
Information and Software Technology 139 (2021) 106662

A
0

I
s
S
a

b

c

A

K
S
C
O
S
E

1

m
t
c
a
t
q
n
b
a

(

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

nvestigation on the stability of SMOTE-based oversampling techniques in
oftware defect prediction
huo Feng a, Jacky Keung a, Xiao Yu b,∗, Yan Xiao c, Miao Zhang a

Department of Computer Science, City University of Hong Kong, Hong Kong, China
School of Computer Science and Technology, Wuhan University of Technology, Wuhan, China
School of Computing, National University of Singapore, Singapore

R T I C L E I N F O

eywords:
oftware defect prediction
lass imbalance
versampling
MOTE
mpirical Software Engineering

A B S T R A C T

Context: In practice, software datasets tend to have more non-defective instances than defective ones,
which is referred to as the class imbalance problem in software defect prediction (SDP). Synthetic Minority
Oversampling TEchnique (SMOTE) and its variants alleviate the class imbalance problem by generating
synthetic defective instances. SMOTE-based oversampling techniques were widely adopted as the baselines to
compare with the newly proposed oversampling techniques in SDP. However, randomness is introduced during
the procedure of SMOTE-based oversampling techniques. If the performance of SMOTE-based oversampling
techniques is highly unstable, the conclusion drawn from the comparison between SMOTE-based oversampling
techniques and the newly proposed techniques may be misleading and less convincing.
Objective: This paper aims to investigate the stability of SMOTE-based oversampling techniques. Moreover, a
series of stable SMOTE-based oversampling techniques are proposed to improve the stability of SMOTE-based
oversampling techniques.
Method: Stable SMOTE-based oversampling techniques reduce the randomness in each step of SMOTE-based
oversampling techniques by selecting defective instances in turn, distance-based selection of 𝐾 neighbor
instances, and evenly distributed interpolation. Besides, we mathematically prove and also empirically
investigate the stability of SMOTE-based and stable SMOTE-based oversampling techniques on four common
classifiers across 26 datasets in terms of AUC, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, and MCC.
Results: The analysis of SMOTE-based and stable SMOTE-based oversampling techniques shows that the
performance of stable SMOTE-based oversampling techniques is more stable and better than that of SMOTE-
based oversampling techniques. The difference between the worst and best performances of SMOTE-based
oversampling techniques is up to 23.3%, 32.6%, and 204.2% in terms of AUC, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, and MCC, respectively.
Conclusion: Stable SMOTE-based oversampling techniques should be considered as a drop-in replacement for
SMOTE-based oversampling techniques.
. Introduction

Software Defect Prediction (SDP) leverages historical data to train
achine learning, data mining, or statistical models, and builds predic-

ion models to predict whether an instance (e.g., a file, a module, or a
lass) introduced in the future is defective or non-defective [1–3]. The
ccurate prediction results can guide software testers to allocate the
esting resource more efficiently [4,5]. However, due to the software
uality assurance activity, defective instances are normally fewer than
on-defective ones, which causes prediction models tending to be
iased towards non-defective instances (i.e., majority class instances)
nd ignore defective ones (i.e., minority class instances). Consequently,

∗ Corresponding author.
E-mail addresses: shuofeng5-c@my.cityu.edu.hk (S. Feng), jacky.keung@cityu.edu.hk (J. Keung), xiaoyu@whut.edu.cn (X. Yu), dcsxan@nus.edu.sg

Y. Xiao), miazhang9-c@my.cityu.edu.hk (M. Zhang).

the performance of prediction models is poor. This is referred to as the
class imbalance problem in SDP.

SDP suffers from the class imbalance problem [6,7]. The prevalent
technique to solve the class imbalance problem in SDP is to use the
oversampling techniques. By adding instances into the minority class,
these techniques introduce bias towards the minority class and balance
the distribution of datasets. Nowadays, most oversampling techniques
are synthetic-based. Among synthetic-based techniques, Synthetic Mi-
nority Oversampling TEchnique (SMOTE) [8] is the most popular one.
Standard SMOTE works as follows. (1) The number of synthetic minor-
ity class instances that need to be generated is set up. (2) A minority
class instance is selected randomly. (3) 𝐾-Nearest Neighbor (KNN)
vailable online 17 June 2021
950-5849/© 2021 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.infsof.2021.106662
eceived 19 August 2020; Received in revised form 1 June 2021; Accepted 9 June
 2021

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:shuofeng5-c@my.cityu.edu.hk
mailto:jacky.keung@cityu.edu.hk
mailto:xiaoyu@whut.edu.cn
mailto:dcsxan@nus.edu.sg
mailto:miazhang9-c@my.cityu.edu.hk
https://doi.org/10.1016/j.infsof.2021.106662
https://doi.org/10.1016/j.infsof.2021.106662
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2021.106662&domain=pdf

Information and Software Technology 139 (2021) 106662S. Feng et al.

N
F
d
d
o
R

o
i
o
p
b
S
s
a
T
c
t

o
s
i
d
t

n
n
o

t
s
t
f

o
a
f

s
d
W
t
s
e
a
S
f
t
i

2

i
m
p
s
t
m
w
T
m
c

d
b
P
f
H
i
h

algorithm is employed to obtain the 𝐾 nearest minority class neighbors
of the selected instance, and one of these 𝐾 instances is randomly cho-
sen. (4) The minority class instance and its selected neighbor minority
class instance are combined to generate a new synthetic instance by
random interpolation. The procedures of 2 to 4 are iterative until the
desired number of synthetic instances is reached. Based on SMOTE,
several oversampling techniques are developed, such as ADAptive SYN-
thetic sampling approach (ADASYN) [9] and Borderline-SMOTE [10].
All these techniques generate synthetic instances like SMOTE and are
referred to as SMOTE-based oversampling techniques in this study.

According to the aforementioned procedure of SMOTE-based over-
sampling techniques, randomness is introduced in (1) the initial selec-
tion of minority class instances used to generate synthetic instances,
(2) the strategy about how to select the nearest neighbor minority class
instances, and (3) the selection of the interpolation where the synthetic
instances are generated. Therefore, when SMOTE-based oversampling
techniques are applied to a dataset, the oversampled dataset varies
each time, which may lead to a high variance in the performance of
prediction models.

However, little work focused on evaluating the stability of SMOTE-
based oversampling techniques. If the performance of SMOTE-based
oversampling techniques is unstable, practitioners could not be con-
fident about the datasets oversampled by SMOTE-based oversampling
techniques. More importantly, as the most common oversampling tech-
niques, SMOTE-based oversampling techniques were widely adopted by
previous studies [9,11,12] as the baselines to compare with the newly
proposed oversampling techniques. However, if the performance of
SMOTE-based oversampling techniques is highly unstable, the conclu-
sion drawn from the comparison between SMOTE-based oversampling
techniques and the newly proposed technique is misleading and not
convincing enough. To improve the stability of SMOTE-based over-
sampling techniques, we propose a series of stable SMOTE-based over-
sampling techniques aiming at reducing the randomness in each step
of SMOTE-based oversampling techniques. Specifically, for a specific
SMOTE-based technique, (1) if it randomly selects minority class in-
stances with equal probability in the initial selection, our proposed
technique turns it into selecting all minority class instances one by one.
(2) If a certain SMOTE-based technique randomly selects the nearest
neighbor minority class instances with equal probability, our proposed
technique turns it into selecting the nearest neighbor minority class
instances from distant to near one by one. We take this strategy based
on the conclusion of Wong [13] and Bennin [14]. Selecting the distant
neighbor minority class instances could increase the diversity of syn-
thetic instances and better avoid the overgeneralization of prediction
models. (3) If a certain SMOTE-based technique randomly selects the
interpolation to generate synthetic instances, our proposed technique
turns it into generating synthetic instances evenly distributed on the
line between the two selected instances.

To investigate the stability of SMOTE-based and stable SMOTE-
based oversampling techniques, we mathematically analyze the stabil-
ity of SMOTE-based and stable SMOTE-based oversampling techniques,
conduct empirical experiments to investigate whether the random-
ness introduced in SMOTE-based oversampling techniques hinders the
performance of prediction models, and also statistically compare the
performance of stable SMOTE-based oversampling techniques with that
of SMOTE-based oversampling techniques in this study. We evalu-
ate the performance of three common SMOTE-based oversampling
techniques (i.e., SMOTE, Borderline-SMOTE, and ADASYN) and their
corresponding stable techniques on four common classifiers (i.e., 𝐾-

earest Neighbor (KNN), Support Vector Machine (SVM), Random
orest (RF), and Decision Tree (DT)). Based on a case study across 26
atasets collected from the PROMISE repository [15], we find that the
ifference between the best and worst performances of SMOTE-based
versampling techniques is up to 23.3% in terms of the Area Under the
2

OC Curve (AUC), 32.6% in terms of 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, and 204.2% in terms s
f the Matthews Correlation Coefficient (MCC). Based on the exper-
mental results, we conclude that the performance of SMOTE-based
versampling techniques is unstable. In contrast, we mathematically
rove that the variance of the synthetic instances generated by sta-
le SMOTE-based oversampling techniques is smaller than that of
MOTE-based oversampling techniques. We also empirically prove that
table SMOTE-based oversampling techniques could gain more stable
nd better performance than SMOTE-based oversampling techniques.
herefore, stable SMOTE-based oversampling techniques should be
onsidered as a drop-in replacement for SMOTE-based oversampling
echniques.

We summarize the contributions of this paper as follows:
(1) We are the first to investigate the stability of SMOTE-based

versampling techniques in the area of SDP. Our experimental results
how that the performance of SMOTE-based oversampling techniques
s highly unstable, which could hurt the objectivity of the conclusion
rawn from the study using SMOTE-based oversampling techniques as
he baselines.

(2) We propose a series of stable SMOTE-based oversampling tech-
iques improving the stability of SMOTE-based oversampling tech-
iques. Our proposed techniques can be applied to any SMOTE-based
versampling technique.

(3) We mathematically and empirically prove that our proposed
echniques significantly improve the stability of SMOTE-based over-
ampling techniques and also produce better results. Our proposed
echniques should be considered as the alternative baseline techniques
or SMOTE-based oversampling techniques.

(4) We open-source our replication package to make it easy for
thers to replicate our work and conduct further works. All data
nd source code in this study can be found at https://github.com/
engshuocn/stability-of-smote.

The remainder of this paper is organized as follows. Section 2
hows the related work and the background of our work. Section 3
etails the algorithm of stable SMOTE-based oversampling techniques.
e analyze the time complexity of stable SMOTE-based oversampling

echniques in Section 4. Section 5 mathematically proves the stability of
table SMOTE-based oversampling techniques. Section 6 introduces the
xperimental settings, including the datasets, the classifiers, the evalu-
tion measures, the statistical test, and the experimental procedure. In
ection 7, we present and analyze the experimental results. Section 8
urther discusses the generalizability of our conclusion. Section 9 lists
he threats to validity. In Section 10, we conclude the paper and
ntroduce the future work.

