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A B S T R A C T

Context: Defect Number Prediction (DNP) models can offer more benefits than classification-based defect
prediction. Recently, many researchers proposed to employ regression algorithms for DNP, and found that the
algorithms achieve low Average Absolute Error (AAE) and high Pred(0.3) values. However, since the defect
datasets generally contain many non-defective modules, even if a DNP model predicts the number of defects
in all modules as zero, the AAE value of the model will be low and Pred(0.3) value will be high. Therefore,
the good performance of the regression algorithms in terms of AAE and Pred(0.3) may be questioned due to
the imbalanced distribution of the number of defects.
Objective: To revisit the impact of regression algorithms for predicting the precise number of defects.
Method: We examine the practical effects of 12 widely-used regression algorithms, two data resampling algo-
rithm (SmoteR and ROS), and three ensemble learning algorithms (gradient boosting regression, AdaBoost.R2,
and Bagging), one feature selection method (information gain) and one parameter optimization method (grid
search) for predicting the precise number of defects on the 18 PROMISE datasets. We propose to evaluate the
AAE and Pred(0.3) values for the modules with different numbers of defects separately.
Results: The AAE values for defective modules are very high and the Pred(0.3) values are very low, i.e., the
regression algorithms are very inaccurate for predicting the precise number of defects in defective modules.
Conclusion: The problem of predicting the precise number of defects via regression algorithms is far from
being solved. We recommend that software testers use regression algorithms to rank modules for testing
resource allocation, rather than predict the precise number of defects to evaluate the software reliability and
maintenance effort. In addition, most existing DNP studies employing the whole AAE and Pred(0.3) values of
all modules as the evaluation metrics for the proposed DNP algorithms should be revisited.
. Introduction

Software Defect Prediction (SDP) plays a very important role in
redicting whether software modules are defective based on some
xtracted software features [1–5]. Accurate prediction results can help
oftware testers conserve limited testing resource by focusing on those
redicted defective modules [6–9] and guide the fault localization [10–
3]. However, classification-based SDP that predicts the
efect-proneness of the software modules is not enough in the real
ituation. We take an example to explain the reason in Fig. 1.

xample 1. There are 200 software modules (M1, M2, M3, . . . , M200)
hat need to be tested in a new software project shown in Fig. 1.
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Software testers want to not only know which software modules should
be inspected first, but also evaluate the reliability and maintenance
effort of each module. Therefore, they can first employ the historical
data to construct a classification-based SDP model or a Defect Number
Prediction (DNP) model, then use the two trained models to predict the
defective-proneness or the number of defects.

(1) Assuming that the classification-based SDP model predicts 25%
software modules are defective (e.g., M1 and M200 are predicted to be
defective), but software testers can only inspect few software modules
(e.g., 15% modules) because of the limited testing resources. Therefore,
they face down a challenge to choose which modules among the
predicted defective modules to be inspected based on the classification
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Fig. 1. The difference between the classification-based model and the DNP model.

odel. But they can inspect the top-ranked 15% modules (i.e., M7, M48,
1, and etc.) to find more defects based on the DNP model, which sorts

he 200 modules based on the predicted number of defects.
(2) Generally, the software unreliability and maintenance effort is

roportional to the number of defects [14,15]. Based on the predic-
ion results of the classification model, the software unreliability and
aintenance effort of M1 and M200 are equal, since M1 and M200 are

both predicted to be defective. But the DNP model predicts that M1
ontains 6 defects, and M200 contains 2 defects. Therefore, M200 is

more reliable than M1, and the maintenance effort of M200 is less than
hat of M1. In other words, the classification model cannot distinguish
etween a module with more defects and a module with less defects
hen evaluating the reliability and maintenance effort of each module.

To sum up, DNP models can offer more benefits of scarce testing
esources allocation, reliability evaluation, and maintenance effort es-
imation than classification-based defect prediction in software testing
rocess [14–17].

.1. Motivation

Recently, many researchers proposed to employ regression algo-
ithms for DNP, and found that the algorithms performed well. Gen-
rally, there are two purposes to predict the defect number of software
odules.
(1) The DNP model is used to sort software modules and guide

oftware testers to allocate the scarce testing resources more ef-
iciently. In this situation, some ranking performance measures are
mployed to evaluate the DNP model, such as Fault Percentage Average
FPA) and Percentage of the found Bugs when inspecting the top 20%
odules (PofB).
(2) The DNP model is used to evaluate the reliability and main-

enance effort of each module. For example, Lyu et al. [39] and Afzal
t al. [21] stated that the DNP model can assist to estimate reliability
r predict future reliability by different forms of extrapolation. Zhang
t al. [14,40] pointed out that the DNP model can help software
evelopers and software users from the following aspects. First, it
rovides software developers with an evaluation of software reliability,
hich is vital to the determination of delivery time to the market of a
eveloping software. Second, it guides the effort estimation involved in
oftware maintenance after delivery, because the maintenance effort is
ositively related to the defect number of a module. Third, knowing the
ossible defect number of a software can help software users to evaluate
he quality of the software and determine when or whether they
an install the software. In these situations, researchers employ some
egression performance measures, such as Root Mean Square Error
RMSE), Average Absolute Error (AAE), Average Relative Error (ARE),
ean Magnitude of Relative Error (MMRE), Pred(l), and Completeness.

However, the number of defects in a software project is extremely
imbalanced. There are many non-defective modules (i.e., the number
of defects is zero), followed by the software modules with one defect,
2

and very few modules with more than one defect. For example, only w
11.1% modules in the project Ant 1.6 (See Table 1) contain two or three
defects, and 13.1% modules contain one defects, while 73.8% modules
are non-defective. Using the dataset with the imbalanced number of
defects to construct a DNP model and then evaluating the error value of
the constructed DNP model may lead to the over-optimistic estimation
because of the over-specialization of the regression algorithm to the
imbalanced dataset.

Example 2. Assuming that we have trained a model using the Ant 1.6
dataset, and then use it to predict the number of defects in the Ant 1.7
dataset, which has 745 modules and 338 defects. If the model predicts
the number of defects in all modules to be 0, the AAE value of all the
modules is 0.454 (=338/745), which may make the model appear to
be quite accurate. The Rathore et al.’s paper [33] published in IEEE
Transactions on Reliability 2019 (abbreviated as ‘‘Rathore 2019 TR
paper’’ in the following) proposed a dynamic selection algorithm, and
the results showed the AAE value of the dynamic selection algorithm
trained on the Ant 1.6 dataset and tested on the Ant 1.7 dataset was
0.52 (See Table V in Rathore 2019 TR paper). In other words, if a
model predicts the number of defects in all modules to be zero, the
model outperforms the proposed algorithm by Rathore 2019 TR paper
in terms of AAE. But the model is quite inaccurate and unacceptable
to predict the number of defects in all defective modules to be zero.
The AAE value for the modules with one defect is 1, the AAE value for
the modules with two defects is 2, and the AAE value for the modules
with three defects is 3. Since the non-defective modules occupy a large
portion of the whole defect dataset, the AAE value (i.e., 0.454) of the
all modules is small.

Therefore, the findings that some regression algorithms achieved
good performance in terms of AAE, RMSE, ARE, Pred(l), and Complete-
ness may be susceptible to the imbalanced defect datasets.

1.2. Our work and contributions

Considering this issue and some papers [16–18,38] are published in
some top and high impact journals, we want to revisit the impact of
regression algorithms for DNP. First, we conduct a literature review
to identify and analyze a set of 23 primary DNP studies published
until 2021.7 from different perspectives, including the used datasets,
regression algorithms, and evaluation measures. Then, we find that
17 studies among all 23 studies employ the performance measures
that evaluate regression models, such as RMSE, AAE, ARE, Pred(l),

ompleteness, etc. In other words, the main purpose of most existing
NP studies is still to evaluate the reliability and maintenance effort
f each module according to the predicted precise number of defects.
hen, we conduct the empirical study by raising the following Research
uestions (RQs):
RQ1: How effective are the regression algorithms for predicting

he precise number of defects?
We investigate the impact of some common used regression al-

orithms for DNP, including Poisson Regression (PR), Zero-Inflated
oisson Regression (ZIPR), Negative Binomial Regression (NBR), Zero-
nflated Negative Binomial Regression (ZINBR), Hurdle Poisson Re-
ression (HPR), Genetic Programming (GP), Neural Network Regres-
ion (NNR), Decision Tree Regression (DTR), Linear Regression (LR),
ayesian Ridge Regression (BRR), Support Vector Regression (SVR),
nd K-nearest Neighbors Regression (KNR). We calculate the AAE and
red(0.3) values for the modules with different numbers of defects
eparately. Specifically, we calculate the AAE and Pred(0.3) values
or the non-defective modules, the AAE and Pred(0.3) values for the
odules with one defect, the AAE and Pred(0.3) values for the modules
ith two defects, the AAE and Pred(0.3) values for the modules with

hree defects, the AAE and Pred(0.3) values for the modules with four,
ive, and six defects, and the AAE and Pred(0.3) values for the modules

ith more than six defects. The experimental results show the AAE
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Table 1
The literature overview of the studies for predicting the numbers of defect.

