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A B S T R A C T

Context: Code readability classification (which refers to classification of a piece of source code as either readable
or unreadable) has attracted increasing concern in academia and industry. To construct accurate classification
models, previous studies depended mainly upon handcrafted features. However, the manual feature engineering
process is usually labor-intensive and can capture only partial information about the source code, which is likely
to limit the model performance.
Objective: To improve code readability classification, we propose the use of Convolutional Neural Networks
(ConvNets).
Method: We first introduce a representation strategy (with different granularities) to transform source codes into
integer matrices as the input to ConvNets. We then propose DeepCRM, a deep learning-based model for code
readability classification. DeepCRM consists of three separate ConvNets with identical architectures that are
trained on data preprocessed in different ways. We evaluate our approach against five state-of-the-art code
readability models.
Results: The experimental results show that DeepCRM can outperform previous approaches. The improvement in
accuracy ranges from 2.4% to 17.2%.
Conclusions: By eliminating the need for manual feature engineering, DeepCRM provides a relatively improved
performance, confirming the efficacy of deep learning techniques in the task of code readability classification.

1. Introduction

About 70% of the lifecycle cost of a software project is in the
maintenance phase [1]. Estimates show that this high maintenance cost
correlates strongly with the difficulty of reading and understanding
source code, particularly that written by others [2–4], which highlights
the importance of a good measurement of code readability.

Code readability refers to a human judgment of how easily a pro-
gram’s source code can be read and understood [5]. In a survey of the
information needs of 110 developers and managers at Microsoft, 90% of
participants recorded that they would use readability metrics if they
were available [6], but little relevant research has been reported. For
instance, Buse and Weimer [5] constructed a code readability model
based on a simple set of local code features and showed that it could be
75%–80% effective at predicting human readability judgments. Making
use of the well-known size and Halstead metrics, Posnett et al. [7]

presented another model that was simpler and performed better than
that of Buse and Weimer.

Despite the encouraging results, several problems limit the perfor-
mance and generality of the existing approaches. The most significant
threat is likely the widely used feature engineering process. As dis-
cussed above, previous studies (including but not limited to [5,7])
usually handcrafted surface-level features such as operator counts or
line lengths [8] to represent code readability. The process is admittedly
labor-intensive, and it is possible that some important factors will be
missed. Thus, instead of manual design and extraction of features, we
introduce a deep learning-based approach that can learn complicated
underlying features automatically from the source code. In particular,
we use Convolutional Neural Networks (ConvNets). The approach is not
another model based on feature engineering, but a constructive method
of gaining a deep understanding of the input data, which makes our
study novel in this regard.
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The contributions of this paper are threefold:

• A simple and customizable representation strategy (with three dif-
ferent granularities) is introduced to convert source codes into in-
teger matrices as the input to ConvNets. The method enables deep
learning-based program analyses, which can be easily applied to
other software engineering activities.

• DeepCRM, a deep learning-based framework that integrates three
separate ConvNets (corresponding to the three granularities), is
proposed for code readability classification. Our approach elim-
inates the need for manual feature engineering and can learn var-
ious levels of features automatically from the source code.

• A new dataset, which contains more than 25,000 code snippets re-
trieved from open source Java projects, is released to support future
code readability studies.1

To validate our approach, we compare the performance of
DeepCRM with five state-of-the-art code readability models, namely,
those of Buse and Weimer [5], Posnett et al. [7], Dorn [8], and Scalabrino
et al. [9], and A Comprehensive Model [9]. The experimental results
show that DeepCRM outperforms the best competitor, reaching 83.8%
accuracy and 83.5% f-measure. Although deep learning has achieved
remarkable success in other areas, to the best of our knowledge, we are
the first to observe its effectiveness in code readability classification.

The rest of this paper is organized as follows. Section 2 introduces
the background and related work. Section 3 explains the motivation for
this study. In Section 4, we describe the proposed approach. Section 5
presents the detailed design of our experiments and Section 6 sum-
marizes the results. In Section 7, we discuss our findings, followed by
Section 8 that investigates the threats to validity. We conclude with
suggestions for future work in Section 9.

2. Background and related work

In this section, we discuss related work on code readability research
and deep learning applications in the context of software engineering.
We also introduce background knowledge regarding Convolutional
Neural Networks (ConvNets).

2.1. Code readability research

Prior work related to code readability can be broadly divided into
two categories: (1) investigation of factors that can affect code read-
ability; (2) derivation of general models to represent code readability.
We describe the two directions in detail below.

Many earlier studies focused on exploration of the influential factors
of code readability. Binkley et al. [10] conducted an empirical study to
analyze the effects of identifier naming conventions (i.e., camelCase
and under_score) on code readability.2 Sasaki et al. [12] proposed a
reordering technique to improve code readability by shortening the
distance between the definition of a variable and its reference. Lee et al.
[13] tested whether significant violations of coding conventions af-
fected the readability of developed codes. Wang et al. [14] proposed an
automatic blank line insertion algorithm to separate meaningful blocks
to increase code readability.

Alternatively, a few studies attempted to model code readability
using combinations of surface-level features. Aggarwal et al. [15] esti-
mated the readability of source code by the ratio of all lines to comment
lines in a study of software maintainability. Analogous to the Flesch
Reading Ease Score (a widely used readability metric for English text)

[16], Börstler et al. [17] proposed SRES (Software Readability Ease
Score) to judge code readability according to the average length of
lexemes and the average number of words per statement/block. Buse
and Weimer [5] used data collected from 120 human annotators to
construct the first model of code readability based on a set of local code
features (e.g., the number of identifiers). Building on this study, Dorn
[8] derived a generalizable formal model of code readability with ad-
ditional visual, spatial, and linguistic features. Using the same dataset
from [5], Posnett et al. [7] presented a simple, intuitive theory of code
readability that relied on two main measures: size and code entropy.
More recently, Scalabrino et al. [9] proposed a set of textual features
based on source code lexicon analysis to complement the work of Buse
and Weimer.

