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a b s t r a c t 

Context: Training deep learning models for code readability classification requires large datasets of quality pre- 

labeled data. However, it is almost always time-consuming and expensive to acquire readability data with manual 

labels. Objective: We thus propose to introduce data augmentation approaches to artificially increase the size of 

training set, this is to reduce the risk of overfitting caused by the lack of readability data and further improve the 

classification accuracy as the ultimate goal. Method: We create transformed versions of code snippets by manipu- 

lating original data from aspects such as comments, indentations, and names of classes/methods/variables based 

on domain-specific knowledge. In addition to basic transformations, we also explore the use of Auxiliary Classifier 

GANs to produce synthetic data. Results: To evaluate the proposed approach, we conduct a set of experiments. 

The results show that the classification performance of deep neural networks can be significantly improved when 

they are trained on the augmented corpus, achieving a state-of-the-art accuracy of 87.38%. Conclusion: We con- 

sider the findings of this study as primary evidence of the effectiveness of data augmentation in the field of code 

readability classification. 
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. Introduction 

Code readability refers to a human judgment of how easy a piece of

ource code is to understand [1] . The research of code readability clas-

ification has drawn increasing attention from the software engineer-

ng community. To classify a source code into a Readable or Unreadable

lass, most prior studies built machine learning models based on a set

f handcrafted surface-level features (e.g., the number of identifiers)

1,2] . While in our latest research [3] , we proposed to introduce deep

earning techniques to capture complicated features automatically from

he source code. Although the experimental results showed that our ap-

roach outperformed the state-of-the-art, we argue that the model per-

ormance is still limited by the shortage of training data. Actually, there

re only a few hundred human-annotated code snippets available in the

iterature (see Section 2.1 for details), which may not be sufficient to

ustain the training process. The problem can lead to undesirable over-

tting and therefore impede the model performance, which inspires this

esearch into finding effective ways to artificially enlarge the training

et, with an underlying goal of further improving the classification ac-

uracy. 

Current practice for collecting readability data is to perform a large-

cale survey, inviting as many domain experts as possible to rate code

nippets by readability using a five-point Likert scale [1,4] . However,

he survey process is usually associated with quite a high cost [5] . Con-

idering that it is always expensive (and sometimes impractical) to ob-
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ain adequate code snippets with manual labels for model training, we

ropose to augment existing readability data to support code readability

lassification. Specifically, the major contributions of this paper are: 

• We propose a group of domain-specific transformation techniques

to generate additional code snippets. We also make use of Auxil-

iary Classifier GANs to produce synthetic data. To the best of our

knowledge, this study is the first to adapt data augmentation for

code readability classification. 

• We conduct a series of experiments to validate the effectiveness

of the proposed approach using robust statistical tests, i.e., the

Brunner-Munzel test and the Cliff’s 𝛿 effect size. The empirical re-

sults show that the model trained on the augmented corpus performs

significantly better on code readability classification, reaching up to

87.38% accuracy. 

. Proposed approach 

We begin by briefly reviewing existing readability data. Based on

hese data, we design two types of augmentation schemes. The workflow

f our research is illustrated in Fig. 1 . 

.1. Existing readability data 

We use datasets provided by previous studies as ground-truth to per-

orm data augmentation, namely, D , D , and D . The details
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Fig. 1. Approach overview. 

Table 1 

Statistical summary of existing readability data. 

Dataset Source 

# of code 

snippets 

# of 

annotators 

Avg. lines 

of code 

D Buse Provided by Buse et al. [1] 50 120 7.80 

D Dorn Provided by Dorn et al. [4] 60 5468 30.81 

D Scalabrino Provided by Scalabrino et al. [2] 100 9 26.61 
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re shown in Table 1 . In particular, we get a code corpus containing a

otal of 210 code snippets for which the readability level has been man-

ally assessed by human annotators. The code corpus is composed of

wo comparison groups: the Readable group and the Unreadable group,

ach has equal amounts of code snippets. 

Note that we mix D Buse , D Dorn , and D Scalabrino in a single corpus to

ustain the training process of deep learning models. In other words, we

annot assure that the code corpus is consistent. We consider this as a

ossible threat to the validity of our study. 

.2. Domain-specific data transformation 

Considering that data augmentation has been applied with high suc-

ess for image classification, we propose to explore its effectiveness

n the field of code readability classification. To augment image data,

he most common strategy is to use a combination of transformations,

uch as rotating, shifting, and cropping. However, we cannot simply ap-

ly these transformation techniques on code snippets, mainly because

ource code is context-sensitive and naturally structured by the syntax

f programming languages, it is definitely unreasonable to scale or dis-

ort a code snippet. Therefore, we have to propose some domain-specific

ransformation techniques according to our purposes. 