Study Corpus/Number Regression algorithmsa Performance measures

Ostrand [18] 2005 ISS/12 Negative Binomial Regression (NBR) PofB

Janes [19] 2006 ISS/5 Poisson Regression (PR), NBR, Zero-Inflated Negative Binomial
Regression (ZINBR)

Alberg diagrams

Gao [20] 2007 ISS/1 PR, Zero-Inflated Poisson Regression (ZIPR), NBR, ZINBR, Hurdle
Poisson Regression (HPR)

AAE, ARE

Afzal [21] 2008 ISS/3 Genetic Programming (GP) Pred(l), MMRE, Spearman

Yu [22] 2012 PROMISE/5 NBR Accuracy, Precision, Recall

Wang [15] 2012 Bugzilla and Jira/6 BugStates Absolute Error (AE), Mean
Absolute Error (MAE)

Rathore [23] 2015 PROMISE/10 Neural Network Regression (NNR), Genetic Programming (GP) ARE, Recall, Completeness

Rathore [24] 2015 PROMISE/10 GP ARE, Recall, Completeness

Chen [25] 2015 PROMISE/26 Linear Regression (LR), Bayesian Ridge Regression (BRR), Support
Vector Regression (SVR), Nearest Neighbors Regression (NNR), Decision
Tree Regression (DTR), Gradient Boosting Regression (GBR)

Precision, RMSE

Rathore [26] 2016 PROMISE/18 DTR AAE, ARE, Pred(l)

Rathore [27] 2016 Eclipse/3 (Bagging/Boosting/Random subspace/Rotation
Forest/Stacking)+(LR/Multilayer Perceptron Regression (MPR)/DTR)

AAE, ARE

Rathore [28] 2017 Firefox/3 NBR, ZIPR, MPR, GP, DTR, LR AAE, ARE, Pred(l),
Completeness

Rathore [29] 2017 PROMISE/11 Linear Regression based Combination Rule (LRCR), Gradient Boosting
based Combination Rule (GRCR), MPR, GP, LR, NBR, ZIPR

AAE, ARE, Pred(l),
Completeness

Rathore [30] 2017 PROMISE and Eclipse/17 Error Rate based Weighted Average (ERWA) combination rule, Linear
Regression based Weighted Average (LRWA) combination rule, Decision
Tree Forest based (DTF) ensemble method, Gradient Boosting
Regression (GBR) based ensemble method, LR, MPR, DTR, GP, NBR,
ZIPR

AAE, ARE, Pred(l),
Completeness

Yu [31] 2017 PROMISE/22 (SMOTER/RUS/AdaBoost.R2)+(DTR/BRR/LR), SmoteNDBoost,
RusNDBoost

FPA, Kendall

Zhang [14] 2018 Firefox/7 Sample entropy-Support Vector Regression (SSVR), Auto-Regressive
Integrated Moving Average (ARIMA) model, X12-ARIMA model, NNR

Magnitude of Relative
Error (MRE), MMRE

Wu [32] 2018 PROMISE/31 BRR, DTR, GBR, LR, NNR, MPR, and SVR FPA

Rathore [33] 2019 PROMISE and Eclipse/19 A dynamic selection algorithm (DynSelection), LR, MPR, DTR, GP,
NBR, ZIPR

AAE, ARE, Pred(l),
Precision, Recall,
F-measure

Chen [34] 2019 PROMISE/24 (SMOTER/SMOTUNED/AdaBoost.R2)+(DTR/BRR/LR) FPA, Kendall

Huang [35] 2019 PROMISE/30 Multi-Project Regression (MPR), LR, NNR, SVR, DTR, BRR, GBR AAE, ARE

Nevendra [36] 2019 PROMISE/15 AdaBoost.R2+(Extra Tree Regression (ETR)/Random Forest Regression
(RFR)/Extreme Gradient Boosting Regression (EGBR)/GBR)

MAE, MRE

Qiao [17] 2020 PROMISE and ISS/2 Deep Learning Neural Network (DPNN), SVR, DTR, Fuzzy Support
Vector Regression (FSVR), RFR

Mean Squared Error
(MSE), 𝑅2

Bal [37] 2020 PROMISE/26 Weighted Regularization Extreme Learning Machine (WR-ELM),
Weighted Extreme Learning Machine (WELM), ELM,
SmoteR+(ELM/SVR/NNR)

AAE, ARE, Pred(l),

Tong [38] 2021 PROMISE/27 Subspace Hybrid Sampling Ensemble (SHSE), SmoteR, SmoteRDE,
DynSelection, SmoteNDBoost, RusNDBoost

FPA, Kendall, RMSE

a(Bagging/Boosting/Random subspace/Rotation Forest/Stacking)+(LR/MPR/DTR) represents that the five ensemble learning methods (Bagging, Boosting, Random subspace, Rotation
Forest, and Stacking) use LR, MPR, and DTR as the base learners. It is the same below.
value for the non-defective modules is low and the Pred(0.3) value for
the non-defective modules is high, but the AAE value for the defective
modules is very high and the Pred(0.3) value for the defective modules
is low. It indicates that the regression algorithms tend to predict the
modules non-defective, and have very poor capability to predict the
number of defects in defective modules accurately.

RQ2: Are the performances of DNP models improved when
applying data resampling and ensemble learning methods?

Since the imbalanced distribution of the number of defects af-
fects the performance of DNP models, we apply Smote for Regression
(SmoteR) and Random Over-Sampling (ROS) to alleviate the data im-
balance problem. In addition, most studies [27,31,36] indicate that
the ensemble learning method also can improve the performance of
regression algorithms. Therefore, we also investigate whether apply-
ing AdaBoost.R2, Gradient Boosting Regression (GBR), and Bagging
3

can boost the performance of regression algorithms. The experimental
results show that AdaBoost.R2, SmoteR, and ROS can improve the
performance of LR and BRR in terms of some performance measures,
but it is still difficult for the algorithms to predict the precise number
of defects in defective modules accurately.

RQ3: Are the performances of DNP models improved when
applying feature selection and parameter optimization methods?

Yang et al. [41] pointed out that the severe multicollinearity prob-
lem (i.e., the existence of strong correlations among the software
features) in the defect datasets may cause the poor performance of
regression algorithms. Therefore, we apply the information gain feature
selection method to investigate the effectiveness of the most relevant
software features for DNP. In addition, Tantithamthavorn et al. [42]
found that the auto parameter optimization of classification algorithms
can boost the performance of defect prediction models. Therefore,
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we also investigate whether the grid search parameter optimization
method can improve the performance of DNP models. The experimental
results show that the information gain and grid search methods cannot
improve the performance of DTR, LR, and BRR in terms of most
performance measures.

The contributions of this paper are as follows:
∙We conduct a meta-study and revisit the impact of 12 regression

algorithms, two data resampling algorithms, three ensemble learning
algorithms for DNP. We propose to calculate the AAE and Pred(0.3)
values for the modules with different numbers of defects separately
instead of the whole AAE and Pred(0.3) values of all modules, and find
that predicting the precise number of defects in defective modules is
very hard.

∙We identify and analyze a set of 23 DNP studies until 2021 from
different perspectives, including the used datasets, the regression al-
gorithms, and the evaluation measures. Researchers can use the set
as a starting point to conduct further DNP studies. To the best of our
knowledge, this is the first work to conduct a comprehensive literature
review of DNP studies.

∙We provide some suggestions to practitioners and researchers in
this domain, including (1) researchers should evaluate the AAE and
Pred(0.3) values for the modules with different numbers of defects
separately when predicting the precise number of defects. Therefore,
some DNP papers using regression performance measures to evaluate
the proposed method should be revisited. (2) the title of the paper
should be ‘‘Ranking-Oriented Defect Prediction’’ rather than ‘‘Predict
the number of defects/bugs’’ to avoid ambiguity when the purpose of
DNP is to rank software modules.

∙We open-source our source code1 and datasets to facilitate the
replication of our study and conduct further works.

1.3. Organization

The remainder of this paper is organized as follows. Section 2
introduces the literature review. Section 3 introduces the investigated
regression algorithms, the data resampling algorithm, the ensemble
learning algorithms, the feature selection method, and the parameter
optimization method. Sections 4 and 5 present the experimental setup
and results. Section 6 presents the implications of our findings and the
potential threats of validity. Finally, we conclude the paper in Section 7.

