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A B S T R A C T

Context: In software defect prediction, SMOTE-based techniques are widely adopted to alleviate the class
imbalance problem. SMOTE-based techniques select instances close in the distance to synthesize minority class
instances, ensuring few noise instances are generated.
Objective: However, recent studies show that selecting instances far away effectively increases the diversity
and alleviates the overgeneralization brought by SMOTE-based techniques. To investigate the relationship
between the distance of the selected instances and the performances of SMOTE-based techniques, we carry
out this study.
Method: We first conduct experiments to empirically investigate the impact of the distance between the
instances on the performances of three common SMOTE-based techniques. Based on the experimental result,
we improve a recently proposed oversampling technique-SMOTUNED.
Results: The experimental results on five common classifiers across 30 imbalanced datasets from the PROMISE
repository show that (1) the selection of the distance metric has little impact on the performances of SMOTE-
based techniques, (2) as long as the number of synthesized noise instances is not beyond the noise-resistant
ability of classifiers, the overall performances measured by AUC and 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 of SMOTE-based techniques are
not significantly affected by the distance between instances, and (3) the probability of detection (𝑝𝑑) and the
probability of false alarm (𝑝𝑓 ) values of SMOTE-based techniques are significantly affected by the distance
between the selected instances. The larger the distance between the selected instances is, the lower the 𝑝𝑑 and
𝑝𝑓 values SMOTE-based techniques obtain. The performance of the improved SMOTUNED is similar to that
of the original SMOTUNED, but the improved SMOTUNED dramatically decreases the execution time of the
original SMOTUNED.
Conclusion: By controlling the distance, different 𝑝𝑑 and 𝑝𝑓 values can be obtained. The diversity of
SMOTE-based techniques can be improved, and the overgeneralization can be avoided.
. Introduction

The class imbalance problem [1] present in software defect datasets
ignificantly hinders the performance of prediction models in soft-
are defect prediction (SDP) [2]. Generally, there are more non-
efective (i.e., the majority class or the negative) instances than de-
ective (i.e., the minority class or the positive) ones. With the majority
lass instances dominating, the accuracy values of prediction models
re mostly high, although most minority class instances are wrongly
redicted as majority class instances. However, minority class instances
re of more interest to software practitioners. If prediction models
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are biased toward the majority class instances instead of the minority
class instances, they are less practical [3]. To deal with the class
imbalance problem, several techniques have been proposed, which
generally can be categorized into three general types, namely, (1)
the data resampling technique [4–6], (2) the cost-sensitive learning
technique [7–9], and (3) the ensemble learning technique [10–12]. Due
to the ease of deployment and independence from machine learning
algorithms, the data resampling technique is the most adopted in
SDP studies [6,13,14]. Among different data resampling techniques,
Synthetic Minority Oversampling TEchnique (SMOTE) [4], proposed
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Fig. 1. The FP instances generated by SMOTE.

y Chawla et al. is the most prevalent. Based on SMOTE, several
versampling techniques were also developed, such as Adaptive Syn-
hetic Sampling Approach [15] (ADASYN) and Borderline-SMOTE [5]
Borderline), which we refer to as SMOTE-based techniques in this
tudy.

.1. Motivation

SMOTE-based techniques employ the 𝐾-Nearest Neighbor (KNN) al-
orithm to select the minority class instances used to generate synthetic
nstances. The reason that SMOTE-based techniques employ the KNN
lgorithm is based on the common assumption [16] in the machine
earning community that the similarity between instances can be mea-
ured by the distance between them, and the closer these instances are,
he more similar they are. By selecting the minority class instances close
n the distance, SMOTE-based techniques avoid generating too many
ynthetic noise instances and thus perform well. However, previous
tudies [17,18] have shown that selecting those instances close in
he distance leads to generating near-duplicated instances and thus
he overgeneralization of prediction models. To alleviate the over-
eneralization and increase the diversity of the generated instances,
ennin et al. [6] proposed MAHAKIL, which adopts a different strat-
gy from SMOTE-based techniques. MAHAKIL selects dissimilar and
nrelated minority class instances to generate synthetic instances. In
AHAKIL, the distance between these selected instances is large. Based

n the above assumption, MAHAKIL generates more noise instances
han SMOTE-based techniques. Therefore, the performance of MA-
AKIL should be inferior to those of SMOTE-based techniques. How-
ver, according to our previous study [19], the overall performance of
AHAKIL and those of SMOTE-based techniques are similar in terms

f AUC and 𝑏𝑎𝑙𝑎𝑛𝑐𝑒. This can be explained by Kim’s study [20]. Kim’s
tudy shows that the common classifiers have a certain noise-resistant
bility. Adding a certain amount of false positive (FP) instances into a
ataset does not necessarily degrade the performances of the classifiers,
s long as the number of FP instances is not beyond the noise-resistant
bility of the classifiers. The synthetic noise instances generated by
versampling techniques all belong to FP instances, as shown in Fig. 1.
he noise-resistant ability of the classifiers is beneficial to SMOTE-
ased techniques, because the procedure of SMOTE-based techniques
enerating synthetic instances is blind, which means generating FP
nstances is inevitable for SMOTE-based techniques.

Although the overall performances of MAHAKIL and SMOTE-based
echniques are similar in terms of AUC and 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, there are significant
2

ifferences between the performances of MAHAKIL and SMOTE-based
techniques in terms of the 𝑝𝑑 (probability of detection) and 𝑝𝑓 (prob-
ability of false alarm) values. Specifically, MAHAKIL produces much
lower 𝑝𝑓 values while SMOTE-based techniques obtain much higher
𝑝𝑑 values than MAHAKIL. Based on the performances of SMOTE-based
techniques and MAHAKIL, we make the inference that the distance be-
tween the minority class instances used to generate synthetic instances
does not impact the overall performances of SMOTE-based techniques,
nor the distance metric does. Meanwhile, the 𝑝𝑑 and 𝑝𝑓 values are
significantly affected by the distance. The larger the distance between
the instances is, the lower the 𝑝𝑑 and 𝑝𝑓 values are. If the inference is
correct, the effort spent on tuning the hyperparameter of the distance
metric in SMOTE-based techniques could be saved. Besides, we could
obtain different 𝑝𝑑 and 𝑝𝑓 values by controlling the distance between
the minority class instances used to generate synthetic instances, which
could make SMOTE-based techniques apply to different scenarios and
also avoid the overgeneralization problem. For example, if high security
is required, SMOTE-based techniques producing high 𝑝𝑑 values can be
applied.

1.2. Methodology

In this study, we conduct empirical experiments to investigate
the impact of the distance between instances on the performances
of SMOTE-based techniques in SDP. Specifically, we investigate six
distance metrics (i.e., the Manhattan, Euclidean, Chebyshev, Cosine,
Hamming, and Correlation distances) in three SMOTE-based techniques
(i.e., SMOTE, Borderline, and ADASYN) on five common classifiers
(i.e., 𝐾-nearest neighbor (KNN), decision tree (DT), random forest (RF),
naive Bayes (NB), and logistic regression (LR) classifiers) across 30 im-
balanced datasets collected from the PROMISE repository [21]. Further-
more, we modify these three SMOTE-based techniques as two variants,
i.e., 𝐾-farthest neighbor SMOTE-based techniques (KFN-SMOTE-based
techniques) and Moderate SMOTE-based techniques (M-SMOTE-based
techniques) to investigate the relationship between the distance and
the performances of these techniques. The details of these variants are
given in Section 4.1. We validate the performances of SMOTE-based,
KFN-SMOTE-based, and M-SMOTE-based techniques by four common
performance measures (i.e., the area under the ROC curve (AUC),
𝑏𝑎𝑙𝑎𝑛𝑐𝑒, 𝑝𝑑, and 𝑝𝑓 ). We further analyze the performance by applying
the Cliff’s 𝛿 effect size [22], the Scott–Knott effect size difference
test (the Scott–Knott ESD test) [23], and the Spearman correlation
coefficient (SP) [24].

