviate this threat as
follows: (1) the selected datasets contain both simulated and
real-world driving scenarios. They are also widely used in the
previous research [8], [10], [12]; (2) the three autonomous
driving models have achieved competitive performance in the
field. They are constructed with different architectures and
different numbers of layers. For example, CILR and CILRS
use ResNet only to learn RGB data information, while MT
is composed of more complex architecture that incorporates
optical flow with RGB images to capture both position and
motion information. Therefore, our experimental conclusions
should generally hold with other driving datasets and models.

The second external validity concern is the selection of
baselines. To mitigate this, we compare UniAda with Deep-
Maneuver [21], Perturbation Attack [28], DeepBillboard [10],
FGSM [15] that are either state-of-the-art (e.g., DeepManeu-
ver, published in 2023) or representative (e.g., DeepBillboard,
FGSM) in this field.

Construct Validity: Construct validity concerns whether
the chosen evaluation metrics accurately capture the intended
effect. In our study, our goal is to design an attack technique
that generates image-agnostic perturbations capable of induc-
ing errors in the model under test. We mitigate the threat
by examining the attack effectiveness on two metrics, mean
error and success rate, which are widely used in the literature
[10], [12], [45], [46]. The mean error can reflect the average
attack strength, however, it might be biased by some outliers
and cannot represent the performance of most input images.

To counter this threat, we also measure the success rate,
which manifests the universality of the attack (i.e., whether
the generated perturbation can affect most input images) by
examining the percentage of images that are successfully
attacked under different thresholds.

VIII. CONCLUSION

In this paper, we examine the reliability and security
problems raised by adversarial attacks on three End-to-End
autonomous driving systems. Our proposed method, UniAda,
conducts novel and comprehensive testing by addressing three
main limitations from existing literature: limited vehicle con-
trols testing, constrained testing scenarios, and image-specific
or unnatural perturbations. We alleviate them accordingly by
(1) performing testing on steering and acceleration controls si-
multaneously through the multi-objective attack with Adaptive
Weighting Scheme, (2) examining both simulated and real-
world driving scenarios in urban traffic, and (3) generating
image-agnostic (i.e., universal) and human-eye-imperceptible
perturbation through joint optimization. The effectiveness of
UniAda is compared with four baselines in mean error and
success rate metrics. Compared with its closest competitor,
DeepManeuver, UniAda achieves an improvement of 6.6◦,
8.6◦, and 2.9◦ in steering error on CILRS, CILR, and MT
ADSs, respectively.

REFERENCES

[1] M. HUTSON, “Watch just a few self-driving cars stop traffic
jams,” 2018. https://www.science.org/content/article/watch-just-few-self-
driving-cars-stop-traffic-jams.

[2] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A Survey of
Autonomous Driving: Common Practices and Emerging Technologies,”
IEEE access, vol. 8, pp. 58443–58469, 2020.

[3] A. Tampuu, T. Matiisen, M. Semikin, D. Fishman, and N. Muhammad,
“A Survey of End-to-End Driving: Architectures and Training Methods,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 33,
no. 4, pp. 1364–1384, 2020.

[4] E. D. Dickmanns, “The Development of Machine Vision for Road
Vehicles in the Last Decade,” in Intelligent Vehicle Symposium, 2002.
IEEE, vol. 1, pp. 268–281, IEEE, 2002.

[5] J. Leonard, J. How, S. Teller, M. Berger, S. Campbell, G. Fiore,
L. Fletcher, E. Frazzoli, A. Huang, S. Karaman, et al., “A Perception-
Driven Autonomous Urban Vehicle,” Journal of Field Robotics, vol. 25,
no. 10, pp. 727–774, 2008.

[6] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, et al., “End to
End Learning for Self-Driving Cars,” arXiv preprint arXiv:1604.07316,
2016.

[7] F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy,
“End-to-end Driving via Conditional Imitation Learning,” in 2018 IEEE
international conference on robotics and automation (ICRA), pp. 4693–
4700, IEEE, 2018.

[8] F. Codevilla, E. Santana, A. M. López, and A. Gaidon, “Exploring
the Limitations of Behavior Cloning for Autonomous Driving,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 9329–9338, 2019.

[9] Udacity, “Using Deep Learning to Predict Steering Angles.,”
2016. https://medium.com/udacity/challenge-2-using-deep-learning-to-
predict-steering-angles-f42004a36ff3.

[10] H. Zhou, W. Li, Z. Kong, J. Guo, Y. Zhang, B. Yu, L. Zhang, and C. Liu,
“DeepBillboard: Systematic Physical-World Testing of Autonomous
Driving Systems,” in 2020 IEEE/ACM 42nd International Conference
on Software Engineering (ICSE), pp. 347–358, IEEE, 2020.