This study belongs to the latter category. As discussed above, most
studies use generic, handcrafted features for code readability classifi-
cation. The manual feature engineering process is neither effective nor
efficient. To address this problem, we introduce a deep learning-based
approach that can learn complicated features automatically from the
source code.

2.2. Deep learning in software engineering

Deep learning has been proven to be a very powerful method in a
variety of fields such as image recognition [18,19] and natural language
processing [20,21]. It has also attracted considerable attention from
researchers and industrial practitioners in the software engineering
community. Successful applications include effort estimation [22], de-
fect prediction [23], bug localization [24], code clone detection
[25,26], and API recommendation [27].

Dam et al. [28] presented a vision for DeepSoft, a generic frame-
work built upon Long Short-Term Memory for modeling software and
its development process. Wang et al. [23] leveraged Deep Belief Net-
works to automatically learn semantic features of programs to improve
defect prediction. Choetkiertikul et al. [22] developed a prediction
system for estimation of story points based on a novel combination of
Long Short-Term Memory and Recurrent Highway Network. Gu et al.
[27] proposed DeepAPI, a deep learning-based method to generate re-
levant API usage sequences for a given natural language query. White
et al. [25,26] introduced learning-based detection techniques to re-
present code fragments for code clone detection using Recurrent Neural
Networks and Recursive Neural Networks. Lam et al. [24] constructed
HyLoc, a model that combines the revised Vector Space Model (an
advanced IR technique) with Deep Neural Networks to recommend
potentially buggy files for a bug report.

To the best of our knowledge, deep learning has never been used to
improve code readability studies. Inspired by the aforementioned work,
we explore the possibility and feasibility of applying Convolutional
Neural Networks to the field of code readability classification.

2.3. Convolutional neural network

Convolutional Neural Networks (ConvNets) [29,30] are special
kinds of Neural Networks with biologically inspired structures. As
shown in Fig. 1, a typical ConvNet is composed of a succession of
convolutional, pooling, and fully-connected layers:3

2.3.1. Convolutional layer
A convolution is often interpreted as a filter. By applying a con-

volution operation followed by a nonlinearity to the input, we can
obtain a feature map (the plane in Fig. 1). Specifically, the output y at
lth layer is given by:

1 https://github.com/CityU-QingMi/DeepCRM.
2 The results showed that camelCase was easier to read than under_score

variables [10]. However, an eye-tracking replication of Binkley et al.’s study
indicated otherwise [11].

3 The ConvNet in Fig. 1 is actually LeNet-5 [19,31], which is designed for
recognition of handwritten and machine-printed characters.
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where input x is of dimension W×H (i.e., width× height of input x, see
Fig. 1) and has i by j as the iterators; filter w is of dimension k1× k2
(i.e., width× height of filter w, see Fig. 1) and has m by n as the iterators;
bl denotes the bias unit at lth layer; and σ( · ) denotes a nonlinear acti-
vation function such as Sigmoid (
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(0, x)). The output feature maps serve as the input to the next layer.

2.3.2. Pooling layer
After a convolutional layer, a pooling layer is usually added to

perform down-sampling by concentrating the input over a certain area
into a single value. The process can help relieve the computational load
because it reduces the number of parameters in the network. Various
techniques can be used in pooling layers, including max-pooling and
mean-pooling.

2.3.3. Fully-connected layer
Fully-connected layers are allocated after a couple of convolutional

and pooling layers. Each neuron in fully-connected layers connects to
all activations in the previous layer.

From another perspective, a typical ConvNet consists of a feature
learning network (including one or more convolutional and pooling
layer pairs) and a classification network (including one or more fully-
connected layers) [32]. The former network extracts features auto-
matically from the input data, whereas the latter network generates
output based on the extracted features. The system parameters (i.e.,
weights w and biases b) are adjusted via the training process.

3. Motivation

In this section, we describe the motivation for this study and the
rationale behind the use of Convolutional Neural Networks (ConvNets).

According to the definition, code readability is essentially an in-
tuitive concept that is claimed to connect with various factors such as

the structural pattern (e.g., nested loops and recursive functions) and
the spatial layout (e.g., blank lines and indentations) [33,34]. Because a
source code that is considered readable by one person may not be
considered so by another, a large-scale survey involving multiple
human annotators is necessary to determine whether a source code is
readable or unreadable. Therefore, the first phase of modern code
readability studies is usually a survey process, followed by a second
phase that aims to construct a classification model based on the dataset
gathered during the first phase as the ground truth. The entire workflow
is illustrated in Fig. 2.

As shown in Fig. 2, a common practice in the second phase is to
handcraft readability-related features and then apply them as predictors
to differentiate between readable and unreadable codes. For instance,
Buse and Weimer [5] designed a set of layout features (e.g., the number
of blank lines4), whereas Scalabrino et al. [9] attached greater im-
portance to textual aspects (e.g., the readability of comments). How-
ever, this widely used feature engineering method has the following
problems:

• Ineffective: First, the process can capture only partial information
about the source code, which may not be adequate. Second, features
that are usable for one dataset may not be usable for another. Third,
redundancies and overlaps may exist among the manually designed
features, which is likely to limit the model’s performance.

• Inefficient: Handcrafting good features is difficult and time-con-
suming because it requires strong domain-specific knowledge [28].
Moreover, researchers and practitioners must examine the validity
of all promising features separately or as a combination, which
makes the manual approach expensive or even impossible.