The experimental results show that the performances of SMOTE-
based techniques with different distance metrics are similar in terms of
AUC and 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, which indicates that the selection of the distance met-
ric has little impact on the performances of SMOTE-based techniques.
Based on this experimental result, we improve SMOTUNED [13], a
recently proposed oversampling technique, by not optimizing the hy-
perparameter of the distance metric. The performance of the improved
SMOTUNED is similar to that of the original SMOTUNED, but the exe-
cution time of the improved SMOTUNED dramatically decreases, which
in turn confirms our findings. Meanwhile, the overall performances of
SMOTE-based and M-SMOTE-based techniques are similar, and both
are better than those of KFN-SMOTE-based techniques in terms of AUC
and 𝑏𝑎𝑙𝑎𝑛𝑐𝑒. In addition, SMOTE-based techniques obtain the highest
𝑝𝑑 and 𝑝𝑓 values, while KFN-SMOTE-based techniques obtain the
lowest 𝑝𝑑 and 𝑝𝑓 values. We conclude that as long as the synthesized
instances do not include too many noise instances beyond the noise-
resistant ability of the classifiers [20], the overall performances of
SMOTE-based techniques are not impacted by the distance between the
minority class instances used to generate synthetic instances in terms
of AUC and 𝑏𝑎𝑙𝑎𝑛𝑐𝑒. However, the 𝑝𝑑 and 𝑝𝑓 values are significantly
affected by the distance. The larger the distance between the selected
instances is, the lower the 𝑝𝑑 and 𝑝𝑓 values of SMOTE-based techniques
are. The statistical and correlation analyses confirm our findings.



Information and Software Technology 142 (2022) 106742S. Feng et al.

r
b
e
e
b
f
t
i
m
t
t
m
t

d

𝑑

l
e
d
i
a
M
b
i

i
b

1.3. Organization

The paper is organized as follows. We start by introducing the
related work about this study in Section 2. Then the background of
this study in Section 3 is introduced. Section 4 details the research
questions, the datasets, the classifiers, the performance measures, and
the experimental design to conduct our experiment. In Section 5, we
show the experimental results and answer the research questions based
on these results. Then we discuss the details of our work in Section 6.
The threats to the validity of our work are discussed in Section 7.
We round off the paper with the conclusions and the future work in
Section 8.

2. Related work

According to the work conducted by Kim et al. [20], common
classifiers have the certain noise-resistant ability. The overall perfor-
mances of these classifiers do not decrease significantly even if a certain
amount of noise is introduced. The noise-resistant ability of classi-
fiers is beneficial to SMOTE-based techniques because the procedure
of SMOTE-based techniques generating synthetic instances is blind,
which means generating noise instances is inevitable for SMOTE-based
techniques. However, Kim further pointed out that when the amount
of noise is beyond a certain level, the overall performance of classifiers
decreases dramatically.

Agrawal et al. [13] proposed an auto-tuning version of SMOTE
named SMOTUNED, which automatically optimizes the hyperparam-
eters of SMOTE. Specifically, SMOTUNED adopts the differential evo-
lution (DE) [25] algorithm to explore the optimal values of the final
defect ratio, the number of neighbors 𝐾, and the distance metric
for SMOTE. SMOTUNED leads to a dramatically large improvement
compared with the original SMOTE in terms of AUC. The superior per-
formance of SMOTUNED indicates that optimizing the hyperparameters
of SMOTE is an effective way to alleviate the class imbalance problem
in SDP. However, due to the large searching space and the complex-
ity of DE, the execution time of SMOTUNED significantly increases
compared with the original SMOTE.

For the class imbalance problem, many prior empirical studies were
conducted in SDP. For example, Bennin et al. [3] analyzed six data
resampling approaches on five classifiers across 40 datasets. They found
that the performances of data resampling approaches are dependent on
the imbalance ratio, evaluation measure, and the selected classifiers.
Tantithamthavorn et al. [26] conducted a more comprehensive empiri-
cal study, which adopted four common data resampling techniques and
analyzed their performances on seven classifiers across 101 datasets
in terms of ten performance measures. The experimental results show
that the data resampling technique is beneficial when quality assurance
teams want to increase AUC and 𝑝𝑑 values. Nevertheless, the data
esampling technique also causes the concept drift [27], which leads to
ias in the learned concepts. Song et al. [28] also conducted extensive
xperiments investigating the role of the imbalanced learning. Their
xperimental results show that an imbalanced learning method should
e carefully chosen to ameliorate the imbalanced learning problem
or SDP. Otherwise, the performance may be negatively affected by
he imbalanced learning method. These empirical studies reveal some
mportant facts about data resampling techniques. However, their work
ostly focused on comparing each technique and omitted the fact that

he performance of a certain data resampling technique could vary due
o its different internal settings. Therefore, we chose different distance
etrics and various distances to investigate the relationship between
3

he performances of SMOTE-based techniques and these settings.
3. Background

3.1. SMOTE-based techniques

Synthetic Minority Oversampling TEchnique, proposed by Chawla
et al. [4], is an oversampling technique, which generates synthetic
minority class instances to tackle the class imbalance problem. SMOTE
selects the minority class instances close in the distance and uses these
instances to generate synthetic instances. SMOTE selects instances close
in the distance to ensure that the pairwise instances used to generate
synthetic instances are not too far away, reducing the possibility that
the synthetic instances wrongly fall outside the region of the minority
class. Therefore, SMOTE needs to tune the hyperparameters of the
distance metric. The standard procedure of SMOTE is as follows: (1)
A minority class instance is randomly selected. (2) Then, one of the
selected instance’s 𝐾 nearest neighbor instances is randomly selected.
(3) Finally, a new synthetic instance is randomly generated on the line
between these two selected instances.

Based on SMOTE, Han et al. [5] proposed Borderline-SMOTE.
Instead of treating each minority class instance equally, Borderline-
SMOTE focuses more on the instances that lie on the decision boundary.
It only uses those borderline instances to generate synthetic instances
and thus strengthens the decision boundary. ADASYN, proposed by
He et al. [15], optimizes the initial selection of the minority class
instances used to generate synthetic instances. ADASYN assigns dif-
ferent weights to each minority class instance based on its difficulty
level of classifying. The difficulty level is decided by the proportion
of instances belonging to the majority class in the neighborhood. The
larger the proportion, the higher the difficulty level of classifying the
minority class instances, and the more weight will be allocated to those
instances.

3.2. Distance metric

Distance is used to measure the similarity between instances. The
Euclidean, Manhattan, and Chebyshev distances are all specific cases
of the Minkowski distance. The Minkowski distance [29] is the gener-
alized distance metric in a normed vector. Given two instances 𝑋 =
(𝑥1, 𝑥2,… , 𝑥𝑛) and 𝑌 = (𝑦1, 𝑦2,… , 𝑦𝑛) from a dataset, the Minkowski
istance 𝑑(𝑋, 𝑌 ) between 𝑋 and 𝑌 is defined as below:

(𝑋, 𝑌 ) = (
𝑛
∑

𝑖=1
|𝑥𝑖 − 𝑦𝑖|

𝑝)
1
𝑝 , (1)

where 𝑥𝑖, 𝑦𝑖 is the 𝑖th feature of the instances 𝑋 and 𝑌 . When 𝑝 is 1
or 2, the Minkowski distance corresponds to the Manhattan distance
or the Euclidean distance, respectively. When 𝑝 is reaching infinity,
the Chebyshev distance is obtained. The Euclidean distance is the most
common distance metric applying to an extensive range of studies. It
is more intuitive than other distance metrics. The Euclidean distance
is a simple straight line between 𝑋 and 𝑌 in the Euclidean space. The
Manhattan distance is named by the way it measuring distance. Using
the Manhattan distance is like walking in the block of Manhattan. The
line representing the Manhattan distance between 𝑋 and 𝑌 is a broken
ine instead of a straight line. It refers to the sum of distance along
ach dimension of 𝑋 and 𝑌 . The Chebyshev distance is the greatest
istance between 𝑋 and 𝑌 along any individual dimension. Fig. 2
llustrates these three distance metrics. From Fig. 2, we can clearly see
broken line between instances A and B using the Manhattan distance.
eanwhile, the Euclidean distance and the Chebyshev distance are

oth simple straight lines. The Chebyshev distance only keeps the
nformation of one dimension.