2. Literature review

2.1. Literature research

To know about the progress of the DNP studies, we conducted a
literature research to find all related DNP papers that are published
between 2005 and 2021.7.2 To the best of our knowledge, the first pa-
er with the title containing the terms ‘‘number of faults/defects/bugs’’
as published by Ostrand et al. [18] in IEEE Transactions on Software
ngineering 2005 (abbreviated as ‘‘Ostrand 2005 TSE paper’’ in the
ollowing), therefore, we set the starting year of the literature research
o 2005. The searched papers should meet the following criteria:

∙ The paper should be written using English.
∙ The full text of the paper should be available.
∙ We only choose the journal version, if the paper had the journal

nd conference versions.
We searched related papers using Google Scholar and DBLP. We

ollowed the approach of Zhou et al. [43] to conduct a forward snow-
alling search by recursively inspecting the papers which cited the

‘Ostrand 2005 TSE paper’’. To be more specific, we first searched and
ound the relevant papers that cited the paper. Then, we repeated the

1 https://github.com/xiaoyu-whu/Revisitng-IST.
2 The search was conducted in 2021.7.
4

process on all the relevant papers. Consequently, 23 related papers
were identified in the literature. Table 1 presents an overview of the
DNP studies. For each study, the first column in the table lists the au-
thors and the published year; the second column lists the experimental
datasets; the third column lists the investigated regression algorithms;
and the last column lists the evaluation measures used in the study.

2.2. DNP

As shown in Table 1, several studies [18,19,21,31,32,34] used some
ranking performance measures, such as PofB, Alberg diagrams, FPA,
Spearman rank correlation coefficient, and Kendall rank correlation
coefficient. In other words, the studies first used the regression algo-
rithms to predict the number of defects in software modules, and then
used the predicted value to sort the software modules. PofB evaluates
how many bugs can be found when inspecting the top 20% Lines Of
Code (LOC), Alberg diagrams and FPA evaluates the global ranking of
modules according to the number of defects, and Spearman and Kendall
rank correlation coefficients measure the ordinal association between
two modules. In addition, some studies [22–24] investigated accuracy,
precision, and recall as the performance measures. These studies first
used the regression algorithms to predict the number of defects in
software modules, and then used the predicted value to classify the
modules (i.e., modules whose predicted number of defects is larger than
zero are predicted as defective; otherwise, non-defective).

Most DNP studies [14–17,20,21,23–26,29,30,33,35–37,44] emplo-
yed AAE, ARE, MMRE, AE, MAE, RMSE, MRE, MSE, Pred(l), and
Completeness as the performance measures. In these studies, Wang
et al. [15] proposed the BugStates method based on the state transi-
tion model. Zhang et al. [14] proposed SamEN-SVR using time series
analysis. Huang et al. [35] proposed a multi-project regression method
to take full advantage of relatedness among projects for DNP. Rathore
et al. [36] proposed a dynamic selection method to dynamically choose
regression algorithms to build DNP models according to the similar-
ity between testing modules and training modules. Qiao et al. [17]
investigated the performance of deep neural network for DNP. To
improve the performance, Rathore et al. [27–30] investigated some
ensemble learning methods for DNP, such as Bagging, Boosting, random
subspace, rotation forest, stacking, linear regression based combina-
tion rule, gradient boosting based combination rule, error rate based
weighted average combination rule, linear regression based weighted
average combination rule, and decision tree forest based ensemble
method. Bal et al. [37] proposed a weighted extreme learning machine
method to alleviate the data imbalance problem.

The other studies [20,21,23–26,28] performed the empirical inves-
tigation of several regression algorithms for DNP, and found that DTR,
LR, and RR achieved better RMSE, AAE, Pred(l), and Completeness
values. However, the findings may be susceptible due to the imbalanced
distribution of the number of defects. Even the DNP model predicts the
number of defects in all modules to be 0, the performance measure
values will be good. Therefore, we revisit the impact of these regression
algorithms for predicting the precise number of defects by calculating
the AAE and Pred(0.3) values for modules with the different numbers
of defects separately.

2.3. Ranking-oriented defect prediction

Except for the regression algorithm, some researchers employ the
pairwise learning to rank algorithm and listwise learning to rank algo-
rithm to sort software modules according to the number of defects, and
call it Ranking-Oriented Defect Prediction (RODP) [45,46]. Dissimilar
to the regression algorithm that first predicts the number of defects
and then ranks software modules according to the predicted value, the
pairwise and listwise learning to rank algorithms directly predict the

ranking of software modules.

https://github.com/xiaoyu-whu/Revisitng-IST
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The pairwise algorithm predicts the relationship between any two
modules. For example, there are the three modules, i.e., M1, M2, and

3. The pairwise algorithm predicts that M1 has more defects than
2, M2 has more defects than M3, and M1 has more defects than M3.
hen, the final ranking of M1, M2, and M3 is M1 > M2 > M3. Nguyen

et al. [47] investigated the performance of two pairwise learning to
rank algorithms (i.e., Ranking SVM and RankBoost) for RODP, and
found that these algorithms outperformed the linear regression algo-
rithm 4% to 21% in terms of the Spearman rank correlation coefficient.
In our previous study [46], we proposed a cost-sensitive ranking SVM
(CSRankSVM) method, which considers the cost of the wrong ranking
of the modules with more defects.

The listwise algorithm directly optimizes the performance measures
to obtain a ranking model. Yang et al. [48] proposed a listwise learning
to rank approach called LTR to rank software modules according to
their predicted number of defects. You et al. [45] proposed a ranking-
oriented cross-project defect prediction model to rank cross-project
modules based on the predicted number of defects.

Recently, Yang et al. [41] investigated the performance of five
regression algorithms and LTR for RODP on 41 PROMISE datasets,
and we [49] investigated 6 classification algorithms, 9 regression algo-
rithms, 4 pairwise learning to rank algorithms, and 4 listwise learning
to rank algorithms for ranking software modules according to the
number of defects on 41 PROMISE datasets. The experimental results
showed that Bayesian ridge regression achieved better performance in
terms of FPA.

3. Investigated algorithms for DNP

Let m𝑖 = (x 𝑖, y 𝑖) represent a software module, where x 𝑖 = (x1, x2,
. . . , x𝑑) is a d-dimensional feature vector of the 𝑖th software module,
and y 𝑖 is the number of defects in the 𝑖th software module. A defect
dataset S is represented as:

𝑆 =
{

𝒎1,𝒎2,… ,𝒎𝑛
}

, (1)

where n is the number of modules in S. The purpose of DNP is to train
prediction model from S:

= 𝐹 (𝒙), (2)

here x is feature vector, and y is the predicted number of defects. It
s worth noting that the predicted number of defects by the regression
lgorithms will be rounded to an integer, and be set as zero if the
redicted number of defects is negative.

.1. Regression algorithms

We investigate the performance of all base algorithms investigated
n the 23 previous DNP studies shown in Table 1, except BugStates,
ultilayer Perceptron Regression (MPR), Sample entropy–Support Vec-

or Regression (SSVR), Auto-Regressive Integrated Moving Average
ARIMA) model, X12-ARIMA model, Deep Learning Neural Network
DPNN), and Fuzzy Support Vector Regression (FSVR). The reasons are
s follows: (a) BugStates uses the Markovian method to predict the
umber of defects at the current state based on the state transition
odel. SSVR, ARIMA, and X12-ARIMA use time series analysis to
redict the number of defects. Since our defect datasets do not contain
he information of states and time series, we do not investigate the
erformance of BugStates, SSVR, ARIMA, and X12-ARIMA. (b) MPR and
PNN are the same types of algorithms as NNR, FSVR is the same type
f algorithm of SVR, so we only investigate NNR and SVR. Therefore,
e investigate the 12 regression algorithms.

(1) Poisson Regression (PR) [50]: It takes the assumption that the
esponse variable follows the Poisson distribution, and the mean and
he variance should be equal. It is normally used to investigate the
elationship between the response variable and a count of events.
5

(2) Zero-Inflated Poisson Regression (ZIPR) [51]: It is used to model
count data that has an excess of zero counts. The excess zeros are
generated by two processes independently. The first process generates
structural zeros by a binary distribution. The second process generates
counts by a Poisson distribution.

(3) Negative Binomial Regression (NBR) [52]: It is an extension of
the Poisson regression model. It accommodates the overdispersion and
loosens the assumption that the Poisson regression model requires the
mean and the variance be equal.

(4) Zero-Inflated Negative Binomial Regression (ZINBR) [53]: It is
usually used to model over-dispersed count outcome variables that
have an excess of zero counts. The excess zeros are generated by two
processes independently. The first process generates structural zeros
by a binary distribution. The second process generates counts by a
negative binomial distribution.