[11] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “DeepRoad:
GAN-based Metamorphic Testing and Input Validation Framework for
Autonomous Driving Systems,” in 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 132–142,
IEEE, 2018.

SUBMITTED TO IEEE TRANSACTIONS ON RELIABILITY, VOL. XX, NO. XX, XXXX 2023 15

[12] Z. Kong, J. Guo, A. Li, and C. Liu, “PhysGAN: Generating Physical-
World-Resilient Adversarial Examples for Autonomous Driving,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 14254–14263, 2020.

[13] K. Pei, Y. Cao, J. Yang, and S. Jana, “DeepXplore: Automated White-
box Testing of Deep Learning Systems,” in proceedings of the 26th
Symposium on Operating Systems Principles, pp. 1–18, 2017.

[14] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing Properties of Neural Networks,” arXiv
preprint arXiv:1312.6199, 2013.

[15] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and Harnessing
Adversarial Examples,” arXiv preprint arXiv:1412.6572, 2014.

[16] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial Machine Learn-
ing at Scale,” arXiv preprint arXiv:1611.01236, 2016.

[17] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial Examples in
the Physical World,” in Artificial intelligence safety and security, pp. 99–
112, Chapman and Hall/CRC, 2018.

[18] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and
P. McDaniel, “Ensemble Adversarial Training: Attacks and Defenses,”
arXiv preprint arXiv:1705.07204, 2017.

[19] Z. Li, M. Pan, T. Zhang, and X. Li, “Testing DNN-based Autonomous
Driving Systems under Critical Environmental Conditions,” in Interna-
tional Conference on Machine Learning, pp. 6471–6482, PMLR, 2021.

[20] Y. Tian, K. Pei, S. Jana, and B. Ray, “DeepTest: Automated Testing
of Deep-Neural-Network-Driven Autonomous Cars,” in Proceedings of
the 40th international conference on software engineering, pp. 303–314,
2018.

[21] M. von Stein, D. Shriver, and S. Elbaum, “DeepManeuver: Adversarial
Test Generation for Trajectory Manipulation of Autonomous Vehicles,”
IEEE Transactions on Software Engineering, 2023.

[22] A. Stocco, M. Weiss, M. Calzana, and P. Tonella, “Misbehaviour
Prediction for Autonomous Driving Systems,” in Proceedings of the
ACM/IEEE 42nd international conference on software engineering,
pp. 359–371, 2020.

[23] C. Zhang, P. Benz, C. Lin, A. Karjauv, J. Wu, and I. S. Kweon, “A Sur-
vey on Universal Adversarial Attack,” arXiv preprint arXiv:2103.01498,
2021.

[24] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Univer-
sal Adversarial Perturbations,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1765–1773, 2017.

[25] Z. Chen, V. Badrinarayanan, C.-Y. Lee, and A. Rabinovich, “GradNorm:
Gradient Normalization for Adaptive Loss Balancing in Deep Multitask
Networks,” in International Conference on Machine Learning, pp. 794–
803, PMLR, 2018.

[26] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets Robotics:
The KITTI Dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[27] Sully-Chen, “Autopilot-Tensorflow,” 2016.
https://github.com/SullyChen/Autopilot-TensorFlow.

[28] J. Zhang, Y. Lou, J. Wang, K. Wu, K. Lu, and X. Jia, “Evaluating
Adversarial Attacks on Driving Safety in Vision-Based Autonomous
Vehicles,” IEEE Internet of Things Journal, vol. 9, no. 5, pp. 3443–
3456, 2021.

[29] S. Kuutti, R. Bowden, Y. Jin, P. Barber, and S. Fallah, “A Survey of
Deep Learning Applications to Autonomous Vehicle Control,” IEEE
Transactions on Intelligent Transportation Systems, vol. 22, no. 2,
pp. 712–733, 2020.

[30] K. Chitta, A. Prakash, B. Jaeger, Z. Yu, K. Renz, and A. Geiger,
“Transfuser: Imitation with Transformer-based Sensor Fusion for Au-
tonomous Driving,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2022.

[31] S. Casas, A. Sadat, and R. Urtasun, “MP3: A Unified Model to Map,
Perceive, Predict and Plan,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 14403–14412, 2021.

[32] D. A. Pomerleau, “ALVINN: An Autonomous Land Vehicle in a Neural
Network,” Advances in neural information processing systems, vol. 1,
1988.

[33] Y. Deng, T. Zhang, G. Lou, X. Zheng, J. Jin, and Q.-L. Han, “Deep
Learning-based Autonomous Driving Systems: A Survey of Attacks and
Defenses,” IEEE Transactions on Industrial Informatics, vol. 17, no. 12,
pp. 7897–7912, 2021.

