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Abstract—Background: Automated bug localization in large
amounts of source files for bug reports is a crucial task in
software engineering. However, the different representations of
bug reports and source files limited the accuracy of the existing
bug localization techniques. Aims: We propose a novel deep
learning-based model to improve the accuracy of bug localization
for bug reports by expressing them in character and analyzing
them with a language model. Method: The proposed model is
composed of two main parts: character-level convolutional neural
network (CNN) and recurrent neural network (RNN) language
model. Both bug reports and source files are expressed in a
character level and then input into a CNN, whose output is given
to an RNN encoder-decoder architecture. Results: The results of
preliminary experiments show that the proposed model achieves
comparable or even higher accuracy than the existing machine
translation-based bug localization technique. Conclusion: The
proposed model is capable of automatically localizing buggy files
for bug reports and achieves better accuracy by analyzing them
in character level where both bug reports and source code can
be expressed.

Index Terms—bug localization, convolutional neural network,
recurrent neural network, deep learning

I. INTRODUCTION AND MOTIVATION

Automatically localizing buggy files for bug reports re-

mains a significant task in software project teams, especially

those involving hundreds of thousands of source files. It is

painstaking for developers to search all source files for bug-

fixing. The automated bug localization techniques are thus

proposed to rank the source files and recommend the top

relevant files to developers. However, bug reports are written in

natural languages while source files are written in code tokens.

The different expressions between them have been empirically

demonstrated to be responsible for the low accuracy of the

existing bug localization techniques [1], [2], [3], [4].

Ye et al. [2] tried to bridge the lexical gap by adding the

semantic similarity between bug reports and source files into

their previous proposed learning-to-rank model [1]. Xiao et

al. [3] transformed bug reports and source files into word

vectors using word embedding techniques to preserve the

semantics, and extracted features from word vectors using

enhanced CNN. To distinguish bug reports and source files,

Xiao et al. [4] proposed BugTranslator, a machine translation-

based bug localization technique. However, all the existing

techniques regard both bug reports and source files as natural

languages.

The code tokens in source files are similar to English words

in natural languages while the difference is obvious. Some

code tokens, especially the class or method names, are not

actual words that are commonly used in natural languages.

Although they are very important in bug localization, most

existing studies regarded them as unknown words [2], [3],

[4]. However, both bug reports and source files are composed

of characters. They share same expressions in character level.

Therefore, this paper proposes a bug localization technique

based on a language model in character-level. The proposed

model first obtains the character embeddings of the prepro-

cessed bug reports and source files. Two CNNs with multiple

filters are then applied to extract features respectively from

the vectors of bug reports and source files, whose outputs are

fed into the subsequent RNN encoder-decoder architecture.

The experiments on three open-source Java projects show the

feasibility and effectiveness of the proposed model.

II. THE PROPOSED MODEL

This section describes the proposed model whose overview

is illustrated in Figure 1.

A. Data Preprocessing

We first combine summary and description in bug reports

to be a new document. Revised term frequency-user focused

inverse document frequency (TF-IDuF) is then applied to filter

some common words in the new bug reports for the purpose

of redundancy reduction [3]. We also extract two types of

Abstract Syntax Tree nodes from each source file as [4].

B. Character-level CNN

After preprocessing bug reports and source code, convolu-

tional operations are applied in each word of them respectively.

Each character in a word is transformed into a k-dimensional

character embeddings, which are then convolved by multiple

filters with different sizes (2× k and 3× k in Figure 1). The

subsequent max-pooling layer is used to conclude the features,

whose outputs are given to encoder and decoder respectively.

C. RNN Encoder-Decoder

1) Encoder: The output features extracted from a word in

bug reports by the character-level CNN are given to one long

short-term memory (LSTM) cell. For example, the feature
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Fig. 1. The overview of the proposed model.

vectors of the fourth word in a bug report are fed into the

fourth LSTM in the encoder as shown in Figure 1. The

context vector c is the final state of the encoder, which is

the conclusion of the features of bug reports that will be one

part of input in the decoder.

2) Decoder: Similar to the encoder, the features extracted

from each word in source code by the character-level CNN are

one part of the input to each LSTM cell. Besides, the context

vector is concatenated with output features of each word to be

fed into each LSTM.

III. THE PRELIMINARY RESULTS

In order to validate the feasibility and effectiveness of the

proposed model, we conduct several preliminary experiments

on the before-fixed version of three open-source Java projects
1 similar to [4]. 3656, 2632, 2817 bug reports respectively

for Project Eclipse UI, JDT, SWT are used. Mean average

precision (MAP) and mean reciprocal rank (MRR) are used

to evaluate the performance of the proposed model and the

competitor BugTranslator [4].

TABLE I
RESULTS OF TWO MODELS.

Project Metrics BugTranslator Proposed model

Eclipse UI
MAP 0.36 0.35
MRR 0.42 0.40

JDT
MAP 0.34 0.35
MRR 0.41 0.42

SWT
MAP 0.34 0.37
MRR 0.40 0.42

The preliminary results are shown in Table I. The MAP

and MRR values of the proposed model are better than

BugTranslator in Project JDT and SWT. The performance

of BugTranslator is limited since it analyzes bug reports and

source files in word level where many out-of-vocabulary words

exist. But BugTranslator gives more emphases on the related

words in buggy files with those in bug reports using an

1https://github.com/yanxiao6/BugLocalization-dataset

attention mechanism. It is much important when there are large

amounts of source files. In Project Eclipse UI, the number of

source files is 6228 that is about five times the number in

Project SWT. The performance of BugTranslator is thus better

than our proposed model in Project Eclipse UI.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, bug reports and source files are analyzed in

character-level instead of word-level to suppress the effect of

different expressions on the accuracy of bug localization. The

number of unknown words is also reduced. The proposed

model applies character-level CNN to extract features from

bug reports and source files, whose output is fed into the subse-

quent RNN encoder-decoder. The preliminary results indicate

the feasibility and effectiveness of the proposed model.

We intend to enhance the proposed model with attention

mechanisms and fine-tune the proposed model. In the future,

we will conduct experiments on more projects to obtain the

general performance of the proposed model.
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