(5) Hurdle Poisson Regression (HPR) [54]: Hurdle count models are
two-component models with a truncated count component for positive
counts, and a hurdle component that models the zero counts. When the
Poisson distribution is used to represent the two-component models, the
resulting model is a HPR model.

(6) Genetic Programming (GP) [55]: It trains a linear model:

𝑦 = 𝑓 (𝐛, 𝐱) = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 +⋯ + 𝑏𝑑𝑥𝑑 , (3)

where b = (b0, b1, . . . , b𝑑) is a (d + 1)-dimensional vector of regression
coefficients, x = (x1, x2, . . . , x𝑑) is a d-dimensional feature vector of
the 𝑖th software module, and y is the predicted number of defects in the
module. Then, it minimizes the following loss function by employing
the genetic algorithm to find the optimal b value:
𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑓 (𝐛,𝒙𝑖))2. (4)

We set the feasible solution space to [−2, 2], and the population size
and maximal generation were set to 100, since higher population size
and maximal generation values do not improve the performance of GP
significantly.

(7) Neural Network Regression (NNR) [56]: It trains a non-linear
function approximator by employing the backpropagation method with
no activation function in the output layer.

(8) Decision Tree Regression (DTR) [57]: It trains a regression
model with the decision tree structure based on the training software
modules.

(9) Linear Regression (LR) [58]. It trains the same linear model as
GP, then minimizes the same loss function as GP by using the least
square method to find the optimal b value.

(10) Bayesian Ridge Regression (BRR) [59]: It trains the same linear
model as LR, but minimizes the following loss function by using the
Bayes theorem to find the optimal b value:
𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑓 (𝐛,𝒙𝑖))2 + 𝜆|𝐛|2, (5)

where 𝜆 is a small regularization parameter.
(11) Support Vector Regression (SVR) [60]: It employs the same

principles as SVM with a minuscule difference. Because the output of
SVR is a real number, it is hard to predict the information at hand,
which has infinite possibilities. In the case of regression, a margin of
tolerance is set in approximation to the SVM which would have already
requested from the problem.

(12) K-nearest Neighbors Regression (KNR) [61]: It first selects k
software modules that are the nearest to the new module, and then
predicts the number of defects of the new module according to the
mean of those of these nearest neighbors.

We implement PR, ZIPR, NBR, ZINBR, and HPR using the R package,
and other algorithms using the Sklearn package. We use the default

parameters for NNR, DTR, BRR, SVR, and KNR.
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3.2. Data resampling algorithms

(1) Smote for Regression (SmoteR) [62]: It first randomly chooses m
defective modules from the training dataset (m is calculated according
to the desired ratio value of the defective modules). For each chosen de-
fective module 𝑀𝐴, it randomly chooses one of its k nearest neighbors,
i.e., 𝑀𝐵 . The feature of the synthetic module 𝑀𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 is

𝒙𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 = 𝒙𝐴 + 𝑅𝑎𝑛𝑑𝑜𝑚(0, 1) × (𝒙𝐵 − 𝒙𝐴), (6)

where 𝒙𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 , 𝒙𝐴, and 𝒙𝐵 are the feature of 𝑀𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 , 𝑀𝐴, and
𝐵 , respectively. Since SmoteR probably chooses two modules with

ifferent numbers of defects to generate a synthetic module, it uses the
ollowing approach to decide the number of defects:

𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 = (𝑑2 × 𝑦𝐴 + 𝑑1 × 𝑦𝐵)∕(𝑑1 + 𝑑2), (7)

where 𝑦𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 , 𝑦𝐴, and 𝑦𝐵 are the numbers of defects in 𝑀𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 , 𝑀𝐴,
nd 𝑀𝐵 respectively, 𝑑1 is the distance between 𝑀𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 and 𝑀𝐴, and

𝑑2 is the distance between 𝑀𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 and 𝑀𝐵 . In SmoteR, the default
desired ratio value of the defective modules is 0.5.

(2) Random Over-Sampling (ROS) randomly chooses m defective
modules from the original dataset (m is calculated according to the
desired ratio value of the defective modules), and then adds them to
the original dataset to form the resampled dataset. In ROS, the default
desired ratio value of the defective modules is 0.5.

3.3. Ensemble learning algorithms

(1) AdaBoost.R2 [63]: It is a Boosting algorithm for regression
problem. Similar to other Boosting algorithms, it first assigns each
module an equal weight. Then, it iteratively trains t weak regression
models based on the training dataset, and the weights of all training
modules are updated according to the loss function. Finally, the t weak
regression models are combined to construct the final strong regression
model, and the output of the strong regression model is the weighted
median of that of the t weak regression models.

(2) Gradient Boosting Regression (GBR) [64] : It builds the model
in a forward stage-wise fashion like other Boosting algorithms. The
difference is that GBR trains a DTR model based on the negative
gradient of the loss function in each iteration, then combines t DTR
models to a strong regression model.

(3) Bagging [65]: Given a training dataset which contains n software
modules, it first generates t new training datasets, each of which also
contains n software modules that are sampled from the original dataset
with replacement. Then, it trains t weak regression models on the t new
training datasets. The output of the final strong regression model is the
average of that of the t weak regression models.

For SmoteR, ROS, AdaBoost.R2, and Bagging, we employ DTR, LR,
and BRR as the base learners, since previous studies [25,28,31,34]
pointed out that the three regression algorithms achieved better perfor-
mance for DNP, and our experimental results also show that the three
regression algorithms perform better than other investigated regres-
sion algorithms. We denote SmoteR, ROS, AdaBoost.R2, and Bagging
that employ DTR, LR, and BRR as the base learners as SmoteR+DTR,
SmoteR+LR, SmoteR+BRR, ROS+DTR, ROS+LR, ROS+BRR, AdaBoost.
R2+DTR, AdaBoost.R2+LR, AdaBoost.R2+BRR, Bagging+DTR, Bagging
+LR, and Bagging+BRR. For GBR, we only use DTR as the base learner,
since GBR cannot use other algorithms as the base learners. We utilize
the Sklearn package to implement AdaBoost.R2, Bagging, and GBR, and
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use the default parameters for the three algorithms.
Table 2
The optimized parameter of DTR, LR, and BRR.

AlgorithmParameter description Candidate parameter values
(default value is in bold)

DTR The minimum number of samples required to
split an internal node

{2,3,4,5,6}

LR Whether the regressor will be normalized
before

{true, false}

BRR Precision of the solution {0.1, 0.01, 0.001, 0.0001,
0.00001}

3.4. Information gain

Information Gain (IG) measures the reduction of uncertainty about
the number of defects after observing the software features. The bias
of information gain is that it tends to select the software features
with more values [66]. We employ information gain as the feature
selection method for two reasons. First, some previous studies [67,68]
have shown its effectiveness for classification-based defect prediction
models. Second, the research on feature selection for DNP is limited.
Only Yang et al. [48] and Yu et al. [46] employed information gain
as the feature selection method for ranking software modules based
on the predicted number of defects. We select the top log2m features,
where m is the number of software features, following the parameter
setting in Khoshgoftaar et al.’s work [69,70] that suggested various
prediction models for imbalanced defect datasets are appropriate to the
setup. We denote DTR, LR, and BRR trained on the selected features by
information gain as IG+DTR, IG+LR, and IG+BRR.

3.5. Grid search

Grid Search (GS) is one of the most commonly used parameter
optimization methods. It divides the domain of the parameters of
regression algorithms into a discrete grid. Then, it tries every com-
bination of values of the grid, calculates the performance measure
using cross-validation, and chooses the parameter that achieves the best
performance as the recommended one. In this study, we use the sum
value of AAE1, AAE2, AAE3, AAE4−6, and AAE6+ as the performance
measure. The optimized parameter of DTR, LR, and BRR are shown in
Table 2. We denote DTR, LR, and BRR that use grid search to optimize
the parameter as GS+DTR, GS+LR, and GS+BRR.

4. Experimental setup

4.1. Datasets

Some researchers have published some defect data repositories, such
as NASA [71], SOFTLAB [72], the just-in-time data repository [73] that
only contain the information of the class label. However, we aim to
predict the number of defect in software modules, so we only choose
the datasets that contain the information of the number of defects as the
experiment datasets. Similar to Rathore [44] and Bal [37], we choose
the defect datasets from the PROMISE repository [74]. Since it is more
practical to use the previous version for training and the current version
for testing, we only choose the projects with multi versions from the
PROMISE repository. In addition, we choose the versions that contain
more than 300 modules, since we want to train the DNP model using
more training data.