It is generally accepted that naming conventions and comments have

ignificantly positive impact on code readability [2,6] . Additionally,

rograms that are well indented or spaced are more readable than

hose that do not [1,4] . Based on these domain-specific conclusions,

e manipulate code snippets from three aspects: comments, names of

lasses/methods/variables, and the spatial layout of the source code.

n other words, we would like to make the readability level of code

nippets increase or remain unchanged in the Readable group, while de-

rease or remain unchanged in the Unreadable group. The intent is to

reate transformed versions of code snippets that belong to the same
lass as the original ones. In order to do so, we propose the following

abel-preserving transformation techniques with respect to each group. 

• The Readable group: (1) Add some comments; (2) Apply naming

conventions (either camelCase or under_score style) to names of

classes/methods/variables; (3) Indent source code consistently. This

is to generate synthetic code snippets with same or higher readability

than original ones. 

• The Unreadable group: (1) Remove some comments; (2) Replace

names of classes/methods/variables with meaningless strings of al-

phanumeric characters; (3) Randomly remove some whitespaces

(e.g., horizontal tabs and line terminators). This is to generate syn-

thetic code snippets with same or lower readability than original

ones. 

Note that both readability and understandability are subjective con-

epts [7] . While readability focuses more on the visual appearance of

ource code [1] , which serves as a basic prerequisite for understand-

bility. Although we have made our best to manipulate code snippets

nly in terms of readability, we cannot exclude the possibility that some

ransformations affect understandability as well. This could be consid-

red as a possible threat to the validity of our study. 

.3. GAN-based data augmentation 

In addition to basic transformations, we also experiment with Gen-

rative Adversarial Networks (GANs) to augment existing readability

ata. Because GANs have made great success in the area of image syn-

hesis, we propose to treat code snippets as images and then utilize GANs

o produce new samples through adversarial training. In particular, we

dopt Auxiliary Classifier GANs (AC-GANs) that extend the basic archi-

ecture of GAN models with an auxiliary classifier to stabilize the train-

ng process [8] . As shown in Fig. 1 , AC-GANs consist of a Generator and

 Discriminator competing with each other. The Generator is composed

f a fully-connected layer, two convolutional layers, and a flatten layer

uccessively, which uses the noise z and the class label c as the input

o generate fake code snippets 𝑋 𝑓𝑎𝑘𝑒 = 𝐺 ( 𝑧, 𝑐 ) . The Discriminator is com-

osed of two convolutional layers followed by a flatten layer, which

akes predictions on sources and class labels of given code snippets.

he loss function is then given by: 

 𝑆 = 𝐸 

[
log 𝑃 

(
𝑆 = 𝑟𝑒𝑎𝑙 |𝑋 𝑟𝑒𝑎𝑙 

)]
+ 𝐸 

[
log 𝑃 

(
𝑆 = 𝑓𝑎𝑘𝑒 |𝑋 𝑓𝑎𝑘𝑒 

)]
(1)

 𝐶 = 𝐸 

[
log 𝑃 

(
𝐶 = 𝑐 |𝑋 𝑟𝑒𝑎𝑙 

)]
+ 𝐸 

[
log 𝑃 

(
𝐶 = 𝑐 |𝑋 𝑓𝑎𝑘𝑒 

)]
(2)
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here L S refers to the log-likelihood of the correct source and L C refers

o the log-likelihood of the correct class. The min-max game is thus ap-

roximated by training Generator to maximize 𝐿 𝐶 − 𝐿 𝑆 , while training

iscriminator to maximize 𝐿 𝐶 + 𝐿 𝑆 . 

. Experimental setup 

To explore whether the proposed approach can reduce the risk of

verfitting and help improve classification accuracy, we plan to conduct

 series of experimental evaluations. In particular, we aim to answer the

ollowing RQs: 

• RQ1: To what extent does data augmentation help improve code

readability classification? 

• RQ2: How do different levels of data augmentation influence model

performance? 

RQ1 is to verify whether data augmentation can enhance model per-

ormance when used for code readability classification, which is the

ain purpose of this research. RQ2 is to investigate how model per-

ormance varies with different training set sizes. 

.1. Classification model 

To evaluate our approach, we implement a Convolutional Neural

etwork as the classifier and then feed the augmented corpus (contain-

ng both real and synthetic data) into the classifier for training. As shown

n Fig. 1 , the network has a relatively simple architecture, which is com-

osed of two sets of convolutional and max-pooling layers, followed by

 flatten layer and two fully-connected layers. The network takes code

nippets of size 50 ×305 as input. While training, we use Adam as the

ptimizer and binary cross-entropy as the loss function. For fair com-

arison, we do not perform any dataset-specific tuning. 