The Cosine distance is calculated based on the Cosine similar-
ty [30]. The mathematical definition of the Cosine distance is given
elow:
𝑑(𝑋, 𝑌 ) = 1 − 𝐶𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

= 1 −
∑𝑛

𝑖=1 𝑥𝑖𝑦𝑖
√

∑𝑛 2
√

∑𝑛 2
, (2)
𝑖=1 𝑥𝑖 𝑖=1 𝑦𝑖
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Fig. 2. The Manhattan, Euclidean, and Chebyshev distances.
where 𝑥𝑖, 𝑦𝑖 is the 𝑖th feature of the instances 𝑋 and 𝑌 . When the Cosine
similarity equals 1, it means that 𝑋 and 𝑌 are the same. When the
Cosine similarity is equal to −1, 𝑋 and 𝑌 are exactly the opposite, and
if the Cosine similarity is equal to 0, 𝑋 and 𝑌 are unrelated. The range
of the Cosine distance is from 0 to 2.

The Correlation distance is similar to the Cosine distance. The
Correlation distance is calculated based on the Correlation similarity.
The mathematical definition of the correlation distance is as follow:
𝑑(𝑋, 𝑌 ) = 1 − 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

= 1 −
𝑑𝐶𝑜𝑣(𝑋, 𝑌 )

√

𝑑𝑉 𝑎𝑟(𝑋)𝑑𝑉 𝑎𝑟(𝑌 )
, (3)

𝑑𝐶𝑜𝑣(, ) is the distance covariance and 𝑑𝑉 𝑎𝑟(⋅) represents the distance
variance [31]. The range of the Correlation distance is from 0 to 1.
When two instances are the same, the Correlation distance equals 0,
and two instances are independent if the Correlation distance equals 1.

The Hamming distance [32] is defined as the minimum number of
symbol changes needed to change one bitmap into the other given two
bitstrings.

4. Experimental design

This section shows the research questions we investigate, the en-
vironment where all experiments are conducted, the details of the
datasets used in the experiment, including the description of metrics,
the number of instances, and the defect ratio of each software project.
The description of the classifiers is also presented. The evaluation
metrics and the statistical test are listed. At the end of this section, we
explain the detailed setup of the experiment.

4.1. Research question

In this study, we investigate the following two research questions.
RQ1: Do different selections of the distance metrics impact the

performances of SMOTE-based techniques?
To answer this question, we compare the performances of three

common SMOTE-based techniques (i.e., SMOTE, ADASYN, and Border-
line) with six distance metrics (i.e., the Manhattan, Euclidean, Cheby-
shev, Cosine, Hamming, and Correlation distances). If the performances
of SMOTE-based techniques with different distance metrics are signif-
icantly different, we can conclude that the different selections of the
distance metrics impact the performances of SMOTE-based techniques,
which means that when SMOTE-based techniques are applied, the
selection of the distance metric deserves careful consideration. On the
contrary, if different selections of the distance metrics do not impact
4

the performances of SMOTE-based techniques, we could save the effort
of tuning this hyperparameter.

RQ2: Does the distance between the minority class instances
used to generate synthetic instances impact the performances of
SMOTE-based techniques?

To answer this question, we further modify these three SMOTE-
based techniques as follows:

(1) the original SMOTE-based techniques (SMOTE, Borderline, and
ADASYN) employ the 𝐾-nearest neighbor (KNN) algorithm and
select the minority class instances close in the distance to gen-
erate synthetic instances.

(2) 𝐾-farthest neighbor SMOTE-based techniques (KFN-SMOTE,
KFN-Borderline, and KFN-ADASYN) select one minority class in-
stance and one of its 𝐾 farthest neighbor minority class instances
to generate synthetic instances.

(3) Moderate SMOTE-based techniques (M-SMOTE, M-Borderline,
and M-ADASYN) randomly select two minority class instances
to generate synthetic instances. In other words, the distance be-
tween the minority class instances selected by M-SMOTE-based
techniques is farther than that of SMOTE-based techniques and
closer than that of KFN-SMOTE-based techniques. M-SMOTE-
based techniques can be treated as SMOTE-based techniques just
with the 𝐾 value equaling 𝑁 − 1. Here 𝑁 refers to the number
of minority class instances in a dataset.

We show SMOTE, KFN-SMOTE, and M-SMOTE in Fig. 3, where we
set the 𝐾 value to be 3. For SMOTE, the minority class instance A can
randomly select one instance from its 𝐾 nearest neighbor instances B, C,
and D to generate a synthetic instance. For KFN-SMOTE, the instance A
can randomly select one instance from its 𝐾 farthest neighbor instances
E, F, and G. For M-SMOTE, the instance A can randomly select any one
minority class instance from the whole dataset (i.e., instances B, C, D,
E, F, and G) to generate a synthetic instance.

We compare the performances of SMOTE-based, M-SMOTE-based,
and KFN-SMOTE-based techniques. SMOTE-based techniques select the
instances closer in distance than M-SMOTE-based and KFN-SMOTE-
based techniques to generate synthetic instances. M-SMOTE-based tech-
niques select the instances closer in distance than KFN-SMOTE-based
techniques. If the performances of SMOTE-based, M-SMOTE-based, and
KFN-SMOTE-based techniques are similar, we could conclude that the
distance does not impact the performances of these techniques. Other-
wise, it indicates that the distance is an important factor that impacts
the performances of SMOTE-based techniques. Future research on the
oversampling technique should take the distance into the consideration.
Thus, we can answer RQ2.
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.2. Environment

In this study, the CPU used is an Intel Core i8-8700 K 3.7 GHz. The
emory is 32 GB RAM, and the operating system is Microsoft Windows
0 Enterprise 64-bit.

.3. Datasets

In this study, we use the datasets collected from the PROMISE
epository [21]. There are 41 datasets measured by the static code
etric [33]. Because we focus on the class imbalance problem, we only

elect the datasets whose defect ratio is less than 50%. These datasets
ere widely adopted by many previous studies [6,34–36] and showed
ood performance. They are all open-source and easily collected, mak-
ng it easy for others to compare and replicate our work. We list the
etailed information of these datasets, including the project names, the
ersions, the number of the total instances, the defective instances,
nd the defect ratio in Table 1. There are 20 metrics to measure the
omplexity of instances in these selected datasets. In addition, there is
metric indicating whether the current instance is defective or not. If

he current instance is non-defective, the metric is labeled as 0. The
etric is labeled as one if the instance is defective. The details of these
etrics are presented in Table 2.

.4. Classifiers

In this study, we adopt five common classifiers (i.e., 𝐾-nearest
neighbor (KNN), decision tree (DT), random forest (RF), naive Bayes
(NB), and logistic regression (LR)), which have been widely used
in many previous studies. Their performances are pretty satisfactory.
Adopting these five classifiers could make our conclusion more general
and convenient for others’ replication. Note that we focus on inves-
tigating the impact of the distance instead of tuning the hypermeters
of these classifiers and avoiding reinventing the wheel. Therefore, we
adopt the sklearn package [37] to implement the selected classifiers,
and all the hyperparameters for these classifiers are set to be the default
values.