Table 3 provides the details about the 18 chosen defect datasets
from the PROMISE repository, including the number of software mod-
ules in the version (#M), the percentage of defective software mod-
ules(%D), the percentage of modules with one defect (%1), the percent-
age of modules with two defects (%2), the percentage of modules with
three defects (%3), the percentage of modules with four, five, and six
defects (%4–6), the percentage of modules with more than six defects
(%>6), the average number of defects in the version (Avg), and the
maximum number of defects in the version (Max). The datasets have
the 20 software features, for details of the features, please refer to [74].
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Table 3
The details of the 18 chosen defect datasets.

Dataset #M %D %1 %2 %3 %4–6 %>6 Avg Max

Ant 1.6 351 26.2 13.11 6.27 4.84 1.43 0.57 2.00 10
Ant 1.7 745 22.3 12.48 4.03 2.15 3.09 0.54 2.04 10
Camel 1.2 608 35.5 16.28 8.22 4.77 4.28 1.97 2.42 28
Camel 1.4 872 16.6 8.14 3.90 2.06 1.72 0.80 2.31 17
Camel 1.6 965 19.5 10.47 3.32 1.66 2.28 1.76 2.66 28
Jedit 4.0 306 24.5 11.77 5.23 2.94 1.96 2.62 3.01 23
Jedit 4.1 312 25.3 11.86 4.49 3.21 3.53 2.24 2.75 17
Jedit 4.2 367 13.1 7.36 2.45 1.36 1.09 0.82 2.21 10
Poi 2.0 314 11.8 11.15 0.64 0.00 0.00 0.00 1.05 2
Poi 2.5 385 64.4 20.00 36.88 2.86 3.38 1.30 2.00 11
Poi 3.0 442 63.6 45.48 9.73 3.17 3.39 1.81 1.78 19
Xalan 2.4 723 15.2 10.93 3.04 0.83 0.28 0.14 1.42 7
Xalan 2.5 803 48.2 36.99 8.10 1.25 1.62 0.25 1.37 9
Xalan 2.6 885 46.4 30.62 11.30 2.60 1.81 0.11 1.52 9
Xalan 2.7 909 98.8 72.61 20.79 3.85 1.21 0.33 1.35 8
Xerces 1.2 440 16.1 7.05 8.64 0.00 0.46 0.00 1.62 4
Xerces 1.3 453 15.2 5.96 4.86 2.21 1.33 0.88 2.80 30
Xerces 1.4 588 74.3 30.78 21.94 4.42 6.29 10.89 3.65 62
Average 581.56 35.39 20.41 5.87 2.08 2.77 4.08 2.11 16.89

4.2. Performance measures

The above mentioned AAE, ARE, MMRE, AE, MAE, RMSE, MRE,
and MSE performance measures in Table 1 all evaluate the difference
between the predicted number of defects and the actual number of
defects. Due to the space limit, we only use AAE as the performance
measure, since it can present the difference more intuitively.

The definition of AAE is as follows:

𝐴𝐴𝐸 = (1∕𝑛)
𝑛
∑

𝑖=1
(|𝑦̂𝑖 − 𝑦𝑖|), (8)

where n is the number of software modules in the testing dataset, y 𝑖 is
the predicted number of defects in the 𝑖th software module, and ŷ 𝑖 is
the actual number of defects.

In addition, we use AAE𝑗 as the performance measure to calculate
the AAE value for the modules with different numbers of defects
separately:

𝐴𝐴𝐸𝑗 = (1∕𝑛𝑗 )
𝑛𝑗
∑

𝑖=1
(|𝑦̂𝑖 − 𝑦𝑖|), (9)

where n𝑗 is the number of software modules with j defects, and j can be
0, 1, 2, 3, 4–6, and 6+, respectively. In other words, AAE0 evaluates the
AAE value of all non-defective modules, AAE1 evaluates the AAE value
of all modules with one defect, AAE2 evaluates the AAE value of all
modules with two defects, AAE3 evaluates the AAE value of all modules
with three defects, AAE4−6 evaluates the AAE value of all modules
with four, five, and six defects, and AAE6+ evaluates all AAE value of
the modules with more than six defects, respectively. We regard the
modules with four, five, and six defects as a group, and the modules
with more than six defects as a group to calculate the AAE value.

Pred(l) is the ratio of the modules whose relative errors are within
l% of the actual number of defects to all modules in the testing dataset:

𝑃𝑟𝑒𝑑(𝑙) = 𝑘∕𝑛, (10)

where n is the number of software modules in the testing dataset, and
k is the number of modules whose relative errors are within l% of the
actual number of defects. Following the previous DNP studies [33,37],
we set l as 30. In addition, we use Pred(0.3)𝑗 as the performance
measure to calculate the Pred(0.3) value for the modules with different
numbers of defects separately:

𝑃𝑟𝑒𝑑(0.3) = 𝑘 ∕𝑛 , (11)
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where n𝑗 is the number of software modules with j defects, k𝑗 is the
number of software modules with j defects whose relative errors are
within 0.3×j, and j can be 0, 1, 2, 3, 4–6, and 6+, respectively.

Completeness is the ratio of the total predicted number of defects to
the total actual number of defects of all modules in the testing dataset.
We can also use Completeness𝑗 to calculate the Completeness value
for the modules with different numbers of defects separately, which
is the ratio of the total predicted number of defects to the total actual
number of defects of all modules with j bugs in the testing dataset. For
example, Completeness1 is the ratio of the total predicted number of
defects to the total actual number of defects of all modules with one
defect in the testing dataset. Rathore et al. [30] pointed out that the
DNP model with Completeness equal to 1 is preferred. However, we
find that Completeness1 is not appropriate to evaluate DNP models.
For example, there are five software modules with one defect, a DNP
model predicts a module contains five defects, and other modules are
non-defective. Therefore, the Completeness1 is equal to 1. However, the
DNP model predict the five modules very inaccurately. Therefore, we
do not employ Completeness to evaluate DNP models.

4.3. Experimental procedure

We employ the cross-version validation to evaluate the performance
of DNP models, since it is more practical in an actual testing scenario
than cross-validation. We use the previous version for training, and the
current version for testing. For example, we use Ant 1.6 for training,
and Ant 1.7 for testing. We repeat the cross-version validation proce-
dure 50 times to avoid the bias when using the data imbalance learning
methods. Therefore, we can get 50 results for each regression algorithm
on each pair of training and testing dataset. We record the median value
of the 50 results for each algorithm on each dataset as the experiment
results.

Then, we employ the Scott–Knott with Cohen’s d effect size aware-
ness (Scott–Knott ESD) [75] test to divide the regression algorithms into
different ranks at the significance level of 0.05 using the hierarchical
clustering algorithm. The test could group the regression algorithms
distinctly without any overlapping compared with other statistical tests
such as the Wilcoxon test [76]. The regression algorithms in the same
rank have no statistically significant difference, while the regression
algorithms in different ranks have statistically significant difference.

5. Experimental results

5.1. RQ1: How effective are the regression algorithms for predicting the
precise number of defects?

Methods: To answer the RQ1, we calculate the AAE and Pred(0.3)
values for the 12 regression algorithms. In addition, we calculate
the AAE0, AAE1, AAE2, AAE3, AAE4−6, AAE6+, Pred(0.3)0, Pred(0.3)1,
Pred(0.3)2, Pred(0.3)3, Pred(0.3)4−6, and Pred(0.3)6+ to evaluate the
AAE and Pred(0.3) values for the non-defective modules, the modules
with one defect, the modules with two defects, the modules with
three defects, the modules with four, five, and six defects, and the
modules with more than six defects, respectively. Figs. 2 and 4 show the
distribution of the AEE, AAE0, AAE1, AAE2, AAE3, AAE4−6, and AAE6+
values with the Scott–Knott ESD test over all testing datasets. Figs. 3
and 5 shows the distribution of the Pred(0.3), Pred(0.3)0, Pred(0.3)1,
Pred(0.3)2, Pred(0.3)3, Pred(0.3)4−6, and Pred(0.3)6+ values with the
Scott–Knott ESD test over all testing datasets. Different colors of the
boxplot indicate different Scott–Knott ESD test ranks. From top down,
the order is red, green, blue, purple, orange, and black. Each box-plot
presents the 75th percentile (the upper side of the box), the median
(the horizontal line within the box), and the 25th percentile (the lower
side of the box). Table 4 lists the average AEE, AAE0, AAE1, AAE2,
AAE3, AAE4−6, and AAE6+ values of the 12 regression algorithms over
all testing datasets. Table 5 lists the average Pred(0.3), Pred(0.3) ,
0
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Table 4
The average AAE values of the 12 regression algorithms on the testing datasets. (The best value in each row is bold.)