. Related work and background

As the size of software applications grows, software testing becomes
ncreasingly expensive and time-consuming. SDP uses statistical or
achine learning classifiers to build defect prediction models. These
rediction models will be used to conveniently identify software in-
tances likely to be defective. Thus, practitioners can save limited
esting resources and put more focus on these instances [16]. Prediction
odels are trained by available historical data and used to predict
hether the instances introduced in the future are defective or not.
he researches in SDP can be categorized into different types, such as
odeling of prediction models [17–21], feature selection [22–25], and

lass imbalance learning [26–28].
The class imbalance problem is quite common in SDP. Naturally,

efective instances only take a small portion of a dataset. The num-
er of non-defective instances is larger than that of defective ones.
rediction models trained on the imbalanced data tend to put more
ocus on non-defective instances while ignoring defective instances.
owever, researchers and practitioners are more interested in defective

nstances. To alleviate the class imbalance problem, many techniques
ave been proposed. These techniques can be categorized as cost-

ensitive learning, ensemble learning, and data resampling in general.

https://github.com/fengshuocn/stability-of-smote
https://github.com/fengshuocn/stability-of-smote
https://github.com/fengshuocn/stability-of-smote

Information and Software Technology 139 (2021) 106662S. Feng et al.

i
g
s
d
u
o
p
e
t
r
g
b
A
A
c
f
m
o
i
s
B
c

3

t
o
o
b
n
o
s
o
R
t
t
n

𝑥

s
𝑅
m
t
d
m
𝑅
a
m
a
t
i
r

𝑁
b
w
s
s
(
g

s
a

d

In SDP, misclassifying a defective instance leads to a more serious
consequence than misclassifying a non-defective one. The idea behind
cost-sensitive learning is that when classifiers wrongly predict an in-
stance, more cost is assigned to the misclassification of a defective
instance than a non-defective one. Cost-sensitive learning tries to min-
imize the overall cost, thus alleviates the class imbalance problem.
Khan et al. [29] proposed a cost-sensitive deep neural network. This
technique can automatically optimize the different costs for both the
majority class and the minority class and could lead to a low overall
cost. Zhang et al. [30] proposed an evolutionary cost-sensitive extreme
learning machines that could properly define the cost matrix in cost-
sensitive learning. These two techniques both outperform the baseline
techniques.

Ensemble learning combines different classifiers to enhance the
performance of prediction models trained on imbalanced data. Based
on the distribution of an ensemble classifier’s margin, Feng et al. [31]
proposed a novel ensemble algorithm that employs more low-margin
examples than high-margin samples and could handle imbalanced data
well. This algorithm also employs the undersampling technique to
improve its performance. The comparison between the proposed al-
gorithm and the state-of-the-art methods shows that the proposed
algorithm is superior.

Data resampling techniques are more prevalent in SDP due to
their easy employment and independence (i.e., they can be applied
to any prediction model). As the most common oversampling tech-
niques, SMOTE-based oversampling techniques were widely adopted
as the baselines in many studies. SMOTE first randomly selects a
minority class instance and one of its 𝐾 nearest neighbor minor-
ty class instances. Then, a new synthetic minority class instance is
enerated by randomly selecting an interpolation between these two
elected instances. The above process is iterated until the balance of
ata is achieved. It should be noted that the minority class instances
sed to generate synthetic instances are different at each running
f SMOTE for a certain dataset. Based on SMOTE, Han et al. [10]
roposed Borderline-SMOTE. SMOTE treats all minority class instances
qually, and the probability of each instance used to generate syn-
hetic instances is the same. Different from SMOTE, Borderline-SMOTE
andomly selects those instances located at the decision boundary to
enerate synthetic instances. By doing this, the decision boundary
etween the minority class and the majority class can be strengthened.
DASYN, proposed by He et al. [9], is another variant of SMOTE.
DASYN also modifies the initial selection of SMOTE. ADASYN first
alculates the number of synthetic instances that need to be generated
or each minority class instance based on the level of difficulty of each
inority class instance. The difficulty estimation is based on the ratio

f instances belonging to the majority class in the neighborhood. Thus,
t makes the initial selection of minority class instances remains the
ame for a certain dataset, which is different from SMOTE as well as
orderline-SMOTE. Nevertheless, the selection of the neighbor minority
lass instances and the interpolation are still random.

. Methodology

The key idea of stable SMOTE-based oversampling techniques is
o reduce or even eliminate the randomness introduced in each step
f SMOTE-based oversampling techniques, thus reducing the variance
f SMOTE-based oversampling techniques. The common steps shared
y SMOTE-based oversampling techniques include (1) calculating the
umber of synthetic instances to be generated, (2) the initial selection
f minority class instances used to generate synthetic instances, (3) the
election of the neighbor minority class instances, and (4) the selection
f the interpolation where the new synthetic instances are generated.
andomness is introduced into SMOTE-based oversampling techniques

hrough these steps. For instance, SMOTE introduces randomness in
he second, third, fourth steps, and ADASYN only introduces random-
ess in the third and fourth steps. Stable SMOTE-based oversampling
3

techniques also share the same steps but with some differences in
details. Because stable SMOTE-based oversampling techniques share a
similar procedure, we only present the algorithm and the pseudo-code
(Algorithm 1) of stable SMOTE in the following. The capital letters
represent quantities, and the lowercase letters represent the instances
in datasets.
(1) Calculate the number of synthetic instances to be generated

The number 𝑁 of synthetic instances that need to be generated is
calculated as follows:

𝑁 = (𝑀𝑚𝑎𝑗 −𝑀𝑚𝑖𝑛) × 𝛽, (1)

where 𝑀𝑚𝑎𝑗 is the number of majority class instances, 𝑀𝑚𝑖𝑛 is the
number of minority class instances, and 𝛽 can be set to any non-
negative number. Normally, 𝛽 is manually set up to 1, which means
datasets will be fully balanced after being oversampled (Line 2 of
Algorithm 1).
(2) Initialize the selection of minority class instances

In this step, we calculate 𝑅 defined as:

𝑅 = 𝑁∕𝑀𝑚𝑖𝑛, (2)

where 𝑅 is the number of synthetic instances that need to be generated
for each minority instance.

Then we compute 𝑅𝑘 defined as:

𝑅𝑘 = 𝑓𝑙𝑜𝑜𝑟(𝑅∕𝐾), (3)

where 𝑅𝑘 is the number of synthetic instances that need to be generated
for each neighbor minority class instance of a certain minority class
instance 𝑥𝑖, 𝐾 is the number of the nearest neighbor minority class
instances which is set in advance, and 𝑓𝑙𝑜𝑜𝑟 is the rounding down
operation (Lines 3–4).
(3) Select the neighbor minority class instances

While 𝑅𝑘 > 1, it indicates that all the 𝐾 neighbor minority class
instances of each minority class instance 𝑥𝑖 will be selected to generate
synthetic instances. We record each minority class instance 𝑥𝑖 and its
neighbor minority class instances 𝑥1, 𝑥2, . . . , 𝑥𝑘 as the pair (𝑥𝑖, 𝑥1), (𝑥𝑖,
𝑥2), . . . , (𝑥𝑖, 𝑥𝑘), and the total number of all pairs are recorded as 𝐿.
Then 𝑅𝑘 is replaced by 𝑅𝑘−1 until 𝑅𝑘 is less than 1. It should be noted
that there is no particular order for a pair (𝑥𝑖, 𝑥𝑗). In other words, (𝑥𝑖,
𝑗) and (𝑥𝑗 , 𝑥𝑖) are the same pair (Lines 5–12).

Next, stable SMOTE gets 𝑁𝑛𝑒𝑤 by 𝑁 subtracting 𝐿. 𝑅 is also updated
equentially according to 𝑁𝑛𝑒𝑤. It is notable that after being updated,

is less than 𝐾. Therefore, it means that not all the 𝐾 neighbor
inority class instances of each minority class instance 𝑥𝑖 will be used

o generate synthetic instances in this step. Then 𝑅 will be rounded
own and used to select 𝑅 neighbor minority class instances 𝑥𝑘 of each
inority class instance 𝑥𝑖. We here take the strategy that we select
neighbor minority class instances from distant to near for each 𝑥𝑖

nd recorded as (𝑥𝑖, 𝑥𝑘). The reason we select the distant neighbor
inority class instances is based on the conclusion of Wong [13]

nd Bennin [14] that SMOTE-based oversampling techniques may lead
o the overgeneralization of prediction models because of selecting
nstances too close in distance. Selecting more distant instances could
educe the probability of overgeneralization (Lines 13–21).

Finally, 𝑁𝑛𝑒𝑤 is updated by 𝑁 subtracting 𝐿. After being updated,
𝑛𝑒𝑤 is less than 𝑀𝑚𝑖𝑛, which means not all minority class instances will

e selected to generate synthetic instances. Therefore, Stable SMOTE
ill randomly select 𝑁𝑛𝑒𝑤 minority class instances 𝑥𝑖. Then for each

elected 𝑥𝑖, its most distant neighbor minority class instance 𝑥𝑘 will be
elected, and the pair (𝑥𝑖, 𝑥𝑘) will be recorded (Lines 22–27).
4) Select the interpolation where the new synthetic instances are
enerated

For each pair (𝑥𝑖, 𝑥𝑘), we calculate its counts as 𝑁𝑖,𝑘. Then 𝑁𝑖,𝑘
ynthetic instances will be evenly distributed on the line between 𝑥𝑖
nd 𝑥𝑘 (Lines 28–29).

According to the above description, the randomness is greatly re-
uced by stable SMOTE. Similar procedures can also be applied to

Information and Software Technology 139 (2021) 106662S. Feng et al.