Although programs usually contain statistical properties, they are
difficult for humans to capture [35,36]. To address this issue, we turn to
ConvNets. The reasons behind using ConvNets are as follows: (1)
ConvNets include the feature extractor in the training process rather

Fig. 1. Architecture of a typical ConvNet.

Fig. 2. Workflow of code readability research.

4 In fact, several recent studies suggested that simple blank lines are more
important than comments to local judgments of code readability [5,14].
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than requiring it to be manually designed (as shown in Fig. 1) [32]. (2)
ConvNets achieve remarkable results for tasks that deal with inputs in
the form of multiple arrays (e.g., image recognition). Inspired by this,
we treat a source code as a matrix (a two-dimensional array) of sym-
bols. We expect that ConvNets can automatically form a deep under-
standing of what constitutes a readable code.

4. Proposed approach

We regard the code readability classification problem as a binary

classification problem: given a piece of source code = ⎛
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where m denotes lines of code, n denotes the maximum line length, and
xij denotes a code symbol.5 We classify x into a Readable or Unreadable
class.

As shown in Fig. 3, our approach consists of three major stages: (1)
transformation of source codes into integer matrices as the input to
ConvNets; (2) construction of multiple ConvNets and training with re-
spect to learnable parameters; (3) determination of whether a new in-
stance is readable or unreadable using the trained model. In this sec-
tion, we describe the first two stages in detail.

4.1. Source code representation

To enable deep learning-based program analyses, we must for-
mulate an appropriate strategy for source code representation. Because
there is no definitive answer as to which factor(s) can affect code
readability, our basic principle is to preserve as much as possible the
original information about the source code. Specifically, we first parse
the source codes into a set of symbols and then convert the symbols into
integer matrices, which is the universal format that ConvNets can easily
analyze and manipulate. Possible granularities of the code symbol (xij)
are enumerated as follows [28,36]:6

• Character-level representation: Each character (e.g., a-z, A–Z, and
0–9) is treated as a symbol.

• Token-level representation: Each token (e.g., keywords and op-
erators) is treated as a symbol.

• Node-level representation: Each node in the Abstract Syntax Tree

(e.g., declarations and definitions) is treated as a symbol.

In this section, we detail our representation strategy specific to each
granularity. Note that we focus solely on Java language because most
previous studies constructed their code readability models based on
Java programs (including but not limited to [5,7–9]). We remain con-
sistent with their choice for comparison purposes.

4.1.1. Character-level representation
Like the pixels of an image, we treat a source code as a matrix of

characters. Specifically, we transform letters (i.e., a–z and A–Z), num-
bers (i.e., 0–9), and marks (e.g., parentheses and braces) into their
ASCII values. Given that the spatial layout of the source code may well
affect its readability, we also preserve whitespaces (i.e., spaces, hor-
izontal tabs, and line terminators) that have generally been ignored in
prior deep learning studies. The final output takes the form of two-
dimensional arrays. A simplified example is presented in Fig. 3. Note
that we pad the arrays with a special integer (here, − 1) because Con-
vNets require all inputs have the same length.

4.1.2. Token-level representation
Referring to the tokenization mechanism proposed by Basit et al.

[37],7 we too assign a unique integer to each token, including keywords
(e.g., public and int), separators (e.g., semicolons and brackets), op-
erators (e.g., subtraction and decrement), literals (e.g., true and null),
and whitespaces. The advantage of this method is its simplicity and
customizability. For instance, if we consider the difference among data
types byte, short, int, and long to be insignificant for code readability
classification, we can specify an integer to uniformly represent them.

It is noteworthy that some tokens such as variable names are user-
defined and thus method-specific, which cannot be generalized to other
code snippets. If we similarly assign every such token with a unique
integer, it is likely to cause the undesired data sparseness. One possible
approach to handle this situation is to introduce a suitable abstraction,
such as replacing all variable names with a particular value.8 Con-
sidering that useful information may be available in user-defined tokens
(e.g., naming conventions [10,11]), we put forward an alternative
method that transforms these tokens with their ASCII values in an at-
tempt to preserve as much information as possible.

Fig. 3. General overview of the proposed approach.

5 The code symbol acts as the basic unit of the source code, which can be a
character, a keyword, a function, etc. Further details are provided in
Section 4.1.
6 It is notable that we do not consider statement-, function-, or even higher-

level representations, primarily because they are too abstract and may well lose
useful information for code readability classification.

7 The tokenization mechanism [37] is proposed for code clone detection.
Because we are considering a different goal, we have made some necessary
changes.
8 A similar approach was adopted by Wang et al. [23].
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4.1.3. Node-level representation
Programs usually contain well-defined syntax that can assist in de-

tecting certain patterns [23,38]. To capture the syntax information, we
use the Abstract Syntax Tree (AST), which is an intermediate tree-like
representation that allows us to access the syntactic structure of the
source code. Specifically, we traverse each AST and encode every kind
of node with a special integer. Note that ASTs omit certain elements in
programs and thus enable the suppression of some inessential classes
(e.g., the byte, short, int, and long examples discussed in the previous
section). This is actually the most commonly used representation level
in deep learning-based program analyses, including defect prediction
[23] and code clone detection [26].

4.2. Neural network architecture

Corresponding to each granularity, we construct three separate
ConvNets with identical architectures. For simplicity, we denote them as
ConvNetCR (CR stands for Character-Level Representation), ConvNetTR (TR
stands for Token-Level Representation), and ConvNetNR (NR stands for
Node-Level Representation), respectively. The objective is to have multiple
ConvNets that are skillful, but from different perspectives. In each
ConvNet, the feature learning network contains a convolutional layer with
a bank of filters, followed by the ReLU function9 and a max-pooling layer.