Measures PR ZIPR NBR ZINBR HPR GP NNR DTR LR BRR SVR KNR

AAE0 0.58 0.66 0.08 0.75 0.82 2.06 0.48 0.26 0.33 0.33 0.13 0.29
AAE1 0.90 0.96 0.96 1.13 1.03 2.88 0.92 0.96 0.74 0.71 0.82 0.77
AAE2 1.76 1.79 1.94 1.79 1.99 3.01 1.54 1.65 1.35 1.35 1.60 1.43
AAE3 2.64 2.60 2.92 2.55 3.12 4.68 2.21 2.27 2.12 2.13 2.40 2.08
AAE4−6 4.56 4.58 4.55 4.56 4.45 7.38 3.88 3.55 3.45 3.51 3.87 3.33
AAE6+ 9.88 9.85 10.31 10.06 9.85 13.70 9.81 7.32 7.65 7.67 9.27 7.77
AAE 1.13 1.19 0.92 1.27 1.38 2.65 1.05 0.90 0.85 0.85 0.81 0.87
Table 5
The average Pred(0.3) values of the 12 regression algorithms on the testing datasets. (The best value in each row is bold.)

Measures PR ZIPR NBR ZINBR HR GP NNR DTR LR BRR SVR KNR

Pred(0.3)0 0.68 0.65 0.95 0.66 0.66 0.49 0.72 0.83 0.73 0.73 0.88 0.77
Pred(0.3)1 0.27 0.27 0.05 0.27 0.23 0.10 0.27 0.20 0.34 0.35 0.18 0.29
Pred(0.3)2 0.04 0.04 0.01 0.04 0.05 0.09 0.10 0.08 0.14 0.13 0.09 0.12
Pred(0.3)3 0.04 0.03 0.02 0.04 0.04 0.08 0.30 0.26 0.25 0.25 0.14 0.26
Pred(0.3)4−6 0.02 0.01 0.00 0.02 0.01 0.09 0.07 0.14 0.09 0.09 0.03 0.13
Pred(0.3)6+ 0.00 0.00 0.00 0.00 0.00 0.05 0.18 0.23 0.07 0.08 0.00 0.09
Pred(0.3) 0.49 0.48 0.55 0.48 0.48 0.35 0.49 0.54 0.53 0.53 0.59 0.53
t
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Fig. 2. The boxplot of the AAE values of the regression algorithms. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version
f this article.)

Fig. 3. The boxplot of the Pred(0.3) values of the regression algorithms. (For
nterpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)

red(0.3)1, Pred(0.3)2, Pred(0.3)3, Pred(0.3)4−6, and Pred(0.3)6+ values
of the 12 regression algorithms over all testing datasets.

Results: From these tables and figures, we have the following
observations:

(1) The median and average AAE values of NBR, DTR, LR, BRR, SVR,
and KNR are very low, which are less than one. The Scott–Knott ESD
test results also show NBR, DTR, LR, BRR, SVR, and KNR significantly
perform better than other regression algorithms in terms of AAE. The
average Pred(0.3) value of SVR is 0.59, which is significantly higher
than that of other 11 regression algorithms according to the Scott–Knott
ESD test. In addition, the average Pred(0.3) values of other algorithms
are also high, and GP achieves the lowest Pred(0.3) value (0.35).
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(2) The median and average AAE0 values of NBR, DTR, LR, BRR,
SVR, and KNR are very low, which are less than 0.34. The median and
average Pred(0.3)0 values of the six algorithm are very high, which are
larger than or equal to 0.73. Especially, the average AAE0 values of NBR
and SVR are 0.08 and 0.13, respectively, and the average Pred(0.3)0
values of NBR and SVR are 0.95 and 0.88, respectively. The Scott–Knott
ESD test results also show NBR and SVR outperform other regression
algorithms in terms of AAE0 and Pred(0.3)0. The results indicate that
NBR, DTR, LR, BRR, SVR, and KNR can predict the non-defective
modules accurately.

(3) The average AAE1, AAE2, AAE3, AAE4−6, and AAE6+ values of
the 12 regression algorithms are very high. LR achieves the lowest
average AAE2 and AAE3 values, which are 1.35 and 2.12. BRR achieves
he lowest average AAE1 and AAE2 values, which are 0.71 and 1.35.
TR achieves the lowest average AAE6+ value (7.32). KNR achieves the

owest average AAE4−6 value (3.33). The Scott–Knott ESD test results
lso show that DTR, KNR, LR, and BRR significantly outperform other
egression algorithms in terms of AAE1, AAE2, AAE3, AAE4−6, and
AE6+.

(4) The average Pred(0.3)1, Pred(0.3)2, Pred(0.3)3, Pred(0.3)4−6,
nd Pred(0.3)6+ values of the 12 regression algorithms are very low.
RR achieves the highest average Pred(0.3)1 value (0.35), which in-
icates that average 35% modules with one defect are predicted to
ontain one defect accurately. LR and NNR achieve the highest average
red(0.3)2 and Pred(0.3)3 values (0.14 and 0.30, respectively). DTR
chieves the highest average Pred(0.3)4−6 and Pred(0.3)6+ values (0.14
nd 0.23, respectively). The Scott–Knott ESD test results also show
hat LR and BRR significantly outperform other algorithms in terms of
red(0.3)1 and Pred(0.3)2; NNR significantly performs the best in terms
f Pred(0.3)3; DTR significantly outperforms other algorithms in terms
f Pred(0.3)4−6 and Pred(0.3)6+.

(5) The overall results show that the 12 regression algorithms tend
o predict the number of defects of the modules as zero. Therefore, the
AE0 values of the algorithms are low and the Pred(0.3)0 are high.
ut the algorithms have very poor capability to predict the number of
efects in defective modules accurately. However, the main purpose of
efect prediction is to predict the defective modules rather than the
on-defective ones accurately. Since the non-defective modules occupy
large proportion, the AAE values of the regression algorithms are low,
nd the Pred(0.3) values are high.

Answer to RQ1: The regression algorithms are very inaccu-
rate for predicting the precise number of defects in defective
modules.
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Fig. 4. The boxplot of the AAE0, AAE1, AAE2, AAE3, AAE4−6, AAE6+ values of the 12 regression algorithms. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)
Table 6
The average AAE values of the 13 regression algorithms on the testing datasets. (The bold value means the improved performance after applying data resampling and ensemble
learning algorithms.)

Measures GBR AR+DTR AR+LR AR+BRR BG+DTR BG+LR BG+BRR SR+DTR SR+LR SR+BRR ROS+DTR ROS+LR ROS+BRR

AAE0 0.25 0.24 0.74 0.71 0.27 0.32 0.31 0.28 0.60 0.63 0.27 0.61 0.63
AAE1 0.79 0.85 0.75 0.73 0.74 0.72 0.72 0.97 0.59 0.56 0.93 0.61 0.60
AAE2 1.44 1.50 1.22 1.20 1.40 1.34 1.35 1.62 1.13 1.08 1.57 1.11 1.08
AAE3 2.25 2.24 1.95 1.89 2.09 2.12 2.14 2.20 1.84 1.79 2.24 1.84 1.79
AAE4−6 3.41 3.39 3.18 3.08 3.25 3.35 3.40 3.42 3.09 3.12 3.46 3.12 3.13
AAE6+ 7.01 6.94 7.11 7.17 6.69 7.38 7.49 7.02 7.23 7.16 7.08 7.18 7.14
AAE 0.82 0.84 1.06 1.02 0.82 0.84 0.85 0.91 0.96 0.97 0.89 0.96 0.96
5.2. RQ2: Are the performances of DNP models improved when applying
data resampling and ensemble learning methods?

Methods: To answer the RQ2, we calculate the AAE, AAE0, AAE1,
AAE2, AAE3, AAE4−6, AAE6+, Pred(0.3), Pred(0.3)0, Pred(0.3)1,
Pred(0.3)2, Pred(0.3)3, Pred(0.3)4−6, and Pred(0.3)6+ for GBR,
AdaBoost.R2+DTR, AdaBoost.R2+LR, AdaBoost.R2+BRR, Bagging
+DTR, Bagging+LR, Bagging+BRR, SmoteR+DTR, SmoteR+LR, SmoteR
+BRR, ROS+DTR, ROS+LR, and ROS+BRR. Figs. 6 and 8 show the
distribution of the AEE, AAE0, AAE1, AAE2, AAE3, AAE4−6, and AAE6+
values with the Scott–Knott ESD test over all testing datasets. Figs. 7
9

and 9 show the distribution of the Pred(0.3), Pred(0.3)0, Pred(0.3)1,
Pred(0.3)2, Pred(0.3)3, Pred(0.3)4−6, and Pred(0.3)6+ values with the
Scott–Knott ESD test over all testing datasets. Table 6 lists the av-
erage AEE, AAE0, AAE1, AAE2, AAE3, AAE4−6, and AAE6+ values of
the 13 regression algorithms over all testing datasets. Table 7 lists
the average Pred(0.3), Pred(0.3)0, Pred(0.3)1, Pred(0.3)2, Pred(0.3)3,
Pred(0.3)4−6, and Pred(0.3)6+ values of the 13 regression algorithms
over all testing datasets. To ease the demonstration, we abbreviate
AdaBoost.R2, Bagging, SmoteR to AR, BG, and SR in the figures and
tables, respectively.
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Fig. 5. The boxplot of the Pred(0.3)0, Pred(0.3)1, Pred(0.3)2, Pred(0.3)3, Pred(0.3)4−6, Pred(0.3)6+ values of the 12 regression algorithms. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
Table 7
The average Pred(0.3) values of the 13 regression algorithms on the testing datasets. (The bold value means the improved performance after applying data resampling and ensemble
learning algorithms.)