4.5. Performance measures

Performances of prediction models are usually evaluated by analyz-
ing the results computed from a confusion matrix. A typical confusion
matrix is defined in . By convention, defective instances are considered
as positive and non-defective instances as negative. (See Tables 3, 6, 7
and 9)

In SDP, using the overall accuracy to evaluate the performance
of prediction models is inappropriate because of the class imbalance
problem. Even if all instances are predicted as non-defective, the overall
accuracy remains high because there are many more non-defective
instances than defective ones. Therefore, we choose performance mea-
sures that are not severely affected by the class imbalance problem.
In this study, we choose AUC, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, 𝑝𝑑, and 𝑝𝑓 . These performance
5

easures were widely adopted in many studies [3,38,39]. The higher a
Table 1
Description of 30 datasets collected from the PROMISE repository.
Dataset # Instances # Defect % Defect ratio

ant-1.3 125 20 16
ant-1.4 178 40 22.5
ant-1.5 293 32 10.9
ant-1.6 351 92 26.2
ant-1.7 745 166 22.3
camel-1.0 339 13 3.8
camel-1.2 608 216 35.5
camel-1.4 872 145 16.6
camel-1.6 965 188 19.5
ivy-1.4 241 16 6.6
ivy-2.0 352 40 11.4
jedit-3.2 272 90 33.1
jedit-4.0 306 75 24.5
jedit-4.1 312 79 25.3
jedit-4.2 367 48 13.1
jedit-4.3 492 11 2.2
log4j-1.0 135 34 25.2
log4j-1.1 109 37 33.9
lucene-2.0 195 91 46.7
poi-2.0 314 37 11.8
synapse-1.0 157 16 10.2
synapse-1.1 222 60 27.0
synapse-1.2 256 86 33.6
velocity-1.6 229 78 34.1
xalan-2.4 723 110 15.2
xalan-2.5 803 387 48.2
xalan-2.6 885 411 46.4
xerces-1.2 440 71 16.1
xerces-1.3 453 69 15.2
xerces-init 162 77 47.5

values of AUC, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, and 𝑝𝑑 and the lower values of 𝑝𝑓 represent
the better performance. The mathematical definitions of 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, 𝑝𝑑,
and 𝑝𝑓 are given as below:

𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = 1 −

√

(0 − 𝑝𝑓 )2 + (1 − 𝑝𝑑)2
√

2
(4)

𝑝𝑑 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(5)

𝑝𝑓 = 𝐹𝑃
𝑇𝑁 + 𝐹𝑃

(6)

.6. Performance comparison

In this study, because we aim to guide the practical use of SMOTE-
ased techniques, We first use the effect size (i.e., Cliff’s 𝛿) to quantify
he difference between each distance metric across every single dataset.

e adopt the effect size because it is independent of sample size and
ore tied to the magnitude of the experimental results [40]. Specif-

cally, a practical effect size between two distance metrics indicates
hat the effort spent on tuning the parameter of distance metrics is
orthy. Otherwise, the effort can be saved. For the interpretation of

he effect size, we follow Kampenes [41]. The effect size is interpreted
s negligible (0 < Cliff’s 𝛿 < 0.147), small (0.147 < Cliff’s 𝛿 < 0.33),
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Table 2
Description of the metrics.

Abbreviation Description

WMC Weighted methods per class
DIT Depth of Inheritance Tree
NOC Number of Children
CBO Coupling between object classes
RFC Response for a Class
LCOM Lack of cohesion in methods
CA afferent couplings
CE efferent couplings
NPM Number of Public Methods
LCOM3 Lack of cohesion in methods, different from LCOM
LOC Lines of Code
DAM Data Access Metric
MOA Measure of Aggregation
MFA Measure of Functional Abstraction
CAM Cohesion Among Methods of Class
IC Inheritance Coupling
CBM Coupling Between Methods
AMC Average Method Complexity
MAX(CC) Maximum value of CC methods of the investigated

class
AVG(CC) Arithmetic mean of the CC value in the investigated

class

Table 3
Confusion matrix.

Predicted positive Predicted negative

Actual positive True positive (TP) False negative (FN)
Actual negative False positive (FP) True negative (TN)

medium (0.33 < Cliff’s 𝛿 < 0.474), and large (Cliff’s 𝛿 > 0.474),
respectively. Besides, we employ the Scott–Knott Effect Size Difference
test (the Scott–Knott ESD test) [23] to compare the values of these
performance measures of these techniques to investigate whether there
exist statistically significant differences among them. The Scott–Knott
ESD test is an algorithm that compares multiple results considering the
effect size. It divides results into two different groups if the two groups
have a significant difference. Then the procedure will be repeated if
there is still a significant difference in each group. When no group can
be further created, the Scott–Knott ESD test is terminated. The results
in the different groups are significantly different. We also employ
the Spearman correlation coefficient (SP) [42] to calculate the cor-
relation between the distance and the performances of SMOTE-based
techniques. SP is a special case of the Pearson correlation coefficient
(PE) [43]. Unlike PE, SP uses the ranks instead of the values of the
variables. We adopt SP instead of PE because SP is less sensitive to
noise than PE, and the datasets adopted in SDP usually contain noisy
instances.

4.7. Experimental design

Since distance is sensitive to the scale of data, we first apply the
min–max normalization method to the original datasets to adjust all
the features into the range from 0 to 1, which reduces the negative
impact of different scales of different features. Then we adopt the 5-fold
cross-validation to divide the experimental datasets using the strati-
fication method to generate the training and testing data. Employing
the 5-fold cross-validation to generate the training and testing data is
quite common in SDP as well as the class imbalance problem [44,45].
Besides, SMOTUNED also employs the 5-fold cross-validation to explore
the optimal values of the hyperparameters. We adopt the stratification
method to split the datasets to ensure that there are always defective
instances existing in all five folds and also keep the proportion of
the defective instances to the non-defective instances remaining the
same as the original datasets. After being split, four folds are used as
the training data and the left fold as the testing data. Then we apply
6

SMOTE-based techniques with different metrics to oversample only the
training data and keep the testing data unchanged. Based on the conclu-
sion of Ahmad Abu [46] that oversampling techniques attain the best
performance at 50%, we terminate these techniques when the number
of defective and non-defective instances are equal in the training data.
The prediction models are trained with the oversampled training data,
and the performances of the prediction models are validated by the
original testing data. We iterate this procedure five times to ensure all
five folds have been used once as the training and testing data. For more
robust and converging results, we further run the above procedure 100
times to handle the random variation and sample bias. For each dataset,
we obtain 5 × 100 = 500 outcomes for each distance metric in terms of
each performance measure on each dataset. We take the 500 outcomes
as a distribution of each distance metric. Then we apply the distribution
of each distance metric to each statistical test adopted in this study.
Fig. 4 presents the experimental framework in this study.

5. Experimental results and analysis

In this section, we present the heatmap of the effect sizes between
SMOTE-based techniques with different distance metrics on the KNN,
DT, RF, NB, and LR classifiers in terms of AUC and 𝑏𝑎𝑙𝑎𝑛𝑐𝑒. We
further present the Scott–Knott ESD test ranking of SMOTE-based,
KFN-SMOTE-based, and M-SMOTE-based techniques on the selected
classifiers across 30 datasets in terms of AUC, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, 𝑝𝑑, and 𝑝𝑓 . Then
we examine the Spearman correlation coefficient (SP). We exhibit the
experimental results via answering the research questions.

RQ1: Do different selections of the distance metrics impact the
performances of SMOTE-based techniques?