The classification network is composed of a fully-connected layer leading
to a two-way Softmax classifier. The details are illustrated in Fig. 4.

As we discussed in Section 3, code readability is essentially an in-
tuitive concept. The best way to determine whether a source code is
readable is to consult with a number of domain experts rather than
depending on one individual’s judgment. To simulate this process, we
propose the combination of multiple ConvNets into an ensemble model.
The intuition is that the collective wisdom often produces a better so-
lution [40]. Accordingly, we aggregate ConvNetCR, ConvNetTR, and
ConvNetNR with adjustable weights. We denote the resulting model as
DeepCRM (Deep Learning-Based Code Readability Model). The main
novelty of our approach is the inclusion of the ensemble architecture,
which is shown in Fig. 5.

4.3. Details of configuration and training

The proposed ConvNets are implemented in Python using
TensorFlow.10 We train them in a supervised manner with the Adam
optimization algorithm [41], which is highly recommended as the op-
timization method for deep learning applications [42]. The learning
rate is initialized as 0.001 and adapted during training. The goal is to
minimize the network’s loss (or misclassification error) with respect to
adjustable parameters (i.e., weights11 and biases). Here we adopt the

Fig. 4. Architecture of separate ConvNets.

Fig. 5. Ensemble neural network architecture.

9 The ReLU function (Rectified Linear Unit [39]) is widely used in recent
applications because it can yield comparable results but converge several times
faster than their equivalents [18].

10 https://www.tensorflow.org.
11 Analogous to most ConvNets, we use a weight-sharing strategy to reduce

the number of free parameters.
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widely used cross-entropy loss [43] for our classification problem:
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where =N 50 is the number of training instances used in one iteration
(i.e., the batch size), =M 2 is the number of classes (i.e., Readable and
Unreadable), t is the ground truth, and y is the estimated class prob-
ability. The training data are randomly shuffled before they are sent to
the network. To prevent over-fitting, a dropout with probability 0.5 is
applied.

In addition to these configurations, we must fine-tune two hy-
perparameters: the filter size and the number of feature maps. The
details are discussed in Section 6.

5. Experimental setup

To validate the effectiveness and efficiency of our approach, we
design several experiments. This section mainly describes the experi-
mental setups. Specifically, we first outline five research questions and
the corresponding motivations. We then detail the construction process
of the dataset used in this study. Finally, the evaluation metrics are
briefly introduced.

5.1. Research questions

The goal of this study is to explore the potentiality of deep
learning techniques in the task of code readability classification, with
the purpose of improving the state-of-the-art. To evaluate whether
deep learning is beneficial, we conduct a series of experimental
evaluations. Specifically, we aim to answer the following research
questions:

RQ1: Do different parameter settings affect the model perfor-
mance?

Motivation: We aim to explore the sensitivity of each ConvNet
(ConvNetCR, ConvNetTR, and ConvNetNR) with respect to different para-
meter settings. Because tuning is normally time-consuming, we expect
our ConvNets to be relatively stable.

Approach: Two hyperparameters require fine-tuning: the filter size
and the number of feature maps. To answer this research question, we
vary the values of these two hyperparameters and evaluate their effects
on the model performance in terms of accuracy.

RQ2: What is the benefit of the ensemble architecture?
Motivation: To improve model generality, we propose a novel ar-

chitecture that combines ConvNetCR, ConvNetTR, and ConvNetNR. This
research question involves investigation of the efficacy of this ensemble
method.

Approach: We evaluate the performance of DeepCRM against the
fine-tuned ConvNetCR, ConvNetTR, and ConvNetNR using accuracy and f-
measure.

RQ3: How accurate is DeepCRM in code readability classifica-
tion when compared to traditional models?

Motivation: This study is the first to apply ConvNets to the field of
code readability classification. It is important to know whether our
approach can outperform state-of-the-art code readability models.

Approach: To answer this research question, we compare DeepCRM
with five competitors that are state-of-the-art models for code read-
ability classification.

• Buse and Weimer’s model [5]: Buse and Weimer proposed a set of
local code features to represent code readability. They claimed that
the model performed just as good as a human.

• Posnett et al.’s model [7]: Improving upon the model of Buse and
Weimer, Posnett et al. presented a simpler readability model:

= − + −z V Lines Entropy8.87 0.033 0.40 1.5 .

• Dorn’s model [8]: Making use of visual, spatial, and linguistic

features, Dorn aimed to construct a universal model for code read-
ability.

• Scalabrino et al.’s model [9]: To improve the performance of the
existing models, Scalabrino et al. further introduced a set of textual
features targeted on identifiers and comments.

• A comprehensive model [9]: A code readability model that in-
cludes each of the features mentioned above.

We denote the aforementioned models as MBuse, MPosnett, MDorn,
MScalabrino, and MAll successively. For a fair and easy comparison, these
models are all trained using logistic regression as the underlying clas-
sifier [9]. Note that we do not replicate MBuse, MPosnett, MDorn, MScalabrino,
and MAll. Rather, we use results reported by previous studies [5,7–9] to
address this RQ.

RQ4: What is the time and space cost of training the proposed
ConvNets?

Motivation: Despite the advantages that deep learning may offer,
its training process tends to be computationally expensive. In this re-
search question, we aim to provide researchers and practitioners with a
clear understanding.

Approach: We explicitly record the time and space cost of
ConvNetCR, ConvNetTR, ConvNetNR, and DeepCRM during the training
process.

In summary, we begin by choosing the optimal hyperparameters for
each ConvNet (RQ1). We then combine them into an ensemble model
and evaluate its efficacy (RQ2). After that, we compare the performance
of our approach with those of the state-of-the-art models (RQ3). Finally,
we report the time and space cost incurred during the training process
(RQ4).