Measures GBR AR+DTR AR+LR AR+BRR BG+DTR BG+LR BG+BRR SR+DTR SR+LR SR+BRR ROS+DTR ROS+LR ROS+BRR

Pred(0.3)0 0.80 0.81 0.46 0.44 0.79 0.74 0.74 0.82 0.49 0.46 0.83 0.50 0.47
Pred(0.3)1 0.30 0.26 0.41 0.43 0.34 0.35 0.34 0.19 0.52 0.54 0.21 0.52 0.52
Pred(0.3)2 0.07 0.09 0.19 0.19 0.11 0.14 0.12 0.12 0.18 0.17 0.12 0.17 0.19
Pred(0.3)3 0.21 0.26 0.29 0.33 0.25 0.25 0.25 0.25 0.29 0.32 0.23 0.31 0.33
Pred(0.3)4−6 0.12 0.17 0.17 0.21 0.16 0.10 0.10 0.16 0.12 0.12 0.12 0.15 0.13
Pred(0.3)6+ 0.19 0.20 0.20 0.15 0.12 0.08 0.08 0.24 0.13 0.11 0.25 0.10 0.10
Pred(0.3) 0.55 0.55 0.41 0.42 0.55 0.53 0.53 0.53 0.42 0.40 0.54 0.42 0.41
Results: From these tables and figures, we have the following
bservations:

(1) The median and average AAE values of the 13 regression
lgorithms are also very low, which are less than 1.07. GBR and
agging+DTR achieve the lowest average AAE values (0.82). The Scott–
nott ESD test results show that there is no significant difference
etween DTR and GBR, Bagging+DTR, SmoteR+DTR, and ROS+DTR;

AdaBoost.R2+LR, AdaBoost.R2+BRR, SmoteR+LR, SmoteR+BRR,
ROS+LR, and ROS+BRR significantly perform worse than LR and BRR.
GBR, AdaBoost.R2+DTR, and BG+DTR achieve the highest average
Pred(0.3) value (0.55). The Scott–Knott ESD test results show applying
10
AdaBoost.R2, SmoteR, and ROS significantly degrades the performance
of LR and BRR in terms of Pred(0.3).

(2) The median and average AAE0 values of GBR,
AdaBoost.R2+DTR, Bagging+DTR, Bagging+LR, and Bagging+BRR,
and ROS+DTR are low, which are less than or equal to 0.32. The Scott–
Knott ESD test results show that GBR and AdaBoost.R2 can significantly
improve the performance of DTR, and applying Bagging, SmoteR, and
ROS cannot significantly improve the performance of DTR, LR, and
BRR in terms of AAE0. GBR and AdaBoost.R2+DTR achieve the highest
average Pred(0.3)0 values (0.8 and 0.81, respectively). The Scott–
Knott ESD test results show that applying GBR, AdaBoost.R2, Bagging,
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Fig. 6. The boxplot of the AAE values of the 16 regression algorithms.

Fig. 7. The boxplot of the Pred(0.3) values of the 16 regression algorithms.

SmoteR, and ROS cannot significantly improve the performance of DTR,
LR, and BRR in terms of Pred(0.3)0.

(3) The Scott–Knott ESD test results show that SmoteR+LR,
SmoteR+BRR, ROS+LR, and ROS+BRR significantly outperform other
algorithms in terms of AAE1, AAE2, AAE3, AAE4, and AAE4−6.
SmoteR+BRR achieves the lowest average AAE1, AAE2, AAE3, and
AAE4−6 values, which are 0.56, 1.08, 1.79, and 3.12, respectively.
SmoteR+LR achieves the lowest average AAE2 value (1.08).
Bagging+DTR achieves the lowest average AAE6+ value (6.69). How-
ever, after applying GBR, AdaBoost.R2, Bagging, SmoteR, and ROS to
DTR, LR, and BRR, the average AAE1, AAE2, AAE3, AAE4−6, and AAE6+
values of the algorithms are still very high.

(4) The Scott–Knott ESD test results show that AdaBoost.R2+LR,
AdaBoost.R2+BRR, SmoteR+LR, SmoteR+BRR, ROS+LR, and
ROS+BRR significantly perform better than other algorithms in terms of
Pred(0.3)1, Pred(0.3)2, and Pred(0.3)3; AdaBoost.R2+BRR significantly
outperforms other algorithms in terms of Pred(0.3)4−6; SmoteR+LR and
SmoteR+BRR perform the best in term of Pred(0.3)6+. SmoteR+BRR
achieves the highest average Pred(0.3)1 value (0.54), AdaBoost.R2+LR,
AdaBoost.R2+BRR, and ROS+BRR achieve the highest average
Pred(0.3)2 value (0.19), AdaBoost.R2+BRR and ROS+BRR achieve the
highest average Pred(0.3)3 value (0.33), AdaBoost.R2+BRR achieves
the highest average Pred(0.3)4−6 value (0.21), and ROS+DTR achieves
the highest average Pred(0.3)6+ value (0.25).

(5) The overall results show that applying SmoteR and ROS to LR
and BRR can make models not tend to predict the number of defects
as zero. Therefore, the AAE1, AAE2, AAE3, AAE4−6, AAE6+, Pred(0.3)1,
Pred(0.3)2, Pred(0.3)3, Pred(0.3)4−6, and Pred(0.3)6+ can be improved.
But the algorithms still have very poor capability to predict the number
of defects of defective modules accurately.

Answer to RQ2: AdaBoost.R2, SmoteR, ROS can improve the
performance of LR and BRR in terms of some performance
measures, but it is still difficult for the algorithms to predict
the precise number of defects in defective modules accurately.
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Table 8
The average AAE values of the 6 regression algorithms on the testing datasets. (The
bold value means the improved performance after applying information gain and grid
search methods.)

Measures IG+DTR IG+LR IG+BRR GS+DTR GS+LR GS+BRR

AAE0 0.25 0.39 0.39 0.27 0.33 0.33
AAE1 0.97 0.60 0.59 0.97 0.74 0.72
AAE2 1.60 1.37 1.37 1.63 1.35 1.35
AAE3 2.40 2.20 2.22 2.34 2.12 2.13
AAE4−6 3.73 3.53 3.53 3.48 3.45 3.51
AAE6+ 7.51 8.53 8.54 7.75 7.65 7.62
AAE 0.91 0.87 0.87 0.91 0.85 0.85

5.3. RQ3: Are the performances of DNP models improved when applying
feature selection and parameter optimization methods?

Methods: To answer the RQ3, we calculate the AAE, AAE0, AAE1,
AAE2, AAE3, AAE4−6, AAE6+, Pred(0.3), Pred(0.3)0, Pred(0.3)1,
Pred(0.3)2, Pred(0.3)3, Pred(0.3)4−6, and Pred(0.3)6+ for IG+DTR,
IG+LR, IG+BRR, GS+DTR, GS+LR, and GS+BRR. Figs. 10 and 12 show
the distribution of the AEE, AAE0, AAE1, AAE2, AAE3, AAE4−6, and
AAE6+ values with the Scott–Knott ESD test over all testing datasets.
Figs. 11 and 13 show the distribution of the Pred(0.3), Pred(0.3)0,
Pred(0.3)1, Pred(0.3)2, Pred(0.3)3, Pred(0.3)4−6, and Pred(0.3)6+ values
with the Scott–Knott ESD test over all testing datasets. Table 8 lists
the average AEE, AAE0, AAE1, AAE2, AAE3, AAE4−6, and AAE6+ values
of the 6 regression algorithms over all testing datasets. Table 9 lists
the average Pred(0.3), Pred(0.3)0, Pred(0.3)1, Pred(0.3)2, Pred(0.3)3,
Pred(0.3)4−6, and Pred(0.3)6+ values of the 6 regression algorithms over
all testing datasets.