T
i
s
S

5

m
s
m
a
o
i
E
g
i
o
i

𝐸

I

𝐸

𝐸

b
f

Algorithm 1 stable SMOTE
Input: Dataset 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 which includes 𝑀𝑚𝑖𝑛 minority class instances and
𝑀𝑚𝑎𝑗 majority class instances, the ratio 𝛽 controlling the final defect
ratio and the number of the nearest neighbors 𝐾
Output: Balanced dataset 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
1: Initialize array 𝑎𝑟𝑟 for storing the pair of instances used to generate

synthetic instances, and the length of 𝑎𝑟𝑟 is recorded as 𝐿
2: 𝑁 = (𝑀𝑚𝑎𝑗 −𝑀𝑚𝑖𝑛) × 𝛽
3: 𝑅 = 𝑁∕𝑀𝑚𝑖𝑛
4: 𝑅𝑘 = 𝑓𝑙𝑜𝑜𝑟(𝑅∕𝐾) ⊳ 𝑓𝑙𝑜𝑜𝑟 is the rounding down operation
5: while 𝑅𝑘 ≥ 1 do
6: for 𝑖 = 1, 2...,𝑀𝑚𝑖𝑛 do
7: for 𝑘 = 1, 2..., 𝐾 do
8: Insert (𝑥𝑖, 𝑥𝑘) into 𝑎𝑟𝑟
9: end for

10: end for
11: 𝑅𝑘 = 𝑅𝑘 − 1
12: end while
13: 𝑁𝑛𝑒𝑤 = 𝑁 − 𝐿
14: 𝑅 = 𝑁𝑛𝑒𝑤∕𝑀𝑚𝑖𝑛
15: 𝑅 = 𝑓𝑙𝑜𝑜𝑟(𝑅)
16: for 𝑖 = 1, 2...,𝑀𝑚𝑖𝑛 do
17: for 𝑗 = 1, 2..., 𝑅 do
18: Select the neighbor minority class instance 𝑥𝑘 of 𝑥𝑖 from

distant to near
19: Insert (𝑥𝑖, 𝑥𝑘) into 𝑎𝑟𝑟
20: end for
21: end for
22: 𝑁𝑛𝑒𝑤 = 𝑁 − 𝐿
23: for 𝑖 = 1, 2..., 𝑁𝑛𝑒𝑤 do
24: Randomly select a minority class instance 𝑥𝑖
25: Select the most distant neighbor minority class instance 𝑥𝑘 of 𝑥𝑖
26: Insert (𝑥𝑖, 𝑥𝑘) into 𝑎𝑟𝑟
27: end for
28: Count the number 𝑁𝑖,𝑘 of the pair (𝑥𝑖, 𝑥𝑘) in 𝑎𝑟𝑟
29: Generate 𝑁𝑖,𝑘 synthetic instances on the line between 𝑥𝑖 and 𝑥𝑘

evenly distributed.

Borderline-SMOTE, ADASYN, and other SMOTE-based oversampling
techniques. For example, Borderline-SMOTE randomly selects the bor-
derline minority class instances instead of all minority class instances
with equal probability. For stable Borderline-SMOTE, most borderline
instances will be selected a fixed number of times. For ADASYN, it
selects the minority class instances based on their density distribution
in the step of initializing the selection of minority class instances.
Therefore, minority class instances will be selected a fixed number of
times for ADASYN. Stable ADASYN takes the same strategy as ADASYN
in this step. But for the rest of the steps, stable ADASYN will take the
same strategy as stable SMOTE.

4. Time complexity of stable SMOTE

As can be seen in Algorithm 1, the time complexity of stable SMOTE
is mostly governed by the following:

• Line 5 has the time complexity of 𝑂(𝑅𝑘)
• Line 6 has the complexity of 𝑂(𝑀𝑚𝑖𝑛)
• Line 7 has the complexity of 𝑂(𝐾)
• Line 16 has the complexity of 𝑂(𝑀𝑚𝑖𝑛)
• Line 17 has the complexity of 𝑂(𝑅)
• Line 23 has the complexity of 𝑂(𝑁𝑛𝑒𝑤)
• Line 28 has the complexity of 𝑂(𝑁)

Therefore, the time complexity of stable SMOTE is 𝑂(𝑅𝑘𝑀𝑚𝑖𝑛𝐾) +
𝑂(𝑀 𝑅) + 𝑂(𝑁) + 𝑂(𝑁) = 𝑂((𝑅 𝐾 + 𝑅)𝑀) + 𝑂(𝑁) + 𝑂(𝑁).
4

𝑚𝑖𝑛 𝑛𝑒𝑤 𝑘 𝑚𝑖𝑛 𝑛𝑒𝑤 𝑣
he time complexity of SMOTE is 𝑂(𝑁𝑀𝑚𝑖𝑛). With the increase of the
mbalanced level of data, 𝑅𝑘 and 𝑁 increase at the same speed. 𝑅 is
maller than 𝐾. Therefore, the time complexity of stable SMOTE and
MOTE is in the same magnitude.

. Theoretical analysis of stable SMOTE

In this section, we prove the stability of stable SMOTE mathe-
atically. Blagus et al. [32] and Elreedy et al. [33] both provided

ome mathematical basis of SMOTE. We follow their format of the
athematical proof and refer the expected value as 𝐸(⋅), the variance

s 𝑣𝑎𝑟(⋅), the covariance as 𝑐𝑜𝑣(,), the original instances as 𝑋𝑖, one
f the 𝐾 neighbor minority class instances as 𝑅𝑖, and the synthetic
nstances generated by SMOTE and stable SMOTE as 𝑆𝑖. Blagus and
lreedy have proved that the expected value of synthetic instances
enerated by SMOTE is the same as that of the original minority class
nstances (i.e., 𝐸(𝑆𝑖) = 𝐸(𝑋𝑖)). Blagus has also proved that the variance
f SMOTE instances is smaller than that of the original minority class
nstances (i.e., 𝑣𝑎𝑟(𝑆𝑆𝑀𝑂𝑇𝐸

𝑖) = 2
3𝑣𝑎𝑟(𝑋𝑖)). Based on their analysis, we

further prove that the stability of stable SMOTE is superior to that of
SMOTE.

For stable SMOTE, a new synthetic instance is obtained according
to the following expression:

𝑆𝑖 = 𝑋𝑖 +𝑤(𝑅𝑖 −𝑋𝑖), (4)

where 𝑤 = 𝑙
𝑟+1 , 𝑙 = 1, 2,… , 𝑟. 𝑟 is the number of times that the pair of

(𝑋𝑖, 𝑅𝑖) is used to generate synthetic instances.

(𝑆𝑖) = 𝐸(𝑋𝑖) − 𝐸(𝑤)𝐸(𝑋𝑖) + 𝐸(𝑤)𝐸(𝑅𝑖). (5)

t is easy to prove that 𝐸(𝑤) = 1
2 , and we obtain

(𝑆𝑖) =
1
2
(𝐸(𝑋𝑖) + 𝐸(𝑅𝑖)). (6)

According to Blagus’s and Elreedy’s conclusion that 𝐸(𝑋𝑖) = 𝐸(𝑅𝑖),
we prove that 𝐸(𝑆𝑖) = 𝐸(𝑋𝑖), which means the expected value of
the synthetic instances generated by stable SMOTE equals that of
the original minority class instances as well as that of the synthetic
instances generated by SMOTE. Then, we calculate the variance of 𝑆𝑖
as follows:

𝑣𝑎𝑟(𝑆𝑖) = 𝐸(𝑆2
𝑖) − 𝐸(𝑆𝑖)2, (7)

𝐸(𝑆2
𝑖) = 𝐸(𝑋2

𝑖 + 2𝑤𝑋𝑖 ⋅ (𝑅𝑖 −𝑋𝑖)

+𝑤2(𝑅2
𝑖 − 2𝑅𝑖 ⋅𝑋𝑖 +𝑋2

𝑖)),
(8)

(𝑤) = 1
2
, (9)

and

𝐸(𝑤2) =
𝑟
∑

1
(𝑙2

(𝑟 + 1)2
)

=
(2𝑟 + 1)
6(𝑟 + 1)

= 𝑎.

(10)

Therefore,

𝐸(𝑆2
𝑖) = 𝑎𝐸(𝑋2

𝑖) + 𝑎𝐸(𝑅2
𝑖) + (1 − 2𝑎)𝐸(𝑋𝑖 ⋅ 𝑅𝑖), (11)

𝑣𝑎𝑟(𝑆𝑖) = 𝑎𝐸(𝑋2
𝑖) + 𝑎𝐸(𝑅2

𝑖) + (1 − 2𝑎)𝐸(𝑋𝑖 ⋅ 𝑅𝑖)

−1
4
𝐸(𝑅𝑖)2 −

1
4
𝐸(𝑋𝑖)2 −

1
2
𝐸(𝑋𝑖)𝐸(𝑅𝑖)

= 𝑎(𝑣𝑎𝑟(𝑋𝑖)) + 𝑎(𝑣𝑎𝑟(𝑅𝑖)) + (1 − 2𝑎)𝑐𝑜𝑣(𝑋𝑖, 𝑅𝑖)

+(𝑎 − 1
4
)𝐸(𝑋𝑖)2 + (𝑎 − 1

4
)𝐸(𝑅𝑖)2

+(1
2
− 2𝑎)𝐸(𝑋𝑖)𝐸(𝑅𝑖),

(12)

ecause 𝐸(𝑋𝑖) = 𝐸(𝑅𝑖), the expression can be further simplified as
ollow:

𝑎𝑟(𝑆) = 𝑎(𝑣𝑎𝑟(𝑋)) + 𝑎(𝑣𝑎𝑟(𝑅)) + (1 − 2𝑎)𝑐𝑜𝑣(𝑋 ,𝑅), (13)
𝑖 𝑖 𝑖 𝑖 𝑖

Information and Software Technology 139 (2021) 106662S. Feng et al.

=

𝑣

Table 1
Description of 26 imbalanced datasets collected from the PROMISE
repository.
Projects # Instances % Defect ratio

ant-1.3 125 16
ant-1.4 178 22.5
ant-1.5 293 10.9
ant-1.6 351 26.2
ant-1.7 745 22.3
camel-1.0 339 3.8
camel-1.2 608 35.5
camel-1.4 872 16.6
camel-1.6 965 19.5
ivy-1.4 241 6.6
ivy-2.0 352 11.4
jedit-3.2 272 33.1
jedit-4.0 306 24.5
jedit-4.1 312 25.3
jedit-4.2 367 13.1
jedit-4.3 492 2.2
log4j-1.0 135 25.2
log4j-1.1 109 33.9
poi-2.0 314 11.8
synapse-1.0 157 10.2
synapse-1.1 222 27.0
synapse-1.2 256 33.6
velocity-1.6 229 34.1
xalan-2.4 723 15.2
xerces-1.2 440 16.1
xerces-1.3 453 15.2

According to [33], 𝑋𝑖 and 𝑅𝑖 are independent and therefore, 𝑐𝑜𝑣(𝑋𝑖, 𝑅𝑖)
0. We obtain

𝑎𝑟(𝑆𝑖) = 2𝑎(𝑣𝑎𝑟(𝑋𝑖)) =
(2𝑟 + 1)𝑣𝑎𝑟(𝑋𝑖)

3(𝑟 + 1)
, (14)

𝑣𝑎𝑟(𝑆𝑖) =
2𝑣𝑎𝑟(𝑋𝑖)

3
−

𝑣𝑎𝑟(𝑋𝑖)
3(𝑟 + 1)

< 𝑣𝑎𝑟(𝑆𝑆𝑀𝑂𝑇𝐸
𝑖). (15)

We prove that the variance of the synthetic instances generated by
stable SMOTE is smaller than that of SMOTE.

6. Experimental settings

This section introduces the details about the experiments, including
the comparison techniques, the datasets, the selected classifiers, the
performance measures, the statistical test, and also the experimental
procedure.

6.1. Implementation setting

In this study, we investigate three SMOTE-based techniques and
their corresponding stable techniques. Specifically, SMOTE, stable
SMOTE, Borderline-SMOTE, stable Borderline-SMOTE, ADASYN, and
stable ADASYN are adopted. The common hyperparameters of these
techniques are the number of the nearest neighbor minority class
instances 𝐾, the distance metric, and the final defect ratio of the
datasets after being processed by the techniques. We set 𝐾 as 5, select
the Euclidean distance as the distance metric, and set the final defect
ratio as 0.5, all of which follow the default settings of these techniques.