.2. Performance measure 

Analogous to previous code readability studies [1,2,4,5] , we report

ur results in terms of classification accuracy, which refers to the per-

entage of instances that are classified correctly. Specifically, we first

ivide the code corpus (see Section 2.1 for details) into two parts: 80%

or training (as well as for data augmentation) and 20% for testing. Then

e train the classifier using the (original or augmented) training set. Af-

er that, we test the trained classifier with code snippets in the test set

nd record its accuracy. We repeat the whole process five times and

eport the overall average accuracy as the final result. 
.3. Analysis procedure 

To address RQ1, we train the classifier on the original and the aug-

ented corpus respectively. Then we employ the Brunner-Munzel test

significance level 𝛼 = 0 . 05 ) to examine whether there is a significant dif-

erence between the classification accuracy obtained with and without

ynthetic data. To measure the magnitude of the difference, we compute

liff’s 𝛿 effect size as recommended by Kitchenham et al. [9] . The value

f 𝛿 is interpreted as follows: Negligible for 𝛿 < 0.112, Small for 𝛿 < 0.276,

edium for 𝛿 < 0.428, and Large for otherwise. 

To address RQ2, we vary the augmentation level by creating differ-

nt sizes of training set using the proposed approach and evaluate their

ffects on model performance. 

In addition, we adopt SamplePairing [10] as the baseline for compar-

son in all RQs. SamplePairing is a simple data augmentation technique

hat synthesizes new samples by taking an average of two code snippets

andomly selected from the training set. 

. Results and discussion 

In this section, we present experimental results with respect to each

Q and discuss the findings. For simplicity, we denote the size of the

riginal corpus as N . 

Q1: To what extent does data augmentation help improve code readability

lassification? 

This RQ aims to determine whether model performance is affected

ositively or negatively by the addition of synthetic data. We observe

hat the model trained on real data (of size N ) can correctly classify

0.71% of code snippets in test set. When we include synthetic data

enerated by basic transformations (of size N ) and Auxiliary Classifier

ANs (of size N ) respectively, the accuracy increases to 87.38% and

3.81%. The p -value for the Brunner-Munzel test is 0.00 ( < 0.05) and

.02 ( < 0.05), while the d -value for Cliff’s 𝛿 effect size is 0.82 ( Large )

nd 0.42 ( Medium ), both implying statistically significant improvements

n code readability classification as compared with using only real data.

esides, it should be noted that the classification accuracy with Sample-

airing (of size N ) is 82.38%, which is not significant ( p -value = 0.26). 

The empirical results show that we can obtain 3% to 7% increase in

lassification accuracy after employing data augmentation approaches.

hile we have expected performance gains through the use of synthetic

ata, we are surprised at the magnitude of the gains. We consider that
Fig. 2. Classification performance for different training set 

sizes. 
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[

here are two main reasons why data augmentation is beneficial: (1) It

elps to increase the size of training set, while the performance of deep

earning models often improves when they are trained with more data.

2) It helps to improve the generality and versatility of deep learning

odels by creating wider variations in training set. 

Q2: How do different levels of data augmentation influence model 

erformance? 

This RQ aims to investigate the optimal augmentation level. To

chieve this goal, we build augmented corpuses of different sizes (from

N to 5N ) and compare their effects on model performance. As shown

n Fig. 2 , the classification accuracy is plotted regarding each training

et size. It can be observed that: (1) The optimal augmentation level is

N for domain-specific data transformation and 1N for GAN-based data

ugmentation. (2) The model performance varies within a small range

less than 10 percentage points). (3) A performance degradation appears

hen we increase the proportion of synthetic data. The caveat is that

dding too much synthetic data may be unhelpful for code readability

lassification. 

Note that all our experiments are conducted using a simple Convolu-

ional Neural Network (ConvNet) as the classifier. This is mainly because

he focus of this study is to evaluate the feasibility and validity of data

ugmentation approaches. We are not aiming for the best model. There-

ore, we consider a simple ConvNet to be sufficient for our empirical

valuations. In fact, our experiments show that a simple ConvNet with

ittle hyper-parameter tuning is able to yield comparable results. 

. Conclusions and future work 

In this pioneering research, we investigated different strategies to

ugment existing readability data to support code readability classifica-

ion. The experimental results showed that deep neural networks trained

ith the augmented corpus performed significantly better than those

rained with only real data. The improvement in accuracy ranges from

% to 7%, confirming the notable effectiveness of data augmentation

pproaches in code readability classification. 

Our work is a first step toward artificially increasing the amount of

eadability data to improve code readability classification. In the future,

e will extend the proposed approach and evaluation methods in a sys-
ematic manner. Besides, we plan to continue our investigation on more

round-truth data and other classifiers. With larger datasets and more

omplex deep learning models, we are likely to achieve better classifi-

ation performance. 
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