5.2. Dataset construction

Our data are extracted from prior code readability studies and open
source software projects. In this section, we detail our data collection
process.

We first gather a set of code snippets from previous studies, namely,
DBuse, DDorn, and DScalabrino, as shown in the first part of Table 1. In DBuse,
DDorn, and DScalabrino, each code snippet is evaluated by multiple human
annotators on a five-point Likert scale [44] ranging from 1 (very un-
readable) to 5 (very readable). We aggregate these subjective ratings by
taking the mean to represent the readability degree of each code
snippet. Following a similar approach to that of Lee et al. [13], we
construct two representative groups for each dataset: the Readable
group (i.e., the top 25% code snippets with high readability scores) and
the Unreadable group (i.e., the bottom 25% code snippets with low
readability scores), whereas the code snippets with neutral or ambig-
uous judgments (i.e., the middle 50% samples) are excluded.

Only a few human-annotated code snippets are available in the
literature (see Table 1 for details), which may not be adequate to train
the proposed ConvNets. We must extend our dataset with more sam-
ples. To achieve this, we first fully download ten Java projects from
various sources (e.g., Github12 and SourceForge13) across multiple ap-
plication domains (e.g., web server and testing tool), this is to increase
the generalizability of our findings. Similar to the approach used in the
prior study [9], we extract from the selected projects all complete code
entities (i.e., methods) whose size is between 10 and 50 lines. After-
wards, we calculate the MD5 hash for each file to remove duplicates. As
shown in the second part of Table 1, we obtain a total of 51831 code
snippets. The next step is to classify them as readable or unreadable.
According to the definition of code readability, the most accurate
method to judge whether a piece of source code is readable is to con-
duct a large-scale survey involving as many domain experts as possible.

12 https://github.com.
13 https://sourceforge.net.
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The process is inevitably labor-intensive and time-consuming. Con-
sidering that we have more than 50,000 code snippets to evaluate, the
human assessment approach is practically impossible. We thus propose
an alternative method to help classify these samples.

Lee et al. [13] found that source codes that significantly violate
programming guidelines/conventions/styles [45,46] are less readable
than those that do not. Buse and Weimer [5] showed that code read-
ability correlates strongly with external notions of software quality
(e.g., defect density and code churn). According to their conclusions,
we rely on the total rule violations to obtain a rough estimate of
whether a source code is readable. Specifically, we count the number of
rule violations for each file making use of automated tools PMD14 and
CheckStyle15. PMD examines for common programming flaws like un-
used variables and empty catch blocks, whereas CheckStyle detects
whether a Java code complies with a programming standard. For each
project, we consider the top 25% of code snippets with more rule vio-
lations as the Unreadable group and the bottom 25% of code snippets
with fewer rule violations as the Readable group. The average violations
for the two comparison groups are 84.84 and 30.17, respectively. In this
way, we obtain an additional 25,000 samples to adequately train the
proposed ConvNets. A statistical summary of the new dataset (DOSS) is
presented in Table 1. Because DOSS has not been validated by human
annotators, it will be used only for tentative explorations (see
Section 7.1 for details).

Note that this method is only applicable for dataset construction
(i.e., for identification of two groups of relatively readable/unreadable
code snippets). It is unreasonable to use it for code readability classi-
fication. In other words, when given a new instance, we cannot de-
termine its readability degree based merely on its number of rule vio-
lations.16

5.3. Evaluation metrics

To measure classification results, we use accuracy and f-measure as
the evaluation metrics, which have commonly been used in previous
code readability studies [5,8,9]. The higher the metric value, the better
the model performance.

=
+

+ + +

Accuracy
True Positive True Negative

True Positive False Positive True Negative False Negative
(4)

− =
+

F Measure Precision Recall
Precision Recall
2* *

(5)

where True Positive is the number of readable instances that are cor-
rectly classified as readable, True Negative is the number of unreadable
instances that are correctly classified as unreadable, False Positive is the
number of unreadable instances that are wrongly classified as readable,
False Negative is the number of readable instances that are wrongly
classified as unreadable, Precision refers to + ,True Positive

True Positive False Positive and

Recall refers to
+

True Positive
True Positive False Negative

. In summary, accuracy shows the
ratio of correctly classified instances, whereas f-measure shows the
weighted harmonic mean of Precision and Recall.

6. Results

In this section, we present the experimental results according to
each research question. For simplicity, we denote the previous datasets
(see details in the first part of Table 1) as DCRS (CRS stands for Code
Readability Survey) and the additional datasets (see details in the
second part of Table 1) as DOSS (OSS stands for Open Source Software
Projects). Note that in RQ1, RQ2, and RQ3, our evaluations use only
DCRS for a fair comparison, whereas both DCRS and DOSS are used in
RQ4. To help mitigate the problem of over-fitting, we perform 10-fold
cross-validation in all RQs.

RQ1: Do different parameter settings affect the model perfor-
mance?

In this RQ, we detail the tuning process with respect to each hy-
perparameter.

• Filter size

The filter size corresponds to the identifiers k1× k2 (i.e.,
width× height) in Fig. 4. To investigate the effect of the filter size, we
first fix the number of feature maps as a constant (here, 100). Con-
sidering that code readability is context sensitive (just like natural
language), we set the width k1 as the maximum line length, which
varies by each ConvNet. Following the approach given by Zhang and
Wallace [47], we then fine-tune k2.

We begin by identifying the best single filter size. Specifically, we

Table 1
Statistical summary of the dataset.