6.2. Datasets

In this study, we adopt 26 imbalanced datasets of 10 projects
collected from the PROMISE repository [15]. The PROMISE repository
is maintained by Jureczko and Madeyski, and has been widely used
in many previous studies. All the selected datasets are open source,
making it easy for others to compare and replicate our work. The defect
ratio of the 26 selected is less than 40% to make sure oversampling
techniques work properly. The information about these datasets is
5

listed in Table 1. There are 20 metrics in each dataset measuring
Table 2
Description of the metrics.
Abbreviation Description

WMC Weighted methods per class
DIT Depth of Inheritance Tree
NOC Number of Children
CBO Coupling between object classes
RFC Response for a Class
LCOM Lack of cohesion in methods
CA afferent couplings
CE efferent couplings
NPM Number of Public Methods
LCOM3 Lack of cohesion in methods, different from

LCOM
LOC Lines of Code
DAM Data Access Metric
MOA Measure of Aggregation
MFA Measure of Functional Abstraction
CAM Cohesion Among Methods of Class
IC Inheritance Coupling
CBM Coupling Between Methods
AMC Average Method Complexity
MAX(CC) Maximum value of CC methods of the

investigated class
AVG(CC) Arithmetic mean of the CC value in the

investigated class

Table 3
Hyperparameter configuration.

Classifier Hyperparameters

DT critera = {gini, entropy}, depth = {30, 50, 60, 100},
leaf = {2, 3, 5, 10}

KNN 𝐾 = {1, 3, 5, 7, 9, 11}
RF mtry = {10, 50, 100, 200, 500, 1000}
SVM c = {0.01, 0.1, 1, 10, 100, 1000}

Table 4
Confusion matrix.

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

the complexity of an instance (e.g., Lines of Code, Weighted Methods
per Class). All the values of these metrics are numeric. Besides these
metrics, there is an additional metric to indicate whether the current
instance is defective or non-defective. If the instance is defective, this
metric will be 1. Otherwise, the metric will be labeled as 0. Table 2
details these metrics.

6.3. Classifiers

In this study, we aim at investigating the stability of SMOTE-based
oversampling techniques instead of deciding which classifier is the best
for building prediction models. Therefore, we adopt four common clas-
sifiers (i.e., 𝐾-Nearest Neighbor (KNN), Support Vector Machine (SVM),
Random Forest (RF), and Decision Tree (DT)). We choose these four
classifiers because they were adopted by many previous studies [11,34]
in SDP and performed quite well. To avoid reinventing the wheel, we
implemented these classifiers using the Sklearn package [35] in Python.
The hyperparameters of these classifiers are optimized by the 5-fold
grid search. The hyperparameter configuration is presented in Table 3.

6.4. Evaluation measures for imbalanced datasets

Because of the class imbalance problem in SDP, some performance
measures such as accuracy are not appropriate to measure the perfor-
mance of defect prediction models. The performance measures that are

not significantly impacted by the class imbalance problem are adopted

Information and Software Technology 139 (2021) 106662S. Feng et al.
Fig. 1. Experimental procedure.
in SDP. In this study, we choose AUC, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, and MCC to measure
the performance. AUC is calculated from the Receiver Operating Char-
acteristics (ROC) curve, and it is able to handle the trade-off between
the true and false positive. 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 is another common performance
measure that finds the balance between 𝑝𝑑 (probability of detection)
and 𝑝𝑓 (probability of false alarm). We also adopt MCC, which has
been confirmed as the most suitable performance measure for the pres-
ence of imbalanced data in the recent study [36]. These performance
measures were widely adopted by the previous studies in SDP [11,
34,37]. Their performances are stable and satisfactory. Adopting these
common performance measures could improve the generalizability of
our conclusion, and it is also easy for others to replicate our work.
These performance measures are computed based on the outcomes of
the confusion matrix (Table 4). Generally, the minority class instances
are regarded as positive and the majority class instances as negative.
True Positive (TP) represents the positive instances that are correctly
classified. False Positive (FP) represents the negative instances that
are misclassified as positive. True Negative (TN) represents negative
instances that are correctly classified, and False Negative (FN) rep-
resents the positive instances that are misclassified as negative. The
mathematical definitions of 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 and MCC are given below:

𝑝𝑑 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(16)

𝑝𝑓 = 𝐹𝑃
𝑇𝑁 + 𝐹𝑃

(17)

𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = 1 −

√

(0 − 𝑝𝑓)2 + (1 − 𝑝𝑑)2
√

2
, (18)

𝑀𝐶𝐶 = 𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁
√

(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
(19)
6

Higher values of AUC, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, and MCC represent the better overall
performance of prediction models.

6.5. Statistical test

We apply the Scott–Knott Effect Size Difference test (the Scott–
Knott ESD test) [37] to make multiple comparisons among the selected
oversampling techniques. The Scott–Knott ESD test uses a hierarchical
clustering algorithm to divide the set of treatment means into statis-
tically different groups like the Scott–Knott test. The Scott–Knott test
assumes that the data should be normally distributed, and the groups
created by the Scott–Knott test may be trivially different from one
another. The Scott–Knott ESD test log-transforms the data and considers
the effect size to solve these limitations.

The Wilcoxon signed-rank test (Wilcoxon) is used to make a pair-
wise comparison between samples. We also adopt it to check whether
the variances of AUC, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, and MCC of each SMOTE-based oversam-
pling technique is statistically significantly different from that of its cor-
responding stable SMOTE-based oversampling technique. Wilcoxon is a
non-parametric test that takes the null hypothesis that two techniques
are not significantly different.

In this study, we employ the two tests both at 95% confidence level.
The effect size (i.e., Cliff’s 𝛿) between the variance of each SMOTE-

based oversampling technique and that of its corresponding stable
SMOTE-based oversampling technique is also computed to ascertain
the practical significance of the experimental results. By convention,
the effect size is interpreted as negligible (0 < Cliff’s 𝛿 < 0.147), small
(0.147 < Cliff’s 𝛿 < 0.33), medium (0.33 < Cliff’s 𝛿 < 0.474) or large
(Cliff’s 𝛿 > 0.474) [11].

We also adopt the win-draw-loss strategy to investigate the perfor-
mance of each technique across every single dataset.

Information and Software Technology 139 (2021) 106662S. Feng et al.
6.6. Experimental procedure

In this study, we first apply the min–max normalization method to
the studied datasets to adjust all the features into the same range from 0
to 1. Next, we validate the performances of different oversampling tech-
niques by adopting the out-of-sample bootstrap validation technique
to divide the selected datasets into the training and testing data. The
reason that we adopt the out-of-sample bootstrap is that the training
and testing data generated by the out-of-sample bootstrap can balance
the bias and variance well [37]. Specifically, we apply the out-of-
sample bootstrap to each selected dataset ten times and get ten different
pairs of the training and testing data. Then for each pair, we apply each
of SMOTE-based and stable SMOTE-based oversampling techniques ten
times only to the training data and keep the testing data unchanged.
We terminate the oversampling process when the number of minority
class instances and that of majority class instances are equal according
to Ahmad Abu’s conclusion [38] that oversampling techniques perform
the best when the number is equal. After that, we will get ten groups
of training data, each of which includes ten oversampled training
data. Then we use the 10 × 10 = 100 oversampled training data to
build 10 × 10 = 100 prediction models for each dataset, and we get
26 × 10 × 10 = 2600 outcomes in total. First, to compare the overall
performance of each technique, we calculate the average performance
of the 100 prediction models for each dataset in terms of AUC, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒,
and MCC. Because we adopt 26 datasets in this paper, we obtain 26
values in terms of each performance measure. We take these values as a
distribution and use the Scott–Knott ESD test to divide each distribution
of AUC, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, and MCC of all studied techniques into groups with
a significant difference. Then we calculate the best, upper quartile,
median, lower quartile, and worst performances of each technique in
terms of AUC, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, MCC, and divide them into different groups with
a significant difference using the Scott–Knott ESD test just like the way
obtaining the average performance. Next, we calculate the variance of
the average performance of each technique in terms of AUC, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒,
and MCC. Then we use Wilcoxon as well as Cliff’s 𝛿 to compare the
variance of each SMOTE-based oversampling technique against that of
its corresponding stable SMOTE-based oversampling technique. Fig. 1
shows the whole workflow of the experiment.

7. Experimental results and analysis

In this section, we first compare the overall performance of SMOTE-
based with stable SMOTE-based oversampling techniques in terms of
AUC, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, and MCC using the Scott–Knott ESD test. Then we present
the best, upper quartile, median, lower quartile, worst, and average
performances of each oversampling technique in terms of AUC, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒,
and MCC. We also compare the variance of the performance of each
oversampling technique with regard to AUC, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, and MCC. To ease
the demonstration of experimental results, we refer to stable SMOTE as
S-SMOTE, Borderline-SMOTE as Borderline, stable Borderline-SMOTE
as S-Borderline, and stable ADASYN as S-ADASYN in this section.

7.1. The overall performance

Fig. 2 presents the Scott–Knott ESD test ranking of each oversam-
pling technique in terms of AUC, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, and MCC across all studied
datasets on the four selected classifiers. The leftmost boxplot repre-
sents the technique performing the best, while the rightmost boxplot
represents the worst one. None represents the classifiers trained using
the original data without any processing. First, it can be seen that
the data processed by the oversampling techniques indeed significantly
improves the performance of prediction models compared with the
original data. Besides, we can see that there is no significant difference
between each stable SMOTE-based oversampling technique and its
corresponding SMOTE-based oversampling technique in terms of AUC,
7

𝑏𝑎𝑙𝑎𝑛𝑐𝑒, and MCC, except that S-ADASYN significantly outperforms
Fig. 2. The Scott–Knott ESD test ranking of AUC, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, and MCC values of each
oversampling technique across 26 datasets (purple>red>green). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

ADASYN in terms of AUC and 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 on the RF classifier. Although
there is no significant difference, it can be seen that each stable
SMOTE-based oversampling technique outperforms its corresponding
technique on most classifiers. From Fig. 2, we can see that the overall
performance of our proposed techniques is quite satisfactory compared
with SMOTE-based oversampling techniques.

7.2. The best, upper quartile, median, lower quartile, worst, and average
performances

Then we compare the best, upper quartile, median, lower quartile,
worst, and average performances of each oversampling technique in
terms of AUC, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, and MCC. If the best, upper quartile, median,
lower quartile, worst, and average performances of a certain SMOTE-
based oversampling technique are divided into more groups than that
of its corresponding stable SMOTE-based oversampling technique by
the Scott–Knott ESD test, it indicates that the latter technique is more
stable than the former one.