[34] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical Black-Box Attacks against Machine Learning,”
in Proceedings of the 2017 ACM on Asia conference on computer and
communications security, pp. 506–519, 2017.

[35] M. Liu, H. Zhang, Z. Liu, and N. Zhao, “Attacking Spectrum Sensing
with Adversarial Deep Learning in Cognitive Radio-Enabled Internet of
Things,” IEEE Transactions on Reliability, 2022.

[36] Y. Lin, H. Zhao, X. Ma, Y. Tu, and M. Wang, “Adversarial Attacks
in Modulation Recognition with Convolutional Neural Networks,” IEEE
Transactions on Reliability, vol. 70, no. 1, pp. 389–401, 2020.

[37] P. Qi, T. Jiang, L. Wang, X. Yuan, and Z. Li, “Detection Tolerant Black-
Box Adversarial Attack Against Automatic Modulation Classification
with Deep Learning,” IEEE Transactions on Reliability, vol. 71, no. 2,
pp. 674–686, 2022.

[38] T. Woodlief, S. Elbaum, and K. Sullivan, “Semantic Image Fuzzing
of AI Perception Systems,” in Proceedings of the 44th International
Conference on Software Engineering, pp. 1958–1969, 2022.

[39] S. Pavlitskaya, S. Ünver, and J. M. Zöllner, “Feasibility and Suppres-
sion of Adversarial Patch Attacks on End-to-End Vehicle Control,” in
2020 IEEE 23rd International Conference on Intelligent Transportation
Systems (ITSC), pp. 1–8, IEEE, 2020.

[40] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial Examples: Attacks and
Defenses for Deep Learning,” IEEE transactions on neural networks
and learning systems, vol. 30, no. 9, pp. 2805–2824, 2019.

[41] F. Codevilla, A. M. Lopez, V. Koltun, and A. Dosovitskiy, “On Offline
Evaluation of Vision-based Driving Models,” in Proceedings of the
European Conference on Computer Vision (ECCV), pp. 236–251, 2018.

[42] F. U. Haq, D. Shin, S. Nejati, and L. C. Briand, “Comparing Offline
and Online Testing of Deep Neural Networks: An Autonomous Car
Case Study,” in 2020 IEEE 13th International Conference on Software
Testing, Validation and Verification (ICST), pp. 85–95, IEEE, 2020.

[43] H. Liu and H. B. K. Tan, “Covering code behavior on input validation in
functional testing,” Information and Software Technology, vol. 51, no. 2,
pp. 546–553, 2009.

[44] S. Nidhra and J. Dondeti, “Black Box and White Box Testing
Techniques-A Literature Review,” International Journal of Embedded
Systems and Applications (IJESA), vol. 2, no. 2, pp. 29–50, 2012.

[45] H. Wu, S. Yunas, S. Rowlands, W. Ruan, and J. Wahlström, “Adversarial
Driving: Attacking End-to-End Autonomous Driving,” in 2023 IEEE
Intelligent Vehicles Symposium (IV), pp. 1–7, IEEE, 2023.

[46] Y. Deng, X. Zheng, T. Zhang, C. Chen, G. Lou, and M. Kim, “An
Analysis of Adversarial Attacks and Defenses on Autonomous Driving
Models,” in 2020 IEEE international conference on pervasive computing
and communications (PerCom), pp. 1–10, IEEE, 2020.

[47] P. Domingos, “A Few Useful Things to Know About Machine Learning,”
Communications of the ACM, vol. 55, no. 10, pp. 78–87, 2012.

[48] K. You, M. Long, J. Wang, and M. I. Jordan, “How Does Learn-
ing Rate Decay Help Modern Neural Networks?,” arXiv preprint
arXiv:1908.01878, 2019.

[49] J. Kim, R. Feldt, and S. Yoo, “Guiding Deep Learning System Testing
using Surprise Adequacy,” in 2019 IEEE/ACM 41st International Con-
ference on Software Engineering (ICSE), pp. 1039–1049, IEEE, 2019.

[50] C. Oinar and E. Kim, “Self-Driving Car Steering Angle Prediction: Let
Transformer Be a Car Again,” arXiv preprint arXiv:2204.12748, 2022.

[51] W. S. Gosset, “The Probable Error of a Mean,” Biometrika, pp. 1–25,
1908.

[52] X. Wang and K. He, “Enhancing the Transferability of Adversarial
Attacks through Variance Tuning,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 1924–
1933, 2021.

[53] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li, “Boosting
Adversarial Attacks with Momentum,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 9185–9193,
2018.

[54] C. Xie, Z. Zhang, Y. Zhou, S. Bai, J. Wang, Z. Ren, and A. L.
Yuille, “Improving Transferability of Adversarial Examples with Input
Diversity,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 2730–2739, 2019.