Fig. 5 presents the heatmap of the effect sizes between the perfor-
mance of SMOTE, Borderline, and ADASYN adopting different distance
metrics in terms of AUC. Each 6 × 6 matrix compares the effect sizes
between the six distance metrics on the combination of each dataset
and each classifier. There are 150 (30 datasets × 5 classifiers) combi-
nations of the datasets and the classifiers for SMOTE, Borderline, and
ADASYN, respectively. The pink cell in Fig. 5 indicates that the effect
sizes between any two distance metrics are negligible. The orange cell
represents the effect size is small, and the red cell represents the effect
size is larger than small. From Fig. 5(a), we can see that the selection
of the distance metric has negligible impact on the performance of
SMOTE across most datasets on the five classifiers. Among the 150
combinations, only two combinations have an effect size larger than
small. Twenty-one combinations have a small effect size, and the effect
sizes of 127 of the 150 combinations are all negligible. For Borderline,
eight combinations achieves the effect sizes larger than small, and
45 combinations achieves the small effect sizes. The rest of the 150
combinations are negligible. For ADASYN, the effect sizes of three
combinations are larger than small. Fifty-one combinations obtain the
small effect sizes, and 96 combinations achieve the negligible effect
sizes.

Fig. 6 shows the heatmap of the effect sizes between the perfor-
mance of SMOTE, Borderline, and ADASYN adopting different distance
metrics in terms of 𝑏𝑎𝑙𝑎𝑛𝑐𝑒. It also can be seen that the selection of
distance metrics has little impact on the performance of SMOTE-based
techniques.

To complete our experiment, we modify a recently proposed over-
sampling technique-SMOTUNED [13]. Specifically, the original SMO-
TUNED automatically optimizes three hyperparameters of SMOTE: the
final defect ratio, the number of neighbors 𝐾, and the distance metric.
The tuning range of these hyperparameters follows the setting of the
original paper, which is shown in Table 4. From Table 4, it can be
seen that there are only 20 options for 𝐾 and only four options for the
final defect ratio. As to the distance metric, it has a continuous range
of values from 0.1 to 5. Clearly, the execution time of SMOTUNED
is mostly governed by the operation exploring the optimal distance
metric. By not optimizing the distance metric, the searching space of DE
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Fig. 4. Experimental framework.
Fig. 5. The heatmap of the effect sizes between the performance of SMOTE, Borderline, and ADASYN adopting different distance metrics in terms of AUC (The pink cell represents
the effect size is negligible, the orange cell represents the effect size is small, and the red cell represents the effect size is larger than small). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
could significantly decrease, which could lead to a significant decrease
in the execution time of SMOTUNED.

To improve SMOTUNED, we modify SMOTUNED by only optimizing
7

the final defect ratio and 𝐾 values and not optimizing the distance
metric. As to the distance metric, we set it to be fixed as the Eu-
clidean distance, which is commonly adopted as the default distance
metric in the previous studies. For the other setting, we follow all the

settings as the original paper does. The stop criterion StdDev [47] is



Information and Software Technology 142 (2022) 106742S. Feng et al.
Fig. 6. The heatmap of the effect sizes between each distance metric in terms of 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 (Pink represents the effect size is negligible, orange represents the effect size is small,
and red represents the effect size is larger than small). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 4
Tuning range of the hyperparameters of SMOTE.
Hyperparameters Values

The number of neighbors 𝐾 [1, 2, 3, . . . , 19, 20]
The final defect ratio % [50, 100, 200, 400]
The distance metric [0.1, 5]

adopted. When the standard deviation of positions of all members is
below 0.001, the optimization run is stopped, and the convergence
is considered to be achieved. If there is no significant difference be-
tween the performances of the modified SMOTUNED and the original
SMOTUNED, it further proves that the selection of the distance metrics
has little impact on the performances of SMOTE-based techniques.
To ease the demonstration, we refer to the improved SMOTUNED as
I-SMOTUNED.

We record the median AUC values of every single dataset on the
four classifiers in Tables 5 to Table 8. We also calculate the effect sizes
between SMOTUNED and I-SMOTUNED across every single dataset.
Because we repeat the experiments 100 times, we record the median
execution time of 100-time 5-fold cross-validation. The column ‘‘Time’’
in these tables represents the median execution time of 100-time 5-
fold cross-validation and is specified in seconds. From these tables, we
can see that the performance of I-SMOTUNED is quite similar to that
of SMOTUNED on all classifiers in terms of the median AUC values.
Moreover, the effect sizes between the performances of I-SMOTUNED
and SMOTUNED are negligible across most datasets on the five clas-
sifiers. Only 0, 3, 1, 1, and 2 out of 30 datasets on the KNN, DT,
RF, LR, and NB classifiers achieve small effect sizes, and no datasets
obtains an effect size larger than small. Besides, the execution time of
SMOTUNED is much longer than that of I-SMOTUNED. Specifically,
the median execution time of I-SMOTUNED is only 56.7%, 62.4%,
57.4%, 57.3%, and 46.8% of SMOTUNED on the KNN, DT, RF, NB,
8

Table 5
Comparison between the execution time and the performances of SMOTUNED and
I-SMOTUNED on the KNN classifier in terms of AUC.

Dataset SMOTUNED I-SMOTUNED Cliff’s 𝛿

AUC Time (s) AUC Time (s)

ant-1.3 0.672 40.1 0.667 24.9 Negligible
ant-1.4 0.586 144.4 0.579 88.0 Negligible
ant-1.5 0.734 108.0 0.735 58.1 Negligible
ant-1.6 0.725 129.7 0.715 82.0 Negligible
ant-1.7 0.737 777.3 0.739 282.6 Negligible
camel-1.0 0.601 416.7 0.590 225.4 Negligible
camel-1.2 0.571 802.3 0.565 178.1 Negligible
camel-1.4 0.610 1472.8 0.599 594.0 Negligible
camel-1.6 0.679 1211.2 0.672 295.2 Negligible
ivy-1.4 0.532 73.7 0.534 55.6 Negligible
ivy-2.0 0.683 271.3 0.695 118.1 Negligible
jedit-3.2 0.754 111.1 0.746 107.2 Negligible
jedit-4.0 0.751 112.8 0.745 104.1 Negligible
jedit-4.1 0.736 180.3 0.732 39.9 Negligible
jedit-4.2 0.703 274.6 0.712 62.2 Negligible
jedit-4.3 0.752 512.3 0.753 412.3 Negligible
log4j-1.0 0.735 42.4 0.732 40.1 Negligible
log4j-1.1 0.789 43.7 0.794 20.1 Negligible
lucene-2.0 0.631 31.5 0.632 22.7 Negligible
poi-2.0 0.661 322.7 0.661 205.7 Negligible
synapse-1.0 0.725 58.9 0.740 50.8 Negligible
synapse-1.1 0.693 107.7 0.690 56.4 Negligible
synapse-1.2 0.716 54.2 0.715 39.1 Negligible
velocity-1.6 0.703 156.2 0.701 110.1 Negligible
xalan-2.4 0.684 451.3 0.696 369.2 Negligible
xalan-2.5 0.648 305.9 0.646 130.2 Negligible
xalan-2.6 0.740 91.2 0.740 56.0 Negligible
xerces-1.2 0.680 413.1 0.672 307.1 Negligible
xerces-1.3 0.747 155.6 0.756 73.9 Negligible
xerces-init 0.692 16.1 0.701 9.2 Negligible
Median 0.698 150.0 0.701 85.0
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Table 6
Comparison between the execution time and the performances of SMOTUNED and
I-SMOTUNED on the DT classifiers in terms of AUC.