Fig. 3 shows that the best, upper quartile, median, lower quartile,
worst, and average performances of each SMOTE-based oversampling
technique are divided into more groups than that of its corresponding
stable technique on the KNN and SVM classifiers in terms of AUC.
It should be noted that because of the initial selection of instances
in ADASYN and S-ADASYN, S-ADASYN generates exactly the same
synthetic instances for a certain dataset. Therefore, the performances of
S-ADASYN remain the same on the KNN and SVM classifiers. However,
on the RF and DT classifiers, the performances of all oversampling
techniques are all divided into five groups in terms of AUC. This is
probably because of the randomness of the classifiers counteracting
the positive effect brought by stable SMOTE-based oversampling tech-
niques. Fig. 4 shows that with regard to 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, the performances
of each SMOTE-based oversampling technique are divided into more
groups by the Scott–Knott ESD test than that of its corresponding stable
technique on the KNN, SVM, and DT classifiers. On the RF classifier, the
performances of S-Borderline are divided into four groups, while those
of Borderline are in five groups in terms of 𝑏𝑎𝑙𝑎𝑛𝑐𝑒. In terms of MCC, it
can be seen that the stability of each stable SMOTE-based oversampling

Information and Software Technology 139 (2021) 106662S. Feng et al.
Fig. 3. The Scott–Knott ESD test ranking of the best, upper quartile, median, average, lower quartile, and worst performances of each oversampling technique in terms of AUC
across 26 datasets (purple>red>green>blue>yellow). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
technique consistently outperforms that of its corresponding technique
from Fig. 5.

It is notable that the difference between the best and worst perfor-
mances of SMOTE is up to 13.1%, 10.5%, 19.4%, and 23.3% on the
KNN, SVM, RF, and DT classifiers, while that of S-SMOTE is only 2.5%,
3.3%, 17.1%, and 15.9% in terms of AUC. With regard to 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, the
difference is up to 13.7%, 12.3%, 28.2%, and 32.6% for SMOTE on
the KNN, SVM, RF, and DT classifiers. Considering MCC, the difference
is as large as 59.5%, 47.2%, 112.9%, and 204.2%, respectively. The
performance of Borderline and ADASYN is similar to that of SMOTE.

7.3. The variance

To further explore the stability of SMOTE-based and stable SMOTE-
based oversampling techniques, we take the win-draw-loss strategy
to compare the stability of stable SMOTE-based oversampling tech-
niques against SMOTE-based oversampling techniques across every
single dataset on the four classifiers in terms of MCC, because MCC is
the most suitable performance measure in the presence of imbalanced
datasets. Tables 5, 6, 7, and 8 present the values and the variances
of MCC of each technique across every single dataset on each classi-
fier. W/D/L in these tables represents that each stable SMOTE-based
oversampling technique performs better than, the same as, or worse
than its corresponding technique in terms of the values and variances
of MCC. 𝑝-value indicates whether there exists a significant difference
between each stable SMOTE-based oversampling technique and its
corresponding SMOTE-based oversampling technique. The effect size
is also computed.

From these tables, we can observe that stable SMOTE-based over-
sampling techniques consistently obtain positive win-loss values in
8

terms of the variances as well as the values of MCC. Specifically,
the variances of stable SMOTE-based oversampling techniques on the
KNN, SVM, and DT classifiers are smaller than their corresponding
techniques across every single dataset. The statistical test also confirms
the superiority of stable SMOTE-based oversampling techniques. On
the KNN classifier, S-SMOTE, S-Borderline, and S-ADASYN significantly
outperform SMOTE, Borderline, and ADASYN in terms of both the vari-
ances and values of MCC. The effect sizes also achieve large. A similar
trend can also be observed on the SVM and DT classifiers. Because of
the randomness of the RF classifier, stable SMOTE-based oversampling
techniques fail to outperform their corresponding techniques across
every single dataset. However, they still obtain much smaller variances
on most datasets.

Based on the above experimental results, we can see that the perfor-
mance of SMOTE-based oversampling techniques is very unstable. The
difference between the best and worst performances of SMOTE-based
oversampling techniques can be as much as 23.3%, 32.6%, and 204.2%
in terms of AUC, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, and MCC. With such high variance, practition-
ers will have less confidence in the results produced by SMOTE-based
oversampling techniques. Moreover, as common baselines, the instabil-
ity of SMOTE-based oversampling techniques will make the conclusion
drawn from the comparison between SMOTE-based oversampling tech-
niques and the newly proposed techniques less convincing. Meanwhile,
the performances of stable SMOTE-based oversampling techniques are
better and much more stable than those of SMOTE-based oversampling
techniques, especially S-ADASYN, which generates fixed data for a
particular dataset. Therefore, we conclude that stable SMOTE-based
oversampling techniques are superior to SMOTE-based oversampling
techniques and should be considered as the effective alternatives for
SMOTE-based oversampling techniques.

Information and Software Technology 139 (2021) 106662S. Feng et al.
Fig. 4. The Scott–Knott ESD test ranking of the best, upper quartile, median, average, lower quartile, and worst performances of each oversampling technique in terms of 𝑏𝑎𝑙𝑎𝑛𝑐𝑒
across 26 datasets (purple>red>green>blue>yellow). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 5
The performance of SMOTE-based and stable SMOTE-based oversampling techniques on the KNN classifier in terms of MCC across 26 datasets.

SMOTE S-SMOTE Borderline S-Borderline ADASYN S-ADASYN

MCC var MCC var MCC var MCC var MCC var MCC var

ant-1.3 0.208 0.062 0.188 0.009 0.313 0.058 0.335 0.006 0.266 0.046 0.286 0.000
ant-1.4 0.145 0.067 0.143 0.026 0.097 0.063 0.121 0.011 0.087 0.066 0.116 0.000
ant-1.5 0.298 0.036 0.288 0.007 0.294 0.031 0.307 0.001 0.285 0.036 0.275 0.000
ant-1.6 0.415 0.035 0.438 0.012 0.416 0.028 0.445 0.006 0.403 0.030 0.426 0.000
ant-1.7 0.347 0.023 0.366 0.009 0.361 0.022 0.367 0.004 0.360 0.020 0.365 0.000
camel-1.0 0.058 0.041 0.083 0.000 0.046 0.011 0.036 0.000 0.111 0.029 0.109 0.000
camel-1.2 0.157 0.036 0.180 0.017 0.180 0.031 0.196 0.015 0.163 0.025 0.164 0.000
camel-1.4 0.148 0.026 0.178 0.007 0.150 0.025 0.150 0.005 0.140 0.019 0.155 0.000
camel-1.6 0.216 0.028 0.218 0.005 0.215 0.025 0.213 0.007 0.239 0.023 0.232 0.000
ivy-1.4 0.030 0.015 0.034 0.001 0.011 0.021 0.019 0.000 0.024 0.024 0.034 0.000
ivy-2.0 0.211 0.039 0.234 0.006 0.241 0.028 0.246 0.003 0.230 0.025 0.233 0.000
jedit-3.2 0.462 0.034 0.458 0.012 0.471 0.036 0.471 0.013 0.396 0.033 0.425 0.000
jedit-4.0 0.433 0.039 0.450 0.012 0.422 0.031 0.457 0.008 0.433 0.030 0.456 0.000
jedit-4.1 0.431 0.034 0.453 0.013 0.414 0.028 0.432 0.009 0.398 0.031 0.433 0.000
jedit-4.2 0.299 0.028 0.323 0.007 0.339 0.021 0.346 0.001 0.281 0.020 0.296 0.000
jedit-4.3 0.156 0.047 0.140 0.009 0.108 0.049 0.049 0.009 0.160 0.046 0.154 0.000
log4j-1.0 0.373 0.055 0.440 0.022 0.375 0.056 0.443 0.012 0.365 0.037 0.385 0.000
log4j-1.1 0.424 0.065 0.455 0.041 0.444 0.063 0.483 0.009 0.464 0.057 0.509 0.000
poi-2.0 0.167 0.034 0.173 0.004 0.250 0.030 0.283 0.003 0.175 0.041 0.192 0.000
synapse-1.0 0.248 0.034 0.271 0.002 0.286 0.036 0.296 0.000 0.278 0.032 0.317 0.000
synapse-1.1 0.309 0.048 0.321 0.017 0.354 0.039 0.345 0.009 0.335 0.046 0.331 0.000
synapse-1.2 0.374 0.041 0.365 0.018 0.350 0.037 0.371 0.004 0.408 0.043 0.385 0.000
velocity-1.6 0.328 0.048 0.342 0.022 0.353 0.049 0.364 0.017 0.313 0.045 0.339 0.000
xalan-2.4 0.290 0.021 0.303 0.006 0.284 0.020 0.276 0.003 0.249 0.020 0.267 0.000
xerces-1.2 0.213 0.032 0.207 0.006 0.239 0.034 0.233 0.006 0.227 0.031 0.215 0.000
xerces-1.3 0.393 0.029 0.405 0.004 0.401 0.023 0.401 0.006 0.402 0.023 0.413 0.000
average 0.274 0.038 0.287 0.011 0.285 0.034 0.294 0.006 0.277 0.034 0.289 0.000

W/D/L 7/0/19 0/0/26 19/0/7 26/0/0 6/3/17 0/0/26 17/3/6 26/0/0 7/0/19 0/0/26 19/0/7 26/0/0

𝑝-value < .05 < .05 < .05 < .05 < .05 < .05

Cliff’s 𝛿 0.062 0.917 0.056 0.988 0.059 1.000
9

Information and Software Technology 139 (2021) 106662S. Feng et al.
Fig. 5. The Scott–Knott ESD test ranking of the best, upper quartile, median, average, lower quartile, and worst performances of each oversampling technique in terms of MCC
across 26 datasets (purple>red>green>blue>yellow). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 6
The performance of SMOTE-based and stable SMOTE-based oversampling techniques on the SVM classifier in terms of MCC across 26 datasets.

