
Information and Software Technology 159 (2023) 107221

A
0

A
H
a

b

c

d

A

K
B
S
V
V
I

1

i
h
o
t
b
w
o
b
I

t
g
i
a
l

s

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

survey on smart contract vulnerabilities: Data sources, detection and repair
anting Chu a, Pengcheng Zhang a, Hai Dong b, Yan Xiao c, Shunhui Ji a, Wenrui Li d,∗

Hohai University, 8 Focheng West Rd, Nanjing, China
School of Computing Technologies, RMIT University, Melbourne, Australia
School of Computing, NUS University, Singapore
Nanjing XiaoZhuang University, Nanjing, China

R T I C L E I N F O

eywords:
lockchains
mart contracts
ulnerability detection
ulnerability repair

nformation security

A B S T R A C T

Smart contracts contain many built-in security features, such as non-immutability once being deployed and
non-involvement of third parties for contract execution. These features reduce security risks and enhance users’
trust towards smart contracts. However, smart contract security issues still persist, resulting in huge financial
losses. Contract publishers cannot fully cover contract vulnerabilities through contract version updating.
These security issues affect further development of blockchain technologies. So far, there are many related
studies focusing on smart contract security issues and tend to discuss from a particular perspective (e.g.,
development cycle, vulnerability attack methods, security detection tools, etc.). However, smart contract
security is a complicated issue that needs to be explored from a multi-dimensional perspective. In this paper, we
explore smart contract security from the perspectives of vulnerability data sources, vulnerability detection, and
vulnerability defense. We first analyze the existing security issues and challenges of smart contracts, investigate
the existing vulnerability classification frameworks and common security vulnerabilities, followed by reviewing
the existing contract vulnerability injection, detection, and repair methods. We then analyze the performance
of existing security methods. Next, we summarize the current status of smart contract security-related research.
Finally, we summarize the state of the art and future trends of smart contract security-related research. This
paper aims to provide systematic knowledge and references to this research field.
. Introduction

Blockchain is a distributed ledger that enables trusted value transfer
n an environment of mutual distrust, which is a milestone in the
istory of human credit evolution [1]. Bitcoin, the hottest application
f blockchain, can be operated by a limited number of scripts for
ransactions. With the emergence of Ethereum smart contracts, the
lockchain technology has entered the era of programmable finance,
here people can complete more customized transactions with the aid
f smart contracts [2]. The concept of smart contracts was introduced
y Szabo [3], which is a digital contract that can be executed over the
nternet and designed to replace traditional paper-based contracts.

At present, the implementation of smart contracts relies heavily on
he decentralized Ethernet virtual machines and the programming lan-
uage represented by Solidity [4]. A blockchain system can be divided
nto a data layer, a network layer, a consensus layer, an incentive layer,
contract layer, and an application layer [5]. Compared with the other

ayers, the security threat of the contract layer has a closer relationship

∗ Corresponding author.
E-mail addresses: htchu@hhu.edu.cn (H. Chu), pchzhang@hhu.edu.cn (P. Zhang), hai.dong@rmit.edu.au (H. Dong), dcsxan@nus.edu.sg (Y. Xiao),

hunhuiji@hhu.edu.cn (S. Ji), wenrui_li@163.com (W. Li).
1 ETH DApp attacks. https://hacked.slowmist.io/?c=ETH.

with the mechanism of the blockchain the ensuing path explosion and
symbolic path constraint insolvability problem [6]. This paper mainly
focuses on the following security issues of the contract layer. First of
all, a miner node can be selected to create a block without the need to
verify if the node is located in a trusted execution environment. If the
miner node is malicious, it can manipulate the block transaction order
and cause security problems [7]. Secondly, smart contracts often need
to call each other to achieve more complex functionality. However,
calling an untrusted external contract may raise risks and errors. This
can lead to potential security threats to the local contract if malicious
code exists in the external contract [8]. Furthermore, since smart
contracts on the blockchain can be written and published by any user
with diverse programming abilities and development tools, there is no
guarantee that a smart contract will be deployed on the chain without
security vulnerabilities or flaws [9]. Finally, smart contracts also have
some special mechanisms that traditional codes do not have, such as
the gas mechanism of Ethereum smart contracts. These will lead to
certain security risks specific to smart contracts on the blockchain. Due
vailable online 6 April 2023
950-5849/© 2023 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.infsof.2023.107221
eceived 22 December 2022; Received in revised form 15 February 2023; Accepted
 31 March 2023

https://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:htchu@hhu.edu.cn
mailto:pchzhang@hhu.edu.cn
mailto:hai.dong@rmit.edu.au
mailto:dcsxan@nus.edu.sg
mailto:shunhuiji@hhu.edu.cn
mailto:wenrui_li@163.com
https://hacked.slowmist.io/?c=ETH
https://doi.org/10.1016/j.infsof.2023.107221
https://doi.org/10.1016/j.infsof.2023.107221
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2023.107221&domain=pdf

Information and Software Technology 159 (2023) 107221H. Chu et al.

t
c
c
t
i
v
n
b
o
T
o
a
l
a
m

Table 1
Smart contract security incidents.