Dataset SMOTUNED I-SMOTUNED Cliff’s 𝛿

AUC Time (s) AUC Time (s)

ant-1.3 0.627 281.6 0.642 254.4 Negligible
ant-1.4 0.595 416.0 0.617 181.2 Negligible
ant-1.5 0.610 316.6 0.610 149.3 Negligible
ant-1.6 0.693 188.0 0.693 43.4 Negligible
ant-1.7 0.652 1047.4 0.658 682.6 Negligible
camel-1.0 0.500 311.8 0.514 190.2 Negligible
camel-1.2 0.592 1180.7 0.586 196.3 Negligible
camel-1.4 0.610 967.0 0.606 818.1 Negligible
camel-1.6 0.597 1175.4 0.611 716.8 Small
ivy-1.4 0.531 204.4 0.548 187.2 Negligible
ivy-2.0 0.619 1180.4 0.624 578.8 Negligible
jedit-3.2 0.689 248.0 0.684 64.5 Negligible
jedit-4.0 0.670 141.4 0.668 78.6 Negligible
jedit-4.1 0.691 195.8 0.685 128.8 Negligible
jedit-4.2 0.664 1054.2 0.649 240.9 Negligible
jedit-4.3 0.678 218.0 0.711 183.2 Small
log4j-1.0 0.612 131.5 0.632 69.8 Negligible
log4j-1.1 0.701 82.3 0.674 94.9 Small
lucene-2.0 0.611 76.1 0.622 23.9 Negligible
poi-2.0 0.618 237.0 0.612 111.8 Negligible
synapse-1.0 0.585 68.1 0.589 67.4 Negligible
synapse-1.1 0.660 87.3 0.656 43.3 Negligible
synapse-1.2 0.664 456.2 0.676 218.4 Negligible
velocity-1.6 0.668 160.6 0.678 110.9 Negligible
xalan-2.4 0.638 1482.7 0.633 1067.8 Negligible
xalan-2.5 0.666 937.7 0.666 280.0 Negligible
xalan-2.6 0.711 193.8 0.712 135.3 Negligible
xerces-1.2 0.644 283.9 0.652 260.0 Negligible
xerces-1.3 0.672 394.5 0.674 126.3 Negligible
xerces-init 0.694 15.1 0.694 12.8 Negligible
Median 0.648 264.8 0.651 165.3

Table 7
Comparison between the execution time and the performances of SMOTUNED and
I-SMOTUNED on the RF classifiers in terms of AUC.

Dataset SMOTUNED I-SMOTUNED Cliff’s 𝛿

AUC Time (s) AUC Time (s)

ant-1.3 0.629 320.4 0.635 182.3 Negligible
ant-1.4 0.645 921.2 0.638 359.1 Negligible
ant-1.5 0.642 625.7 0.639 360.8 Negligible
ant-1.6 0.744 497.4 0.751 148.6 Negligible
ant-1.7 0.718 1691.8 0.719 544.8 Negligible
camel-1.0 0.538 949.0 0.520 423.5 Negligible
camel-1.2 0.609 1242.6 0.596 324.2 Small
camel-1.4 0.643 1592.2 0.643 850.4 Negligible
camel-1.6 0.622 1315.4 0.622 1183.6 Negligible
ivy-1.4 0.536 685.0 0.538 242.2 Negligible
ivy-2.0 0.668 309.9 0.656 308.3 Negligible
jedit-3.2 0.745 302.0 0.751 150.4 Negligible
jedit-4.0 0.717 118.9 0.714 98.9 Negligible
jedit-4.1 0.745 160.1 0.746 109.5 Negligible
jedit-4.2 0.696 250.0 0.702 223.3 Negligible
jedit-4.3 0.665 149.1 0.665 135.3 Negligible
log4j-1.0 0.675 236.5 0.669 136.9 Negligible
log4j-1.1 0.751 110.7 0.742 106.2 Negligible
lucene-2.0 0.651 50.5 0.654 42.9 Negligible
poi-2.0 0.646 793.1 0.644 268.8 Negligible
synapse-1.0 0.599 296.7 0.613 179.4 Negligible
synapse-1.1 0.704 164.3 0.704 113.7 Negligible
synapse-1.2 0.732 119.3 0.726 110.2 Negligible
velocity-1.6 0.718 386.8 0.714 114.9 Negligible
xalan-2.4 0.675 1022.0 0.672 633.1 Negligible
xalan-2.5 0.689 331.3 0.689 140.2 Negligible
xalan-2.6 0.754 169.3 0.753 129.0 Negligible
xerces-1.2 0.687 420.3 0.683 269.8 Negligible
xerces-1.3 0.707 289.9 0.700 193.1 Negligible
xerces-init 0.749 37.7 0.745 36.4 negligible
Median 0.681 315.2 0.678 180.9
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Table 8
Comparison between the execution time and the performances of SMOTUNED and
I-SMOTUNED on the LR classifiers in terms of AUC.

Dataset SMOTUNED I-SMOTUNED Cliff’s 𝛿

AUC Time (s) AUC Time (s)

ant-1.3 0.742 37.2 0.751 22.7 Negligible
ant-1.4 0.631 147.0 0.639 69.1 Negligible
ant-1.5 0.730 89.0 0.732 34.7 Negligible
ant-1.6 0.759 106.3 0.759 60.4 Negligible
ant-1.7 0.736 437.0 0.733 194.2 Negligible
camel-1.0 0.668 392.0 0.673 103.8 Negligible
camel-1.2 0.577 226.7 0.579 71.1 Negligible
camel-1.4 0.660 509.4 0.660 240.8 Negligible
camel-1.6 0.628 565.0 0.630 214.4 Negligible
ivy-1.4 0.568 370.6 0.577 263.3 Negligible
ivy-2.0 0.726 239.5 0.725 94.1 Negligible
jedit-3.2 0.770 81.4 0.772 27.6 Negligible
jedit-4.0 0.683 109.5 0.669 34.3 Small
jedit-4.1 0.748 123.1 0.749 48.5 Negligible
jedit-4.2 0.747 121.5 0.746 91.7 Negligible
jedit-4.3 0.682 426.0 0.667 331.6 Negligible
log4j-1.0 0.738 44.2 0.740 23.1 Negligible
log4j-1.1 0.776 24.7 0.777 23.2 Negligible
lucene-2.0 0.680 26.9 0.679 16.3 Negligible
poi-2.0 0.677 126.1 0.671 76.8 Negligible
synapse-1.0 0.728 38.1 0.728 33.6 Negligible
synapse-1.1 0.701 56.0 0.704 40.8 Negligible
synapse-1.2 0.719 66.8 0.716 34.3 Negligible
velocity-1.6 0.691 45.5 0.694 38.3 Negligible
xalan-2.4 0.681 292.9 0.680 180.9 Negligible
xalan-2.5 0.592 104.5 0.593 71.4 Negligible
xalan-2.6 0.731 196.8 0.730 72.9 Negligible
xerces-1.2 0.524 325.5 0.505 147.1 Negligible
xerces-1.3 0.769 345.0 0.770 147.3 Negligible
xerces-init 0.635 30.7 0.633 17.7 Negligible
Median 0.696 122.3 0.699 70.1

Table 9
Comparison between the execution time and the performances of SMOTUNED and
I-SMOTUNED on the NB classifiers in terms of AUC.

Dataset SMOTUNED I-SMOTUNED Cliff’s 𝛿

AUC Time (s) AUC Time (s)

ant-1.3 0.722 121.7 0.711 36.4 Negligible
ant-1.4 0.526 106.7 0.517 71.8 Negligible
ant-1.5 0.671 56.7 0.666 37.5 Negligible
ant-1.6 0.729 277.5 0.726 102.3 Negligible
ant-1.7 0.732 975.7 0.735 400.2 Negligible
camel-1.0 0.734 121.0 0.740 70.6 Negligible
camel-1.2 0.556 161.9 0.557 68.5 Negligible
camel-1.4 0.639 1151.5 0.638 444.5 Negligible
camel-1.6 0.608 1537.8 0.609 518.8 Negligible
ivy-1.4 0.594 101.9 0.595 47.1 Negligible
ivy-2.0 0.679 261.2 0.669 166.3 Negligible
jedit-3.2 0.698 104.8 0.709 31.7 Negligible
jedit-4.0 0.699 181.3 0.692 157.5 Negligible
jedit-4.1 0.724 234.5 0.730 91.3 Small
jedit-4.2 0.733 221.0 0.738 184.4 Negligible
jedit-4.3 0.502 281.8 0.500 200.7 Negligible
log4j-1.0 0.727 67.5 0.719 54.8 Negligible
log4j-1.1 0.775 13.0 0.769 10.0 Negligible
lucene-2.0 0.678 131.1 0.684 69.7 Negligible
poi-2.0 0.655 268.2 0.618 51.1 Negligible
synapse-1.0 0.664 42.5 0.662 34.0 Negligible
synapse-1.1 0.656 85.2 0.654 25.2 Negligible
synapse-1.2 0.695 98.9 0.677 27.5 Negligible
velocity-1.6 0.607 146.0 0.610 72.4 Negligible
xalan-2.4 0.662 664.8 0.666 447.4 Negligible
xalan-2.5 0.562 750.5 0.561 244.9 Negligible
xalan-2.6 0.697 852.4 0.698 480.4 Negligible
xerces-1.2 0.509 109.8 0.516 98.8 Negligible
xerces-1.3 0.731 263.9 0.735 231.1 Negligible
xerces-init 0.616 83.4 0.590 71.0 Small
Median 0.675 154.0 0.668 72.1
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Fig. 7. The Scott–Knott ESD test ranking of the performances of SMOTE-based, M-
SMOTE-based, and KFN-SMOTE-based techniques in terms of AUC on the five classifiers
across 30 datasets (blue>red). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