SMOTE S-SMOTE Borderline S-Borderline ADASYN S-ADASYN

MCC var MCC var MCC var MCC var MCC var MCC var

ant-1.3 0.336 0.056 0.334 0.015 0.380 0.052 0.410 0.006 0.291 0.042 0.283 0.000
ant-1.4 0.244 0.060 0.280 0.023 0.087 0.077 0.128 0.015 0.140 0.043 0.117 0.000
ant-1.5 0.253 0.036 0.246 0.007 0.357 0.037 0.341 0.007 0.293 0.038 0.281 0.000
ant-1.6 0.479 0.026 0.496 0.013 0.423 0.031 0.423 0.012 0.437 0.017 0.437 0.000
ant-1.7 0.424 0.021 0.420 0.010 0.379 0.018 0.395 0.006 0.414 0.018 0.406 0.000
camel-1.0 0.039 0.012 0.042 0.000 0.152 0.042 0.127 0.000 0.060 0.012 0.064 0.000
camel-1.2 0.213 0.031 0.227 0.019 0.222 0.035 0.218 0.021 0.217 0.026 0.224 0.000
camel-1.4 0.225 0.024 0.226 0.008 0.260 0.021 0.249 0.010 0.249 0.022 0.248 0.000
camel-1.6 0.229 0.022 0.229 0.009 0.252 0.020 0.251 0.008 0.283 0.016 0.285 0.000
ivy-1.4 0.079 0.036 0.083 0.002 0.084 0.044 0.098 0.001 0.125 0.044 0.106 0.000
ivy-2.0 0.301 0.051 0.329 0.012 0.290 0.031 0.269 0.001 0.296 0.026 0.305 0.000
jedit-3.2 0.542 0.034 0.554 0.015 0.523 0.029 0.512 0.011 0.526 0.029 0.511 0.000
jedit-4.0 0.385 0.041 0.388 0.017 0.371 0.035 0.364 0.008 0.308 0.028 0.327 0.000
jedit-4.1 0.495 0.037 0.519 0.012 0.390 0.030 0.402 0.010 0.463 0.026 0.498 0.000
jedit-4.2 0.351 0.024 0.360 0.006 0.369 0.036 0.395 0.012 0.342 0.023 0.338 0.000
jedit-4.3 0.056 0.016 0.064 0.008 0.053 0.009 0.078 0.000 0.118 0.024 0.144 0.000
log4j-1.0 0.525 0.047 0.551 0.020 0.377 0.062 0.369 0.016 0.489 0.047 0.483 0.000
log4j-1.1 0.465 0.057 0.496 0.021 0.538 0.058 0.523 0.019 0.560 0.038 0.555 0.000
poi-2.0 0.206 0.041 0.214 0.012 0.249 0.028 0.254 0.003 0.167 0.009 0.178 0.000
synapse-1.0 0.373 0.036 0.372 0.006 0.435 0.031 0.425 0.000 0.328 0.025 0.325 0.000
synapse-1.1 0.356 0.047 0.357 0.022 0.342 0.046 0.341 0.018 0.363 0.033 0.358 0.000
synapse-1.2 0.451 0.035 0.434 0.020 0.390 0.043 0.366 0.017 0.409 0.034 0.392 0.000
velocity-1.6 0.303 0.046 0.316 0.018 0.414 0.036 0.401 0.024 0.387 0.043 0.404 0.000
xalan-2.4 0.268 0.023 0.273 0.009 0.280 0.021 0.291 0.010 0.253 0.024 0.240 0.000
xerces-1.2 0.023 0.039 0.039 0.014 0.073 0.041 0.073 0.014 0.059 0.026 0.060 0.000
xerces-1.3 0.314 0.029 0.302 0.010 0.356 0.026 0.356 0.004 0.321 0.019 0.322 0.000
average 0.305 0.036 0.314 0.013 0.309 0.036 0.310 0.010 0.304 0.028 0.304 0.000

W/D/L 6/1/19 0/0/26 19/1/6 26/0/0 14/3/9 0/0/26 9/3/14 26/0/0 14/1/11 0/0/26 11/1/14 26/0/0

𝑝-value < .05 < .05 > .05 < .05 > .05 < .05

Cliff’s 𝛿 0.056 0.917 0.003 0.932 0.012 1.000
10

Information and Software Technology 139 (2021) 106662S. Feng et al.
Table 7
The performance of SMOTE-based and stable SMOTE-based oversampling techniques on the RF classifier in terms of MCC across 26 datasets.

SMOTE S-SMOTE Borderline S-Borderline ADASYN S-ADASYN

MCC var MCC var MCC var MCC var MCC var MCC var

ant-1.3 0.278 0.138 0.286 0.125 0.330 0.118 0.348 0.112 0.209 0.131 0.218 0.125
ant-1.4 0.196 0.097 0.183 0.085 0.207 0.094 0.232 0.094 0.211 0.104 0.204 0.092
ant-1.5 0.284 0.089 0.287 0.097 0.301 0.081 0.313 0.080 0.316 0.063 0.301 0.062
ant-1.6 0.452 0.050 0.445 0.051 0.444 0.065 0.442 0.056 0.431 0.050 0.431 0.046
ant-1.7 0.428 0.039 0.432 0.037 0.408 0.043 0.405 0.037 0.403 0.037 0.406 0.044
camel-1.0 0.204 0.108 0.214 0.083 0.107 0.074 0.106 0.061 0.116 0.107 0.110 0.094
camel-1.2 0.220 0.052 0.219 0.048 0.195 0.052 0.187 0.052 0.213 0.053 0.214 0.051
camel-1.4 0.214 0.043 0.220 0.046 0.234 0.043 0.229 0.038 0.216 0.051 0.218 0.047
camel-1.6 0.205 0.043 0.219 0.035 0.210 0.041 0.214 0.034 0.216 0.043 0.228 0.041
ivy-1.4 0.085 0.085 0.101 0.075 0.049 0.104 0.033 0.084 0.033 0.073 0.043 0.068
ivy-2.0 0.249 0.078 0.254 0.085 0.241 0.063 0.256 0.075 0.287 0.078 0.288 0.064
jedit-3.2 0.472 0.057 0.488 0.053 0.504 0.049 0.506 0.046 0.458 0.056 0.478 0.052
jedit-4.0 0.379 0.050 0.346 0.049 0.382 0.071 0.363 0.063 0.400 0.051 0.381 0.053
jedit-4.1 0.445 0.051 0.455 0.055 0.461 0.052 0.471 0.047 0.479 0.057 0.476 0.052
jedit-4.2 0.359 0.071 0.380 0.061 0.379 0.050 0.386 0.055 0.339 0.063 0.352 0.056
jedit-4.3 0.260 0.028 0.252 0.025 0.170 0.024 0.137 0.034 0.169 0.030 0.168 0.025
log4j-1.0 0.411 0.085 0.428 0.084 0.374 0.087 0.398 0.069 0.378 0.091 0.408 0.076
log4j-1.1 0.463 0.086 0.474 0.075 0.468 0.083 0.481 0.083 0.452 0.082 0.451 0.079
poi-2.0 0.254 0.084 0.275 0.080 0.270 0.072 0.269 0.073 0.283 0.072 0.285 0.076
synapse-1.0 0.245 0.094 0.225 0.091 0.207 0.112 0.250 0.116 0.218 0.080 0.231 0.087
synapse-1.1 0.419 0.074 0.423 0.065 0.388 0.075 0.410 0.056 0.391 0.073 0.410 0.067
synapse-1.2 0.448 0.065 0.434 0.056 0.424 0.056 0.417 0.063 0.400 0.054 0.408 0.062
velocity-1.6 0.361 0.062 0.354 0.062 0.336 0.073 0.335 0.063 0.344 0.066 0.341 0.067
xalan-2.4 0.263 0.046 0.259 0.050 0.253 0.047 0.259 0.053 0.266 0.050 0.265 0.055
xerces-1.2 0.298 0.057 0.291 0.051 0.293 0.052 0.279 0.050 0.302 0.057 0.306 0.052
xerces-1.3 0.365 0.057 0.354 0.056 0.380 0.064 0.401 0.054 0.377 0.059 0.354 0.057
average 0.318 0.069 0.319 0.064 0.308 0.067 0.313 0.063 0.304 0.067 0.307 0.063

W/D/L 11/0/15 6/1/19 15/0/11 19/1/6 12/0/14 7/3/16 14/0/12 16/3/7 10/1/15 7/0/19 15/1/10 19/0/7

𝑝-value > .05 < .05 > .05 > .05 > .05 > .05

Cliff’s 𝛿 0.015 0.080 0.044 0.092 0.044 0.012
Table 8
The performance of SMOTE-based and stable SMOTE-based oversampling techniques on the DT classifier in terms of MCC across 26 datasets.

SMOTE S-SMOTE Borderline S-Borderline ADASYN S-ADASYN

MCC var MCC var MCC var MCC var MCC var MCC var

ant-1.3 0.172 0.132 0.149 0.087 0.173 0.117 0.123 0.078 0.204 0.135 0.230 0.087
ant-1.4 0.141 0.096 0.153 0.066 0.169 0.090 0.206 0.065 0.141 0.095 0.205 0.049
ant-1.5 0.224 0.097 0.216 0.055 0.189 0.084 0.183 0.044 0.190 0.089 0.214 0.039
ant-1.6 0.330 0.063 0.325 0.043 0.337 0.069 0.349 0.058 0.354 0.061 0.333 0.037
ant-1.7 0.296 0.048 0.302 0.040 0.296 0.051 0.288 0.040 0.297 0.062 0.291 0.024
camel-1.0 0.035 0.071 0.046 0.048 0.098 0.065 0.068 0.015 0.084 0.067 0.088 0.039
camel-1.2 0.178 0.054 0.188 0.048 0.171 0.052 0.180 0.047 0.158 0.054 0.174 0.025
camel-1.4 0.175 0.045 0.170 0.031 0.162 0.049 0.183 0.034 0.173 0.047 0.166 0.025
camel-1.6 0.182 0.043 0.183 0.030 0.176 0.044 0.198 0.031 0.156 0.044 0.147 0.020
ivy-1.4 0.026 0.090 0.046 0.063 0.040 0.089 0.052 0.069 0.007 0.077 0.010 0.049
ivy-2.0 0.208 0.090 0.207 0.065 0.216 0.087 0.197 0.059 0.217 0.082 0.184 0.047
jedit-3.2 0.361 0.069 0.364 0.052 0.346 0.078 0.344 0.046 0.354 0.076 0.367 0.036
jedit-4.0 0.335 0.067 0.326 0.049 0.317 0.062 0.307 0.053 0.307 0.077 0.325 0.039
jedit-4.1 0.328 0.063 0.320 0.056 0.358 0.068 0.365 0.054 0.332 0.068 0.308 0.041
jedit-4.2 0.280 0.067 0.288 0.046 0.289 0.075 0.299 0.045 0.243 0.067 0.215 0.040
jedit-4.3 0.120 0.041 0.129 0.033 0.133 0.062 0.150 0.046 0.153 0.052 0.150 0.040
log4j-1.0 0.317 0.101 0.309 0.059 0.283 0.108 0.268 0.076 0.306 0.108 0.322 0.063
log4j-1.1 0.453 0.098 0.433 0.073 0.447 0.097 0.467 0.089 0.330 0.098 0.351 0.061
poi-2.0 0.182 0.092 0.211 0.049 0.283 0.089 0.271 0.041 0.248 0.077 0.255 0.043
synapse-1.0 0.212 0.093 0.229 0.080 0.174 0.089 0.202 0.080 0.171 0.095 0.193 0.046
synapse-1.1 0.310 0.081 0.322 0.065 0.325 0.069 0.326 0.056 0.296 0.077 0.318 0.044
synapse-1.2 0.295 0.066 0.273 0.049 0.315 0.070 0.289 0.061 0.312 0.078 0.312 0.040
velocity-1.6 0.277 0.068 0.279 0.054 0.288 0.073 0.285 0.049 0.308 0.076 0.262 0.040
xalan-2.4 0.215 0.048 0.205 0.043 0.221 0.060 0.235 0.039 0.199 0.054 0.220 0.027
xerces-1.2 0.270 0.060 0.315 0.035 0.265 0.057 0.279 0.037 0.229 0.053 0.191 0.029
xerces-1.3 0.285 0.054 0.290 0.040 0.306 0.056 0.323 0.040 0.278 0.060 0.244 0.038
average 0.239 0.073 0.241 0.052 0.245 0.073 0.248 0.052 0.233 0.074 0.233 0.041

W/D/L 11/0/15 0/0/26 15/0/11 26/0/0 11/0/15 0/0/26 15/0/11 26/0/0 11/1/14 0/0/26 14/1/11 26/0/0

𝑝-value > .05 < .05 > .05 < .05 > .05 < .05

Cliff’s 𝛿 0.021 0.556 0.036 0.607 0.030 0.870
11

Information and Software Technology 139 (2021) 106662S. Feng et al.