Category Dataset Description Source # of Code Snippets Lines of Codeb

Total Selected Mean SD

DCRS DBuse Provided by Buse and Weimer [5] SourceForge 100 50 7.80 2.47
(Labeled by DDorn

a Provided by Dorn [8] SourceForge 360 60 30.81 16.66
human annotators) DScalabrino Provided by Scalabrino et al. [9] SourceForge 200 100 26.61 10.38
DOSS DHibernate Object Relational Mapping Tool Github 12,254 6127 23.27 12.37
(Labeled by DHyperSQL Relational Database Engine SourceForge 4017 2009 23.50 12.99
automated tools) DJetty Web Container and Clients Github 7661 3831 23.48 12.68

DJUnit Unit Testing Framework Github 1128 564 17.44 7.94
DLog4j Logging Utility Apache 3052 1526 20.16 10.75
DMaven Build Automation Tool Github 1901 951 21.75 11.70
DQuartz Job Scheduler Github 1065 533 22.87 11.22
DRoller Blog Server Apache 2666 1333 25.24 12.09
DSpring J2EE Framework Github 14,345 7173 20.27 10.61
DStruts Web Application Framework Github 3742 1871 21.45 11.78

a DDorn contains code snippets written in Java, Python, and CUDA languages. We concern only the Java samples.
b All lines in the text of source code are counted, including blank and comment lines.

14 https://pmd.github.io.
15 http://checkstyle.sourceforge.net.
16 Code readability is essentially a subjective concept [5] that has been found

to be associated with various factors such as comment lines [15], naming
conventions [10,11], defect density [8], and rule violations [13]. However,
statistical associations do not imply causation. We cannot equate code read-
ability with any of these factors [4,33].
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first select a finite set of values for k2 and then evaluate each ConvNet’s
performance regarding mean accuracy. Note that we bias our selection
to small values to capture low-level features and because the average
LOC in DCRS is not very large (see Table 1 for details). The results are
presented in Table 2. The best single filter sizes for ConvNetCR, Con-
vNetTR, and ConvNetNR are 2, 2, and 9, respectively.

Next, we explore the effect of multiple filter sizes. As advised by
Zhang and Wallace [47], we choose a set of values near the best single
filter size and then perform the same evaluations as above. Table 3
demonstrates our selections and the corresponding results (the best
results are highlighted in bold). From Table 3, we decide to use (2,2,2),
(2,2,2), and (8,9,10) as the filter sizes for ConvNetCR, ConvNetTR, and
ConvNetNR, respectively.

• Number of feature maps

Based on the selected filter size, we now fine-tune the number of
feature maps. According to Zhang and Wallace [47], the value to be
evaluated should not exceed 600. A much longer time is required to
train the model if the number of feature maps grows beyond 600, but
the model performance improves only a little, so the process is not cost-
effective. In addition, the model performance may even worsen due to
over-fitting. We thus comply with their suggestions and consider the
following values: {10, 50, 100, 200, 400, 600}. The mean accuracy is
plotted in Fig. 6 regarding each ConvNet. It can be observed that 100 is
the optimal number of feature maps for ConvNetCR, ConvNetTR, and
ConvNetNR.

Taken together with Tables 2 and 3, and Fig. 6, we notice that the
model performance varies on a small scale (less than 10 percentage
points), which indicates that our ConvNets are somewhat robust to
different parameter settings.

RQ2: What is the benefit of the ensemble architecture?

We propose an ensemble architecture that integrates ConvNetCR,
ConvNetTR, and ConvNetNR. Because each ConvNet is constructed with a
different view (see details in Figs. 3 and 5), we expect the resulting
model to be more generic and thus help improve the classification
performance.

We present the evaluation results in the first row of Table 4. It can
be observed that DeepCRM provides the best performance, with 83.8%
accuracy and 83.5% f-measure, which validates the effectiveness of our
ensemble method. The last two rows of Table 4 are used to display the
results of an exploratory experiment on DOSS. Further details are pro-
vided in Section 7.1.

Note that the evaluations are conducted on a hold-out test set from
DCRS, which has not been used for hyperparameter optimization (RQ1).
Therefore, the accuracy obtained here is generally not equal to that in
RQ1.

RQ3: How accurate is DeepCRM in code readability classification
when compared to traditional models?

The aim of this RQ is to determine the extent to which DeepCRM
can predict human readability judgments compared to previously re-
ported models (i.e., MBuse, MPosnett, MDorn, MScalabrino, and MAll). Because
we use the same dataset (DCRS) as previous code readability studies
[5,7–9], we directly present the results reported by them to address this
RQ. As shown in Fig. 7, DeepCRM outperforms all competitors (the
improvement in accuracy ranges from 2.4% with respect to MAll to
17.2% with respect to MPosnett), which suggests the promising future of
applying deep learning techniques to the field of code readability
classification.

RQ4: What is the time and space cost of training the proposed
ConvNets?

Training Deep Neural Networks usually consumes a considerable
amount of resources. However, most deep learning studies do not report
their efforts [48]. To provide a reference for future studies, we ex-
plicitly recorded our time and memory space cost during the training
process. The results are given in Table 5.

All of our experiments are conducted on a server with Intel Xeon
CPU E5-4620 2.20 GHz (32 Cores), 128GB RAM. As shown in Table 5,
the memory space cost varies within a small range (from 11.10MB to
19.05MB), mainly because the number of training instances used in one
iteration (i.e., the batch size) is fixed. As for the time cost, training on
DCRS requires approximately 0.22 –0.47 s for each epoch, whereas the
value increases to 29.74–71.46 s if we further introduce DOSS, the ratio
reaches 129.97–163.20.