and LR classifiers, respectively. By not optimizing the hyperparameter
of the distance metric, we can dramatically decrease the execution
time of SMOTUNED while remaining its performance. It also confirms
that different selections of distance metrics have little impact on the
performances of SMOTE-based techniques.

To summarize, there is no significant difference among the perfor-
mances of SMOTE-based techniques with different distance metrics
based on the statistical analysis. Furthermore, the performance
of the improved SMOTUNED is similar to that of the original
SMOTUNED. Therefore, the answer to RQ1 is that the selection
of the distance metric has little impact on the performances of
SMOTE-based techniques.

RQ2: Does the distance between the minority class instances
sed to generate synthetic instances impact the performances of
MOTE-based techniques?

As we have empirically proved that the selections of the distance
etrics have little impact on the performances of SMOTE-based tech-
iques, we adopt the Euclidean distance as the default distance metric
n the following experiments.

To investigate the impact of the distance between the minority class
nstances on the performances of SMOTE-based techniques, we further
odify SMOTE-based techniques and refer to them as SMOTE-based,
FN-SMOTE-based, and M-SMOTE-based techniques.

From Fig. 7(a), we can see that SMOTE and M-SMOTE perform
imilarly, and there is no significant difference between the perfor-
ances of SMOTE and M-SMOTE in terms of AUC on all classifiers.
eanwhile, KFN-SMOTE performs poorly, and both SMOTE and M-

MOTE significantly outperform it on most classifiers. From Figs. 7(b)
nd 7(c), it can be seen that KFN-Borderline and KFN-ADASYN also
erform poorly.

With respect to the 𝑝𝑑 values, we can see that SMOTE-based and M-
MOTE-based techniques both significantly outperform KFN-SMOTE-
ased techniques on the KNN, RF, NB, and LR classifiers from Fig. 8.
10
Fig. 8. The Scott–Knott ESD test ranking of the performances of SMOTE-based, M-
SMOTE-based, and KFN-SMOTE-based techniques in terms of 𝑝𝑑 on the five classifiers
across 30 datasets (blue>red>green). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 9. The Scott–Knott ESD test ranking of the performances of SMOTE-based, M-
SMOTE-based, and KFN-SMOTE-based techniques in terms of 𝑝𝑓 on the five classifiers
across 30 datasets (blue>red>green). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

On the DT classifier, although SMOTE-based and M-SMOTE-based tech-
niques do not significantly outperform KFN-SMOTE-based techniques,
the performance of KFN-SMOTE-based techniques is inferior in terms
of 𝑝𝑑.
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Fig. 10. The heatmap of the effect sizes between the performance of SMOTE adopting different distance metrics in terms of AUC under different balanced ratios (The pink cell
epresents the effect size is negligible, the orange cell represents the effect size is small, and the red cell represents the effect size is larger than small). (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 11. The heatmap of the effect sizes between the performance of SMOTE adopting different distance metrics in terms of 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 under different balanced ratios (The pink cell
represents the effect size is negligible, the orange cell represents the effect size is small, and the red cell represents the effect size is larger than small) . (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
v

Because of the positive relationship between 𝑝𝑑 and 𝑝𝑓 , We have
lso observed a similar trend in the 𝑝𝑓 values. From Fig. 9, it can be

seen that the 𝑝𝑓 values of M-SMOTE-based and SMOTE-based tech-
niques are significantly higher than those of KFN-SMOTE-based tech-
niques.

To further demonstrate the relationship between the performances
of these techniques and the distance, we present the distance between
the instances used to generate synthetic instances and calculate the
Spearman correlation coefficient (SP) [42]. According to [48], we
denote SP as 𝜌 and interpret SP as zero (|𝜌| = 0), weak (0.1 < |𝜌| < 0.4),
moderate (0.4 < |𝜌| < 0.6), strong (0.6 < |𝜌| < 0.9), and perfect (|𝜌| = 1).

We first present the median distance between the instances used
to generate synthetic instances in each technique. From Table 10, it
can be seen that the distance of KFN-SMOTE-based techniques is much
11
greater than that of M-SMOTE-based techniques, and that of SMOTE-
based techniques is the least. Then we present the Spearman correlation
coefficient between the distance and the performances of SMOTE, M-
SMOTE, and KFN-SMOTE across every single dataset. From Table 11,
we can see that the AUC values of SMOTE are less correlated with the
distance. The values of |𝜌| are all less than 0.4 on all classifiers in terms
of AUC. Meanwhile, with respect to the 𝑝𝑑 and 𝑝𝑓 values, the values
of |𝜌| are larger than 0.4 on the KNN, RF, NB, and LR classifiers, which
shows a practical negative correlation between the distance and the 𝑝𝑑
and 𝑝𝑓 values on these classifiers. The larger the distance is, the lower
𝑝𝑑 and 𝑝𝑓 values SMOTE obtains. On the DT classifier, the 𝑝𝑑 and 𝑝𝑓
alues are less correlated with the distance.
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Table 10
The median distance between the instances used to generate synthetic instances in
SMOTE-based, M-SMOTE-based, and KFN-SMOTE based techniques.

SMOTE M-SMOTE KFN-SMOTE
Distance 0.599 1.201 1.933

Borderline M-Borderline KFN-Borderline
Distance 0.577 1.178 1.921

ADASYN M-ADASYN KFN-ADASYN
Distance 0.539 1.062 1.647

Table 11
The Spearman correlation coefficient between the distance and the
performance of SMOTE.
KNN AUC 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑝𝑑 𝑝𝑓
SP −0.333 −0.567 −0.862 −0.983

DT AUC 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑝𝑑 𝑝𝑓
SP 0.150 0.117 0.083 −0.167

RF AUC 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑝𝑑 𝑝𝑓
SP −0.383 −0.467 −0.496 −0.483

NB AUC 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑝𝑑 𝑝𝑓
SP −0.317 −0.450 −0.804 −0.817

LR AUC 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑝𝑑 𝑝𝑓
SP −0.350 −0.533 −0.771 −0.883

To summarize, the answer to RQ2 is that the distance between the
instances used to generate synthetic instances indeed impacts the
performances of SMOTE-based techniques. First, if the number of
the noise instances is not beyond the noise-resistant ability of the
classifiers, the overall performances of SMOTE-based techniques
are not significantly impacted in terms of AUC and 𝑏𝑎𝑙𝑎𝑛𝑐𝑒. Oth-
erwise, the performance significantly degrades, which is consistent
with Kim’s conclusion [20]. Second, the 𝑝𝑑 and 𝑝𝑓 values are
significantly impacted. The |𝜌| values of the SP show that the
larger the distance is, the lower the 𝑝𝑑 and 𝑝𝑓 values are. Our
experimental results show that controlling the distance between
the instances used to generate synthetic instances could alleviate
the overgeneralization problem. Besides, we can adjust the 𝑝𝑑 and
𝑝𝑓 values of SMOTE-based techniques by controlling the distance
between the instances used to generate synthetic instances to meet
different requirements.