S
𝐾
t
𝐾
c
c

𝑣

Table 9
The performance of SMOTE and stable SMOTE in terms of MCC across 26 datasets
under the balanced ratio of 0.4.

KNN SMOTE S-SMOTE 𝑝-value Cliff’s 𝛿
MCC 0.289 0.301 < .05 0.059
variance 0.043 0.018 < .05 0.840

SVM
MCC 0.306 0.312 < .05 0.041
variance 0.037 0.018 < .05 0.737

RF
MCC 0.306 0.311 > .05 0.024
variance 0.070 0.067 > .05 0.092

DT
MCC 0.231 0.239 > .05 0.041
variance 0.073 0.056 < .05 0.503

Bold indicates better values.

Table 10
The performance of SMOTE and stable SMOTE in terms of MCC across 26 datasets
under the balanced ratio of 0.6.

KNN SMOTE S-SMOTE 𝑝-value Cliff’s 𝛿
MCC 0.277 0.291 < .05 0.080
variance 0.034 0.008 < .05 0.976

SVM
MCC 0.281 0.285 > .05 0.030
variance 0.031 0.011 < .05 0.923

RF
MCC 0.307 0.312 < .05 0.036
variance 0.062 0.059 > .05 0.044

DT
MCC 0.236 0.241 > .05 0.033
variance 0.075 0.051 < .05 0.598

Bold indicates better values.

8. Discussion

In SMOTE-based oversampling techniques, the default balanced
ratio of the number of minority class instances to that of all instances
is set to 0.5. We adopt this default value in the above experiments.
To generalize our conclusion, we adopt different defect ratios to re-
conduct the experiments. If the experimental results are consistent with
the above experimental results, our conclusion would be more general.
In this section, we only present the values and the variances of MCC
for SMOTE and S-SMOTE on the selected four classifiers under the
balanced ratio of 0.4 and 0.6, respectively. From Tables 9 and 10, it
can be seen that the performance of stable SMOTE consistently outper-
forms that of SMOTE in terms of MCC under different balanced ratios.
Moreover, the variance of stable SMOTE is significantly smaller than
that of SMOTE with practical effect sizes in terms of MCC. Therefore,
our conclusion is consistent under different balanced ratios.

Besides, the default 𝐾 value is 5 for SMOTE-based oversampling
techniques. This value is adopted in the above experiments. Agrawal
et al. [39] have argued that different 𝐾 values affect the performance of
MOTE-based oversampling techniques. Therefore, we explore different

values to consolidate our conclusion. Specifically, we investigate
he performance of SMOTE and stable SMOTE under the setting of

equaling 3 and 7. From Tables 11 and 12, we observe that our
onclusion that stable SMOTE performs more stable than SMOTE is
onsistent under different 𝐾 values.

Furthermore, we obtain

𝑎𝑟(𝑆𝑖) =
2𝑣𝑎𝑟(𝑋𝑖)

3
−

𝑣𝑎𝑟(𝑋𝑖)
3(𝑟 + 1)

< 𝑣𝑎𝑟(𝑆𝑆𝑀𝑂𝑇𝐸
𝑖), (20)

in Section 5. It is clear that with the increase of 𝑟, the variance of
SMOTE becomes closer to that of stable SMOTE, but the variance
of SMOTE cannot become smaller than that of stable SMOTE. Our
work is based on Blagus’s and Elreedy’s work. They all assume that
the generated instances follow the uniform distribution. There are
12
Table 11
The performance of SMOTE and stable SMOTE in terms of MCC across 26 datasets
under the setting of 𝐾 equaling 3.

KNN SMOTE S-SMOTE 𝑝-value Cliff’s 𝛿
MCC 0.273 0.287 < .05 0.074
variance 0.036 0.011 < .05 0.891

SVM
MCC 0.268 0.268 > .05 0.021
variance 0.031 0.010 < .05 0.805

RF
MCC 0.315 0.317 > .05 0.012
variance 0.068 0.066 > .05 0.041

DT
MCC 0.237 0.235 > .05 0.021
variance 0.072 0.052 < .05 0.633

Bold indicates better values.

Table 12
The performance of SMOTE and stable SMOTE in terms of MCC across 26 datasets
under the setting of 𝐾 equaling 7.

KNN SMOTE S-SMOTE 𝑝-value Cliff’s 𝛿
MCC 0.284 0.296 < .05 0.041
variance 0.037 0.010 < .05 0.997

SVM
MCC 0.267 0.268 > .05 0.009
variance 0.029 0.011 < .05 0.757

RF
MCC 0.315 0.315 > .05 0.006
variance 0.067 0.061 < .05 0.175

DT
MCC 0.238 0.239 > .05 0.047
variance 0.073 0.050 < .05 0.598

Bold indicates better values.

some extremes that may generate synthetic instances with smaller
variances than stable SMOTE. For example, if the synthetic instances
are generated around the same point between minority class instances,
the variance of the generated instances will be smaller than that of
the instances generated by stable SMOTE. However, the probability
of this case happening is extremely low, which is confirmed by our
experiments. Besides, if the synthetic instances are generated around
the same point, they will be too similar and lack diversity, which
will lead to the overgeneralization of prediction models. In fact, the
way that stable SMOTE generates synthetic instances is to improve the
stability of SMOTE-based oversampling technique while remaining the
diversity of the generated synthetic instances.

9. Threats to validity

In this section, we discuss the threats to the external, internal, and
construct validity of our study.

9.1. External validity

External validity is the ability that could generate results outside the
specifications of the current study [40]. To ensure the external study,
we select 26 widely adopted datasets from the PROMISE repository.
A large number of studies were conducted on these datasets, and all
these datasets performed well. Besides, the defect metrics considered
in this study may be a threat to our study. We only adopt the static
code metrics. Thus, we cannot claim that we could generalize our
conclusion to other types of metrics. However, the static code metrics
were also widely adopted in many previous studies. Besides, the static
code metrics are easy to collect and can be easily leveraged to replicate
our work. For the choice of the classifiers, we only adopt the KNN, SVM,
RF, and DT classifiers in this study. These four classifiers are common
choices to build the prediction models in SDP, and their performances
are satisfactory. However, there are many other available techniques,
and we plan to investigate more prediction models in the future.

Information and Software Technology 139 (2021) 106662S. Feng et al.
9.2. Internal validity

Internal validity is determined by how well a study can rule out
alternative explanations for its findings. In this study, we select three
commonly-used SMOTE-based oversampling techniques (i.e., SMOTE,
Borderline-SMOTE, and ADASYN). These oversampling techniques are
commonly used as the baseline techniques in many studies. However,
there are some other SMOTE-based oversampling techniques, such as
Safe-level-SMOTE [41] and AHC [42]. We intend to investigate more
SMOTE-based oversampling techniques in the future study.

9.3. Construct validity

Construct validity is the degree to which a test measures what it
claims, or purports, to be measuring. In this study, three common
performance measures (i.e., AUC, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, and MCC) are adopted to
measure the performances of different oversampling techniques. These
three performance measures are adopted widely in many previous
studies to measure overall performance. Nonetheless, many other per-
formance measures such as F-measure or G-measure are also worth
investigating. We plan to explore more performance measures in our
future work.

10. Conclusion and future work

SMOTE-based oversampling techniques are widely adopted in the
area of SDP to alleviate the class imbalance problem. When SMOTE-
based oversampling techniques are employed, randomness is intro-
duced. However, as common baseline oversampling techniques, if the
performance of SMOTE-based oversampling techniques is unstable,
the conclusion drawn by comparing the performance of SMOTE-based
oversampling techniques with that of newly proposed techniques is
suspicious and less convincing.

In this study, we empirically investigate the performance of SMOTE-
based oversampling techniques. We find that the performance of
SMOTE-based oversampling techniques is highly unstable, and their
instability negatively impacts the performance of prediction models
in terms of AUC, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, and MCC on the KNN, SVM, RF, and DT
classifiers. To improve the stability of SMOTE-based oversampling tech-
niques, we propose a series of stable SMOTE-based oversampling tech-
niques. We mathematically and empirically validate that our proposed
techniques produce more stable and better results than SMOTE-based
oversampling techniques. Therefore, we recommend stable SMOTE-
based oversampling techniques to be adopted as an effective alternative
for SMOTE-based oversampling techniques.

In our future work, we plan to adopt more software datasets with
different types of metrics, more classifiers, and more performance mea-
sures to generalize our conclusion. In addition, we also intend to apply
stable SMOTE-based oversampling techniques to more SMOTE-based
oversampling techniques such as AHC or Safe-level-SMOTE to inves-
tigate whether the performance of stable SMOTE-based oversampling
techniques could still be stable and could also produce comparable or
even better results. Moreover, a detailed investigation on which factor
is the most influential to the instability of SMOTE-based oversampling
techniques will be carried.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
13
Acknowledgments

This work is supported in part by the General Research Fund of
the Research Grants Council of Hong Kong (No. 11208017) and the
research funds of City University of Hong Kong (No. 7005028 and
7005217), and the Research Support Fund by Intel (No. 9220097), and
funding supports from other industry partners (No. 9678149, 9440227,
9229029, 9440180, and 9220103).

References

[1] X. Chen, Y. Mu, K. Liu, Z. Cui, C. Ni, Revisiting heterogeneous defect prediction
methods: How far are we?, Inf. Softw. Technol. 130 (2021) 106441.

[2] W. Li, W. Zhang, X. Jia, Z. Huang, Effort-aware semi-supervised just-in-time
defect prediction, Inf. Softw. Technol. 126 (2020) 106364.

[3] A. Rahman, L. Williams, Source code properties of defective infrastructure as
code scripts, Inf. Softw. Technol. 112 (2019) 148–163.

[4] N. Li, M. Shepperd, Y. Guo, A systematic review of unsupervised learning
techniques for software defect prediction, Inf. Softw. Technol. 122 (2020)
106287.

[5] X. Chen, D. Zhang, Y. Zhao, Z. Cui, C. Ni, Software defect number prediction:
Unsupervised vs supervised methods, Inf. Softw. Technol. 106 (2019) 161–181.

[6] F. Provost, Machine learning from imbalanced data sets 101, in: Proceedings of
the AAAI’2000 Workshop on Imbalanced Data Sets, Vol. 68, AAAI Press, 2000,
pp. 1–3.

[7] C. Pak, T.T. Wang, X.H. Su, An empirical study on software defect prediction
using over-sampling by SMOTE, Int. J. Softw. Eng. Knowl. Eng. 28 (06) (2018)
811–830.