Admittedly, our approach has the downside of being time-con-
suming during the training process. However, once training is com-
plete, our approach can be used directly at an acceptably low time cost
(the prediction time is less than 0.001 s for a new instance), which
confirms its practical applicability.

7. Discussion

In this section, we investigate how much improvement can be ex-
pected from a large training set. Then we discuss the advantages and
disadvantages of applying deep learning techniques to the field of code
readability classification.

7.1. An exploratory experiment on DOSS

Convolutional Neural Networks (ConvNets) risk over-fitting if the
training set is not sufficiently large. To adequately train the proposed
ConvNets, we also collect more than 25,000 code snippets from open
source software projects (see details in the second part of Table 1). In
this exploratory experiment, we evaluate whether training on the new
dataset (DOSS) can help improve the model performance.

We train ConvNetCR, ConvNetTR, ConvNetNR, and DeepCRM on DOSS,
and compare their performances with those trained using DCRS (the old
dataset provided by previous code readability studies [5,8,9]). The
evaluation results are presented in the last two rows of Table 4. As

Table 2
Effect of the single filter size.

Filter Size ConvNetCR ConvNetTR ConvNetNR

1 85.5% 77.3% 67.3%
2 85.8% 84.0% 58.8%
3 79.8% 76.0% 58.5%
4 83.0% 82.3% 64.0%
5 78.3% 80.5% 63.8%
6 75.8% 79.0% 66.5%
7 74.5% 78.0% 69.8%
8 76.0% 78.3% 67.3%
9 76.8% 80.5% 74.3%
10 76.5% 83.5% 72.5%

Table 3
Effect of the multiple filter size.a

ConvNetCR ConvNetTR ConvNetNR

Filter size Accuracy Filter size Accuracy Filter size Accuracy

– – – – (7,8,9) 69.5%
(1,2,3) 86.5% (1,2,3) 75.5% (8,9,10) 75.5%
(2,3,4) 81.5% (2,3,4) 80.0% (9,10,11) 74.5%
(2,2,2) 88.0% (2,2,2) 81.0% (9,9,9) 69.5%

a To have ConvNets with identical architectures, we consider only the set of
size three.
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Fig. 6. Effect of the number of feature maps.

Table 4
Evaluation of the ensemble architecture.

Dataset ConvNetCR ConvNetTR ConvNetNR DeepCRM

Accuracy F-measure Accuracy F-measure Accuracy F-measure Accuracy F-measure

DCRS 82.3% 81.0% 77.3% 75.3% 71.8% 70.9% 83.8% 83.5%
DCRS + DOSS 88.9% 89.4% 74.3% 77.8% 51.5% 54.8% 91.5% 91.7%
Improvement 8.0% 10.4% − 3.9% 3.3% − 28.3% − 22.7% 9.2% 9.8%

Fig. 7. Comparison between DeepCRM and the traditional code readability models.

Table 5
Average time and space cost per epoch.a

ConvNetCR ConvNetTR ConvNetNR DeepCRM

Dataset Time Memory Time Memory Time Memory Time Memory
(Second) (MB) (Second) (MB) (Second) (MB) (Second) (MB)

DCRS 0.22 11.74 0.20 11.10 0.23 11.52 0.47 12.14
DCRS + DOSS 32.40 15.50 32.41 13.75 29.74 14.70 71.46 19.05
Ratio 144.85 1.32 163.20 1.24 129.97 1.28 152.14 1.57

a An epoch is an iteration through the entire training set.
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shown, ConvNetCR and DeepCRM have better performance on DOSS than
on DCRS. The improvement in accuracy is 8.0% and 9.2%, respectively.
ConvNetTR yields comparable results, whereas the performance of
ConvNetNR becomes much worse, probably because ConvNetNR is
trapped in a local optimum.17 We will further investigate this problem
in a future study.

In this exploratory experiment, we examine the benefits of adopting
a large training set (DOSS). Note that because DOSS has not been vali-
dated by human annotators, the current results should be considered
preliminary.

7.2. Advantages and disadvantages of deep learning

The experimental results show that the proposed ConvNets perform
better than the traditional models [5,7–9] for code readability classi-
fication (the improvement in accuracy ranges from 2.4% to 17.2%). In
this section, we discuss why our approach achieves the best perfor-
mance.

• First, we eliminated the need for manual feature engineering.
Inspired by image recognition, we treat a source code as a matrix of
symbols and leverage ConvNets to automatically learn features di-
rectly from the input data. Our approach has the advantage of re-
quiring no human intervention and thus can effectively avoid per-
sonal biases and neglects of certain features.

• Second, we proposed a representation strategy (with different
granularities) to preserve the source code’s original information.
Despite little tuning of the hyperparameters, a simple ConvNet can
achieve fairly good results based on the resulting integer matrices
(RQ1 and RQ2).

• Third, we integrated multiple ConvNets with an ensemble archi-
tecture to improve model generality and applicability. The experi-
mental results show that the ensemble model can surpass the state-
of-the-art, achieving 83.8% accuracy and 83.5% f-measure (RQ2
and RQ3).

• Finally, a new dataset with more than 25,000 code snippets was
used to fully train the proposed ConvNets. We observe further im-
provements by about 9.2% in accuracy and 9.8% in f-measure (The
exploratory experiment presented in Section 7.1).

By eliminating the need for manual feature engineering (one of the
most time-consuming parts of traditional machine learning), our ap-
proach provides improved performance, confirming the feasibility of
deep learning techniques for code readability classification. Although
deep learning is an important area of research with many promising
applications, several drawbacks and limitations accompany its use.

• Data dependency: Deep learning requires a large corpus of data
with which to work, which may not always be available. Without
large, well-maintained datasets, deep learning may only be able to
yield results comparable to those of traditional machine learning
(RQ3).