6. Discussion

6.1. Is the conclusion consistent under different balanced ratios?

In the above experiments, the default balanced ratio of SMOTE-
based techniques is set to be 0.5. To make our conclusion more general-
ized, we choose different balanced ratios to re-conduct the experiment.
If the experimental results are consistent, our conclusion could be more
generalized. Specifically, we set the balanced ratio as 0.4 and 0.6
for SMOTE, respectively. From Fig. 10, we can see that there is only
one combination of the dataset and the classifier on which the effect
sizes between different distance metrics achieve larger than small,
and 19 out of 150 combinations achieve small effect sizes under the
balanced ratio of 0.4 in terms of AUC. The situation is similar under
the balanced ratio of 0.6 as well as in terms of 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 in 11. Therefore,
our conclusion that the selection of the distance metric has little impact
on the performances of SMOTE-based techniques is consistent under
different balanced ratios.

Fig. 12 presents the ESD rankings of SMOTE, M-SMOTE, and KFN-
SMOTE in terms of AUC under different balanced ratios. It can be seen
that there is still no significant difference between the performances
of SMOTE and M-SMOTE. Furthermore, it is notable that under the
12

t

Fig. 12. The Scott–Knott ESD test ranking of the performance of SMOTE, M-SMOTE,
and KFN-SMOTE in terms of AUC on the five classifiers across 30 datasets under
different balanced ratio.

Fig. 13. The Scott–Knott ESD test ranking of the performance of SMOTE, M-SMOTE,
and KFN-SMOTE in terms of 𝑝𝑑 on the five classifiers across 30 datasets under different
balanced ratio (blue>red>green). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 14. The Scott–Knott ESD test ranking of the performance of SMOTE, M-SMOTE,
and KFN-SMOTE in terms of 𝑝𝑓 on the five classifiers across 30 datasets under different
alanced ratio (blue>red>green). (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)

alanced ratio of 0.6, KFN-SMOTE performs better than SMOTE and
-SMOTE on the LR classifier. The poor performances of SMOTE and
-SMOTE are probably because of the overgeneralization. On the

ontrary, KFN-SMOTE produces more diverse synthetic instances and
hus leads to better performance.
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From Figs. 13 and 14, it can be seen that the performances of
SMOTE, M-SMOTE, and KFN-SMOTE are still consistent with our con-
clusion that the larger the distance between the instances is, the lower
the 𝑝𝑑 and 𝑝𝑓 values are.

.2. Why does the selection of the distance metrics have little impact on the
erformances of SMOTE-based techniques?

Based on the above experimental results, we find that the selection
f the distance metrics has little impact on the performances of SMOTE-
ased techniques. We analyze possible reasons for this result in the
ollowing.

As mentioned in Section 3.1, SMOTE first randomly selects a mi-
ority class instance. Then different distance metrics can be applied
o obtain the 𝐾 nearest neighbor instances of this selected instance.
otably, different distance metrics may obtain different 𝐾 neighbor

nstances. However, because SMOTE is a blind oversampling technique
hat treats every instance equally, the quality of the 𝐾 neighbor in-
tances obtained by different distance metrics cannot be decided. Then,
ne instance is randomly selected from the 𝐾 neighbor instances, and a
ynthetic instance is generated by randomly selecting an interpolation
etween the two instances. The randomness further makes the distance
etrics less related to the performance of SMOTE. From another per-

pective, M-SMOTE is SMOTE. For a certain dataset, the 𝐾 value of
-SMOTE is equal to the number of minority class instances minus one.
hen M-SMOTE is applied, two minority class instances are randomly

elected. During this process, the distance metric is not involved. Based
n the experimental results, the overall performances of SMOTE and
-SMOTE are similar. Therefore, the selection of the distance metrics

as little impact on the performances of SMOTE-based techniques.

. Threats to validity

As an empirical study, although we conduct our experiments on 30
atasets, we still cannot assert that the conclusion could generalize to
ther datasets. In addition, these datasets are measured only by the
tatic code metric. Different conclusions may be drawn by using other
ypes of metrics. However, these datasets and the static code metric
ere adopted by many previous studies, and their performances were
uite satisfactory. Besides, a detailed description of our experiments is
resented, which means it is easy for others to replicate our experi-
ents using other datasets measured by different metrics. Six common
istance metrics are adopted in this study. However, the effect of many
ther distance metrics deserves further investigation. This is left for
uture study. Five common classifiers are selected to build prediction
odels. There may exist other classifiers more sensitive to the selection

f the distance metric. We intend to extend our experiments to more
lassifiers in the future. Some biases could be introduced into our
esults during the experiments. To minimize the bias, we adopt the
-fold cross-validation and iterate the experiments 100 times. The 5-
old cross-validation is widely adopted [44,45] in the area of the class
mbalance problem as well as SDP to produce training and testing data.
here are other methods to produce training and testing data, such
s using the older version of a project as training data and the most
ecent version as the testing data. When such methods are applied, the
ifference between the distributions of the two versions should be taken
nto consideration [49–51]. However, we focus on studying the class
mbalance problem. The training and testing data produced by the 5-
old cross-validation belong to the same distribution, which does not
eed to handle the different distributions between the two versions.
herefore, the 5-fold cross-validation is adopted in this study. For the
erformance measures, one threshold-independent performance mea-
ure (i.e., AUC) and three threshold-dependent performance measures
i.e., 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, 𝑝𝑑, and 𝑝𝑓 ) are adopted to evaluate the performances of
MOTE-based techniques. These performance measures are common in
DP. However, there are many other performance measures, such as
-mean and precision. If other performance measures are adopted, dif-

erent conclusions may be drawn. We plan to adopt more performance
easures to generalize our conclusion in future work.
13
8. Conclusion and future work

Our previous study found that the overall performances of several
oversampling techniques are similar, but the 𝑝𝑑 and 𝑝𝑓 values of
these techniques vary significantly. The biggest difference among these
techniques is the distance between the instances used to generate
synthetic instances. In this study, we empirically evaluate the impact of
the distance on the performances of SMOTE-based techniques with six
common distance metrics (i.e., the Chebyshev, Manhattan, Euclidean,
Cosine, Hamming, and Correlation distances) using five common clas-
sifiers (i.e., the KNN, DT, RF, NB, and LR classifiers) on 30 imbal-
anced datasets. We also evaluate the performances of SMOTE-based,
M-SMOTE-based, and KFN-SMOTE-based techniques. The experimental
results show that the performances of SMOTE-based techniques are not
significantly impacted by the selection of the distance metric. Based on
the results, we improve a recently proposed oversampling technique-
SMOTUNED. The improved SMOTUNED obtains a similar performance
to the original SMOTUNED, but the execution time of the improved
SMOTUNED decreases dramatically. In addition, we also find that as
long as the number of the synthesized noise instances is not beyond
the noise-resistant ability of classifiers, the overall performances of
SMOTE-based techniques are not significantly impacted by the distance
between the minority class instances used to generate synthetic in-
stances. Meanwhile, the 𝑝𝑑 and 𝑝𝑓 values of SMOTE-based techniques
are significantly impacted by the distance. The practical values of the
Spearman correlation coefficient show that the larger the distance is,
the lower the 𝑝𝑑 and 𝑝𝑓 values are. Based on the experimental results,
we could obtain different 𝑝𝑑 and 𝑝𝑓 values by selecting the instances
at different distances to meet different requirements.

In our future work, we plan to improve the overall performances
of the existing oversampling techniques by applying noise reduction
techniques. Besides, we intend to extend our work to more datasets
with different metrics using more classifiers. Then more performance
measures will be adopted to generalize our conclusion.
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