Results: From these tables and figures, we have the following
observations:

(1) The 6 regression algorithms also achieve the very low AAE
values (less than 1). GS+LR and GS+BRR achieve the lowest average
AAE values (0.85), and GS+DTR achieves the highest average Pred(0.3)
value (0.54). The Scott–Knott ESD test results show that there is no
significant difference between DTR, LR, BRR, IG+DTR, IG+LR, IG+BRR,
GS+DTR, GS+LR, and GS+BRR in terms of AAE and Pred(0.3). In other
words, applying IG and GS cannot improve the performance of DTR, LR,
and BRR in terms of AAE and Pred(0.3).

(2) IG+LR and IG+BRR achieve the lowest average AAE1 values
(0.6 and 0.59, respectively) and the highest average Pred(0.3)1 values
(0.44). The Scott–Knott ESD test results show that applying infor-
mation gain feature selection method can significantly improve the
performance of LR and BRR in terms of AAE1 and Pred(0.3)1;

(3) Applying the grid search parameter optimization method can
improve the performance of DTR in terms of AAE2 and Pred(0.3)2.
However, the Scott–Knott ESD test results show IG+DTR only signif-
icantly outperforms DTR in terms of Pred(0.3)2. In addition, applying
information gain and grid search methods cannot significantly improve
or even degrades the performance of DTR, LR, and BRR in terms of
other evaluation metrics.

Answer to RQ3: The information gain feature selection method
and grid search parameter optimization method cannot im-
prove the performance of DTR, LR, and BRR in terms of most
evaluation metrics.

6. Discussion

6.1. Implication

In this subsection, we analyze implications based on our exper-
imental results and provide a few suggestions to practitioners and
researchers in this domain.
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Fig. 8. The boxplot of the AAE0, AAE1, AAE2, AAE3, AAE4−6, AAE6+ values of the 16 regression algorithms.
Table 9
The average Pred(0.3) values of the 6 regression algorithms on the testing datasets.
(The bold value means the improved performance after applying information gain and
grid search methods.)

Measures IG+DTR IG+LR IG+BRR GS+DTR GS+LR GS+BRR

Pred(0.3)0 0.81 0.65 0.65 0.83 0.73 0.73
Pred(0.3)1 0.23 0.44 0.44 0.18 0.34 0.35
Pred(0.3)2 0.10 0.09 0.10 0.10 0.14 0.13
Pred(0.3)3 0.18 0.14 0.14 0.21 0.25 0.25
Pred(0.3)4−6 0.08 0.08 0.08 0.14 0.09 0.09
Pred(0.3)6+ 0.19 0.03 0.03 0.14 0.07 0.08
Pred(0.3) 0.53 0.51 0.50 0.54 0.53 0.53

(1) When the purpose of DNP models is to predict the precise
umber of defects, researchers should evaluate the AAE and Pred(0.3)
alues for the modules with different numbers of defects separately,
ecause the number of defects is imbalanced and the non-defective
odules occupy a large portion of the whole defect dataset. Therefore,

ome DNP studies in Table 1 that employ the whole AAE and Pred(0.3)
alues of all modules as the evaluation metrics for the proposed DNP
lgorithms should be revisited.
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(2) The problem of predicting the precise number of defects through
the adoption of regression algorithms is far from being solved, and
therefore the research community has the opportunity to make more
effort in proposing more accurate DNP algorithms that better assist
practitioners in practice. Since it is very difficult to accurately pre-
dict the precise number of defects in defective modules at present,
practitioners should predict the number of defects by the regression
algorithms and use the predicted number to sort software modules, then
employ some ranking performance measures to evaluate the prediction
model, e.g., FPA and Kendall. Yang [41] and Yu [49] find that BRR
performs the best in terms of FPA, so we recommend that practition-
ers employ BRR to rank software modules to allocate scarce testing
resources more efficiently.

(3) If the main purpose of DNP models is to rank software mod-
ules based on the predicted number of defects, the title of the paper
should ideally be ‘‘Ranking-Oriented Defect Prediction’’ rather than
‘‘Predict the number of defects/bugs’’ to avoid ambiguity. In addition,
researchers can improve the performance of regression algorithms for
ranking software modules accurately by modifying their loss function,
because the loss function of regression algorithms is generally to min-
imize the total difference between the actual and predicted number
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Fig. 9. The boxplot of the Pred(0.3)0, Pred(0.3)1, Pred(0.3)2, Pred(0.3)3, Pred(0.3)4−6, Pred(0.3)6+ values of the 16 regression algorithms.
Fig. 10. The boxplot of the AAE values of the 9 regression algorithms.

of defects rather than optimize the ranking performance measures
(e.g., FPA and PofB). A good model with the higher accuracy may
generate a worse ranking of software modules. For example, there are
the three modules in the testing datasets, i.e., M1, M2, and M3, which
have 6, 5, and 4 defects, respectively. The DNP model A predicts the
13
Fig. 11. The boxplot of the Pred(0.3) values of the 9 regression algorithms.

numbers of defects in M1, M2, and M3 are 6, 3, and 4, whereas the DNP
model B predicts the numbers of defects in the three modules are 3, 2,
and 1. Although the model A has the lower AAE and higher Pred(0.3)
values, the model B predicts the correct ranking of the three modules.
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Fig. 12. The boxplot of the AAE0, AAE1, AAE2, AAE3, AAE4−6, AAE6+ values of the 9 regression algorithms.
6.2. Threats of validity

(1) We use the defect datasets from the PROMISE repository, be-
cause the PROMISE datasets contain the information of the number
of defects and have been widely used in many DNP studies. However,
we still cannot claim that our conclusion can be generalized to other
datasets, especially the proprietary datasets.

(2) We investigate the performance of all base algorithms investi-
gated in the 23 previous DNP studies, except BugStates, Multilayer Per-
ceptron Regression (MPR), Sample entropy–Support Vector Regression
(SSVR), Auto-Regressive Integrated Moving Average (ARIMA) model,
X12-ARIMA model, Deep Learning Neural Network (DPNN), and Fuzzy
Support Vector Regression (FSVR). We only investigate the perfor-
mance of SmoteR, ROS, GBR, AdaBoost.R2, and Bagging, which are
widely investigated data imbalance learning algorithms in previous
DNP studies. Additionally, we acknowledge the existence of several
other regression and data imbalance learning algorithms. Our study
employs the 17 algorithms which is sufficient for an empirical study.
Adoption of other algorithms not used in this study is left for a future
study.

(3) In this study, we sort software modules based on the number of
defects. It assumes that the testing effort is only related to the inspected
14
number of defects, and ignores that different software modules require
different testing effort due to different module size (i.e., LOC). Some
researchers [77–81] proposed to rank software modules based on the
defect density, and assumed that the inspection effort is only linearly
associated with LOC. However, Huang et al. [82] have pointed out
that the frequent context switch between different software modules
also increase the testing effort, if a software defect prediction model
requires software developers to inspect many software modules. In
other words, even two software developers inspect the same LOC and
find the same number of defects, if one developer needs to inspect more
software modules than the other one, he will cost the more testing
effort. In addition, Ostrand et al. [83] have claimed that ‘‘discussions
with software testers convinced us that it is often more valuable for
testers to know which files had the largest numbers of faults rather
than the largest fault densities since that would allow them to better
identify most of the faults quickly’’. Therefore, we ignore the LOC of
software modules in this study. In the future work, we will investigate
which factors are related to the testing effort and how to determine the
weights of different factors.
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Fig. 13. The boxplot of the Pred(0.3)0, Pred(0.3)1, Pred(0.3)2, Pred(0.3)3, Pred(0.3)4−6, Pred(0.3)6+ values of the 9 regression algorithms.
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. Conclusion

For practical benefits, predicting the number of defects has been
uch suggested in literature than classification-based defect prediction.
number of regression algorithms have been used for building DNP
odels and shown to achieve the good performance in terms of AAE

nd Pred(0.3). However, the good performance is questionable due to
he imbalanced distribution of the number of defects. Therefore, in this
aper, we revisit the impact of 12 widely-used regression algorithms,
wo data resampling algorithms, three ensemble learning algorithms,
ne feature selection method, and one parameter optimization method
or predicting the precise number of defects on the 18 PROMISE
atasets. We propose to calculate the AAE and Pred(0.3) values for
he modules with different numbers of defects separately rather than
he whole AAE and Pred(0.3) values for all modules. The experimental
esults show that it is still difficult for the algorithms to predict the
recise number of defects of defective modules accurately. Therefore,
e recommend that the regression algorithms can be only used for

anking software modules based on the predicted number of defects
ather than predicting the precise number of defects, and some DNP
tudies employing regression performance measures to evaluate the
roposed method should be revisited.
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