• Time cost: Because deep learning inherently involves a large
amount of matrix multiplication operations (e.g., Eqs. (1) and (3)),
the training of Deep Neural Networks is usually computationally
expensive (RQ4). This leads to the next disadvantage.

• Hardware dependency: Unlike traditional machine learning, deep
learning is quite resource-demanding and depends heavily on high-
performance machines (preferably with powerful GPUs).

• Model interpretability: Deep learning is in principle a black-box
approach. Unlike traditional machine learning (e.g., decision trees),
deep learning is incapable of explaining why a certain decision has

been reached. In other words, we cannot map decisions back to
individual features.

Although deep learning has achieved impressive (and often state-of-
the-art) results in multiple domains, it is certainly not flawless. The
caveat is that deep learning should not be applied to all possible ap-
plications without weighing its pros and cons.

8. Threats to validity

In this section, we describe the potential threats to the validity of
our results.

• Data quality

The most obvious threat is the quality of the training data. Broadly,
we have two data sources. A minor part of our dataset (approximately
0.4%) comes from previous code readability studies [5,8,9], and the
rest is taken from open source software projects. We outline the possible
threats subject to each data source.

To abstract people’s perceptions of whether a source code is read-
able, the most frequently used method is to conduct a survey. During
the survey process, participants are required to rate a number of code
snippets based on their knowledge and experience. Considering that the
process in itself is neither amusing nor rewarding, it is possible that the
participants will feel little motivation to contribute, resulting in nega-
tive behaviors such as random responses [49], which can significantly
affect the quality of the survey data. In addition, most participants in-
volved in code readability surveys are students with less programming
experience than industrial practitioners. Although the use of college
students imposes some limits on data validity, it is not believed that the
overall results are skewed. Moreover, prior work has validated their
datasets with inter-rater reliability tests (i.e., Cronbach’s alpha [50]).
Considering the positive results (e.g., 0.96 for DBuse and 0.98 for
DScalabrino), we regard these datasets as the reliable oracle.

Given that the literature contains only a few human-annotated code
snippets, which may not be sufficient to train the proposed ConvNets,
we turn to open source Java projects. Although we sampled projects of
various sizes and from various communities, they cannot represent all
software projects. Additionally, we biased our selection to popular
projects to ensure the size of the dataset. It is possible that other open
source (or industrial) projects could yield different conclusions. Besides,
we used automated tools to roughly classify the code snippets. Although
our approach is defensible, further study is needed to justify the new
dataset.

• Sample size

Another limitation is that when addressing RQ1, RQ2, and RQ3, we
use only DCRS rather than +D DCRS OSS for two primary reasons. First, to
achieve a fair comparison, our ConvNets must be trained on the same
dataset as in the previous studies. Second, the quality of DCRS, but not
DOSS, has been validated by human annotators.18 However, the sample
size of DCRS is admittedly small, which may threaten the internal va-
lidity of our results. Given that the proposed ConvNets can provide
consistently high and stable performance, we consider the use of DCRS in
RQ1, RQ2, and RQ3 to be acceptable and feasible.

9. Conclusions and future work

In this paper, we introduced a completely new method for code
readability classification based on Convolutional Neural Networks
(ConvNets). We first proposed a simple and customizable

17 Another possibility is that node-level representation is still too abstract to
preserve sufficient information for code readability classification. 18 Accordingly, DOSS has only been used in RQ4 for a tentative exploration.
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representation strategy (with different granularities) to transform
source codes into integer matrices as the input to ConvNets. We then
implemented DeepCRM, a novel code readability model consisting of
three separate ConvNets with identical architectures. Our approach is
able to learn various levels of features automatically from the source
code. To evaluate DeepCRM, we conducted a series of experiments. The
results show that DeepCRM can outperform state-of-the-art models (i.e.,
the models of Buse and Weimer [5], Posnett et al. [7], Dorn [8], and
Scalabrino et al. [9] and A Comprehensive Model [9]). The improvement
in accuracy ranges from 2.4% to 17.2%.

Our work serves as the first step toward deep learning-based code
readability classification. We hope that the promising results will in-
terest and encourage more in-depth research in this new field. To en-
able critical or extended analyses, our dataset and source code are
publicly available.1

There are several directions for future research. The top priority is
to further improve the model performance.19 To achieve this, we can
fine-tune model hyperparameters or attempt a different model archi-
tecture. Given that the data quality can significantly affect the model
quality, we also plan to construct a better training set with more reli-
able data (i.e., human-annotated code snippets), which can hopefully
improve our results. Another option is to optimize the strategy used to
represent the source code, which is one of the major challenges in deep
learning-based program analyses.

In this study, we treat a code snippet (a separate file) as an atomic
unit for code readability classification, which may be somewhat coarse-
grained. We expect that in future our approach can precisely locate
unreadable regions rather than forcing users to search through the
entire file. This drawback actually applies to all existing code read-
ability studies.

Currently, our approach allows only Java code. We intend to extend
it to other programming languages. We consider the plan to be feasible
because the only language-dependent part is the lexical analysis process
presented in Fig. 3. All remaining steps are adaptable with slight ad-
justments.

In addition, existing studies (including our own) tend to classify a
piece of source code as either readable or unreadable. However, read-
ability is not necessarily a binary decision. In the future, we plan to
investigate the possibility of measuring code readability in terms of
continuous values to make the output more precise and interpretable
(just like Reading Grade Level for natural languages [16]).

Another direction for future work is to apply the proposed ConvNets
in a real-world situation. For instance, we can integrate our model into
modern IDEs (Integrated Development Environments) or version con-
trol systems to enable developers to continually monitor the readability
of their code.
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