[8] N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, SMOTE: synthetic
minority over-sampling technique, J. Artificial Intelligence Res. 16 (2002)
321–357.

[9] H. He, Y. Bai, E.A. Garcia, S. Li, ADASYN: Adaptive synthetic sampling approach
for imbalanced learning, in: 2008 IEEE International Joint Conference on Neural
Networks (IEEE World Congress on Computational Intelligence), IEEE, 2008, pp.
1322–1328.

[10] H. Han, W.Y. Wang, B.H. Mao, Borderline-SMOTE: A new over-sampling method
in imbalanced data sets learning, in: International Conference on Intelligent
Computing, Springer, 2005, pp. 878–887.

[11] K.E. Bennin, J. Keung, P. Phannachitta, A. Monden, S. Mensah, Mahakil: Diversity
based oversampling approach to alleviate the class imbalance issue in software
defect prediction, IEEE Trans. Softw. Eng. 44 (6) (2017) 534–550.

[12] S. Feng, J. Keung, X. Yu, Y. Xiao, K.E. Bennin, M.A. Kabir, M. Zhang,
COSTE: Complexity-based oversampling technique to alleviate the class imbal-
ance problem in software defect prediction, Inf. Softw. Technol. 129 (2021)
106432.

[13] G.Y. Wong, F.H. Leung, S.H. Ling, A novel evolutionary preprocessing method
based on over-sampling and under-sampling for imbalanced datasets, in: Iecon
2013-39th Annual Conference of the Ieee Industrial Electronics Society, IEEE,
2013, pp. 2354–2359.

[14] K.E. Bennin, J. Keung, A. Monden, P. Phannachitta, S. Mensah, The significant
effects of data sampling approaches on software defect prioritization and clas-
sification, in: 2017 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, ESEM, IEEE, 2017, pp. 364–373.

[15] G. Boetticher, The PROMISE repository of empirical software engineering data,
2007, http://promisedata.org/repository.

[16] F. Zhang, A.E. Hassan, S. McIntosh, Y. Zou, The use of summation to aggregate
software metrics hinders the performance of defect prediction models, IEEE
Trans. Softw. Eng. 43 (5) (2016) 476–491.

[17] T. Zhou, X. Sun, X. Xia, B. Li, X. Chen, Improving defect prediction with deep
forest, Inf. Softw. Technol. 114 (2019) 204–216.

[18] S. Wang, T. Liu, J. Nam, L. Tan, Deep semantic feature learning for software
defect prediction, IEEE Trans. Softw. Eng. (2018).

[19] Ö.F. Arar, K. Ayan, A feature dependent Naive Bayes approach and its application
to the software defect prediction problem, Appl. Soft Comput. 59 (2017)
197–209.

[20] M. Ochodek, M. Staron, W. Meding, Simsax: A measure of project similarity
based on symbolic approximation method and software defect inflow, Inf. Softw.
Technol. 115 (2019) 131–147.

[21] C. Liu, D. Yang, X. Xia, M. Yan, X. Zhang, A two-phase transfer learning model
for cross-project defect prediction, Inf. Softw. Technol. 107 (2019) 125–136.

[22] C. Ni, W.S. Liu, X. Chen, Q. Gu, D.X. Chen, Q.G. Huang, A cluster based feature
selection method for cross-project software defect prediction, J. Comput. Sci.
Tech. 32 (6) (2017) 1090–1107.

[23] Q. Yu, S.j. Jiang, R.c. Wang, H.y. Wang, A feature selection approach based on
a similarity measure for software defect prediction, Front. Inf. Technol. Electron.
Eng. 18 (11) (2017) 1744–1753.

[24] Z. Xu, J. Liu, X. Luo, Z. Yang, Y. Zhang, P. Yuan, Y. Tang, T. Zhang, Software
defect prediction based on kernel PCA and weighted extreme learning machine,
Inf. Softw. Technol. 106 (2019) 182–200.

http://refhub.elsevier.com/S0950-5849(21)00125-7/sb1
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb1
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb1
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb2
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb2
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb2
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb3
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb3
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb3
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb4
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb4
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb4
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb4
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb4
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb5
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb5
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb5
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb6
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb6
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb6
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb6
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb6
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb7
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb7
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb7
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb7
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb7
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb8
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb8
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb8
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb8
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb8
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb9
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb9
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb9
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb9
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb9
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb9
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb9
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb10
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb10
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb10
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb10
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb10
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb11
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb11
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb11
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb11
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb11
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb12
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb12
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb12
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb12
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb12
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb12
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb12
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb13
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb13
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb13
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb13
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb13
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb13
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb13
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb14
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb14
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb14
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb14
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb14
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb14
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb14
http://promisedata.org/repository
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb16
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb16
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb16
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb16
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb16
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb17
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb17
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb17
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb18
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb18
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb18
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb19
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb19
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb19
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb19
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb19
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb20
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb20
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb20
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb20
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb20
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb21
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb21
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb21
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb22
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb22
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb22
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb22
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb22
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb23
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb23
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb23
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb23
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb23
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb24
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb24
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb24
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb24
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb24

Information and Software Technology 139 (2021) 106662S. Feng et al.
[25] T. Shippey, D. Bowes, T. Hall, Automatically identifying code features for
software defect prediction: Using ast n-grams, Inf. Softw. Technol. 106 (2019)
142–160.

[26] L. Gong, S. Jiang, L. Bo, L. Jiang, J. Qian, A novel class-imbalance learning
approach for both within-project and cross-project defect prediction, IEEE Trans.
Reliab. 69 (1) (2020) 40–54.

[27] P.R. Bal, S. Kumar, WR–ELM: Weighted regularization extreme learning machine
for imbalance learning in software fault prediction, IEEE Trans. Reliab. 69 (4)
(2020) 1355–1375.

[28] X. Yu, J. Liu, J.W. Keung, Q. Li, K.E. Bennin, Z. Xu, J. Wang, X. Cui, Improving
ranking-oriented defect prediction using a cost-sensitive ranking SVM, IEEE
Trans. Reliab. 69 (1) (2020) 139–153.

[29] S.H. Khan, M. Hayat, M. Bennamoun, F.A. Sohel, R. Togneri, Cost-sensitive
learning of deep feature representations from imbalanced data, IEEE Trans.
Neural Netw. Learn. Syst. 29 (8) (2017) 3573–3587.

[30] L. Zhang, D. Zhang, Evolutionary cost-sensitive extreme learning machine, IEEE
Trans. Neural Netw. Learn. Syst. 28 (12) (2016) 3045–3060.

[31] W. Feng, W. Huang, J. Ren, Class imbalance ensemble learning based on the
margin theory, Appl. Sci. 8 (5) (2018) 815.

[32] R. Blagus, L. Lusa, SMOTE for high-dimensional class-imbalanced data, BMC
Bioinformatics 14 (2013) 106, http://dx.doi.org/10.1186/1471-2105-14-106.

[33] D. Elreedy, A. Atiya, A comprehensive analysis of synthetic minority oversam-
pling technique (SMOTE) for handling class imbalance, Inform. Sci. 505 (2019)
http://dx.doi.org/10.1016/j.ins.2019.07.070.

[34] K.E. Bennin, J.W. Keung, A. Monden, On the relative value of data resampling
approaches for software defect prediction, Empir. Softw. Eng. 24 (2) (2019)
602–636.
14
[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikit-learn: Machine
learning in python, J. Mach. Learn. Res. 12 (2011) 2825–2830.

[36] Q. Song, Y. Guo, M. Shepperd, A comprehensive investigation of the role of
imbalanced learning for software defect prediction, IEEE Trans. Softw. Eng. 45
(12) (2018) 1253–1269.

[37] C. Tantithamthavorn, S. McIntosh, A.E. Hassan, K. Matsumoto, An empirical
comparison of model validation techniques for defect prediction models, IEEE
Trans. Softw. Eng. 43 (1) (2016) 1–18.

[38] A.A. Shanab, T.M. Khoshgoftaar, R. Wald, A. Napolitano, Impact of noise and
data sampling on stability of feature ranking techniques for biological datasets,
in: 2012 IEEE 13th International Conference on Information Reuse Integration,
IRI, 2012, pp. 415–422, http://dx.doi.org/10.1109/IRI.2012.6303039.

[39] A. Agrawal, T. Menzies, Is ‘‘better data’’ better than ‘‘better data miners’’?, in:
2018 IEEE/ACM 40th International Conference on Software Engineering, ICSE,
IEEE, 2018, pp. 1050–1061.

[40] J. Keung, E. Kocaguneli, T. Menzies, Finding conclusion stability for selecting
the best effort predictor in software effort estimation, Autom. Softw. Eng. 20 (4)
(2013) 543–567.

[41] C. Bunkhumpornpat, K. Sinapiromsaran, C. Lursinsap, Safe-level-smote: Safe-
level-synthetic minority over-sampling technique for handling the class imbal-
anced problem, in: Pacific-Asia Conference on Knowledge Discovery and Data
Mining, Springer, 2009, pp. 475–482.

[42] G. Cohen, M. Hilario, H. Sax, S. Hugonnet, A. Geissbuhler, Learning from
imbalanced data in surveillance of nosocomial infection, Artif. Intell. Med. 37
(1) (2006) 7–18.

http://refhub.elsevier.com/S0950-5849(21)00125-7/sb25
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb25
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb25
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb25
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb25
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb26
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb26
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb26
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb26
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb26
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb27
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb27
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb27
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb27
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb27
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb28
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb28
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb28
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb28
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb28
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb29
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb29
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb29
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb29
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb29
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb30
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb30
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb30
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb31
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb31
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb31
http://dx.doi.org/10.1186/1471-2105-14-106
http://dx.doi.org/10.1016/j.ins.2019.07.070
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb34
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb34
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb34
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb34
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb34
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb35
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb35
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb35
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb35
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb35
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb36
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb36
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb36
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb36
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb36
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb37
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb37
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb37
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb37
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb37
http://dx.doi.org/10.1109/IRI.2012.6303039
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb39
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb39
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb39
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb39
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb39
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb40
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb40
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb40
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb40
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb40
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb41
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb41
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb41
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb41
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb41
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb41
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb41
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb42
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb42
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb42
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb42
http://refhub.elsevier.com/S0950-5849(21)00125-7/sb42

	Investigation on the stability of SMOTE-based oversampling techniques in software defect prediction
	Introduction
	Related work and background
	Methodology
	Time complexity of stable SMOTE
	Theoretical analysis of stable SMOTE
	Experimental settings
	Implementation setting
	Datasets
	Classifiers
	Evaluation measures for imbalanced datasets
	Statistical test
	Experimental procedure

	Experimental results and analysis
	The overall performance
	The best, upper quartile, median, lower quartile, worst, and average performances
	The variance

	Discussion
	Threats to validity
	External validity
	Internal validity
	Construct validity

	Conclusion and future work
	Declaration of competing interest
	Acknowledgments
	References