Serial number Time of attack Target of attack Amount of damage

1 2016-06-17 The DAO 60,000,000 USD
2 2017-07-29 Parity 30,000,000 USD
3 2018-04-22 BeautyChain 1,000,000,000 USD
4 2018-04-22 SmartMesh 140,000,000 USD
5 2020-02-15 bZxa 350,000 USD
6 2020-02-18 bZxa 645,000 USD
7 2020-04-19 Lendf.Me 24,696,616 USD
8 2020-06-18 Bancor 135,229 USD
9 2020-07-01 VETH 900,000 USD
10 2020-08-04 Opyn 371,260 USDC
11 2020-08-13 YAM 750,000 USD
12 2020-12-28 Cover Protocol 3,000,000 USD
13 2021-03-09 DODO 500,000 USD
14 2021-05-05 Value DeFia 5,817,780 USD
15 2021-05-07 Value DeFia 10,000,000 USD
16 2021-06-24 SharedStake 500,000 USD
17 2021-07-11 Umbrella Network 3,000,000 UMB + 300,000 DVG
18 2021-07-13 DeFiPie 124,999 BUSD
19 2021-07-16 THORChaina 7,600,000 USD
20 2021-07-23 THORChaina 8,000,000 USD
21 2021-08-11 Punk Protocol 3,950,000 USD
22 2021-08-29 xToken 4,500,000 USD
23 2021-09-04 DAO Maker 4,000,000 USD
24 2021-09-15 Nowswap 1,000,000 USD
25 2021-10-14 Compound 68,800,000 USD
26 2021-11-27 dYdX 211,000 USD
27 2021-11-28 Visor Finance 975,720 USD
28 2021-12-11 Gelato Network 744,000 USD
29 2021-12-30 SashimiSwap 200,000 USD
30 2022-03-20 Umbrella Network 700,000 USD
31 2022-03-20 Li.finance 600,000 USD
32 2022-03-27 Revest Finance 120,000 USD
33 2022-03-30 BasketDAOOrg 1,200,000 USD
34 2022-04-30 Fei Protocol 80,340,000 USD

aAn event with the same name but listed twice means that the event caused multiple attacks.
o the strong correlation of smart contracts with the access of financial
urrency, many attackers have been exploiting vulnerabilities of smart
ontracts for profits. In order to ensure data consistency and transaction
raceability, smart contracts cannot be modified after deployment. Even
f vulnerabilities are detected, they cannot be fixed via patching or
ersion upgrading other than self-destruction due to the tamper-evident
ature. In this regard, malicious attacks on smart contracts cannot
e simply prevented. The most famous incident ‘‘The DAO’’ caused
ver $60 million financial losses due to a re-entry vulnerability [10].
his incident directly led to the subsequent Ethereum hard fork, an
peration that conflicts with the ‘‘decentralized’’ nature of blockchains
nd caused huge controversy within the community. The financial
osses caused by blockchain security incidents have been increasing
nnually since 2016, especially from 2020 onwards. We collected the
ajor smart contract attacks since 2016, as shown in Table 1.1

These smart contract attacks seriously threaten the development of
this technology. The characteristics of smart contracts make it impossi-
ble for developers to maintain the existing vulnerability contracts. With
the increasing attention on the security of smart contracts, the amount
of related scientific studies is rising.

We systematically survey the papers focusing on smart contract
security, vulnerability collection, vulnerability detection, vulnerability
repair, and security protection published from 2015–2022. According
to our survey, 49 papers that are believed to represent the state of the
art in this field are selected and investigated. This paper concentrates
on the overall perspectives of smart contract security, aiming to identify
shortcomings in existing research and provide insights for solutions and
future research directions.

Contributions. The main contributions of this paper are:

1. Comprehensive analysis of smart contract security issues and
challenges. The security problems and challenges faced by ex-
isting smart contracts are comprehensively analyzed.
2

2. Systematic review of the existing smart contract security de-
tection and defense methods. In terms of the existing security
challenges of smart contracts, we analyze the existing vulner-
ability detection tools, performance evaluation methods, and
vulnerability repair methods. The security assurance methods of
smart contracts are summarized from the perspectives of vulner-
ability data sources, vulnerability detection, and vulnerability
repair.

3. Elaboration on shortcomings of existing research and future
research directions. The strengths and weaknesses of existing
smart contract security methods are analyzed for various secu-
rity challenges. In particular, we extensively examine available
evaluation datasets, existing vulnerability repair methods and ar-
tificial intelligence-based vulnerability detection methods. Next,
future research directions are indicated for addressing those
weaknesses.

The rest of the paper is organized as follows: Section 2 provides
an introduction to the relevant review work. Section 3 provides an
overview of the background knowledge. Section 4 analyzes and eval-
uates the literature retrieved for this paper. Section 5 discusses the
research questions based on the findings. Section 6 summarizes the
existing research gaps and discusses future research directions. Finally,
Section 7 concludes the entire paper.

2. Related work

In recent years, many survey papers focusing on various aspects of
smart contract security have been published. Kushwaha et al. [11] dis-
cuss Ethereum smart contract security vulnerabilities, detection tools,
and vulnerability attacks and prevention mechanisms. This study does
not consider the impact of deep learning-based detection methods on
smart contract security. Harz et al. [12] investigate the verification

Information and Software Technology 159 (2023) 107221H. Chu et al.
tools and methods for the mainstream programming languages and
distributed ledgers for smart contracts. However, they do not discuss
smart contract vulnerabilities. Sayeed et al. [13] survey contract vul-
nerabilities and detection tools but do not consider how to prevent
contract vulnerabilities. Wang et al. [14] summarize the research re-
sults on smart contract security published from 2015–2019, mainly
focusing on how contracts can be maliciously exploited and attacked.
Nevertheless, they not consider the perspective of contract risk defense.
Huang et al. [15] conducted a literature review on smart contract
security from the software lifecycle perspective. Surucu et al. [16]
analyze the drawbacks of existing vulnerability detection efforts and
discuss the possibility of applying machine learning to smart contract
vulnerability detection. Still, this study does not analyze smart contract
vulnerabilities and defense mechanisms. Perez et al. [17] explore the
security and privacy issues of applying smart contracts to crowdsourced
systems and the existing solutions to address the identified security
and privacy issues. Atzei et al. [6] analyze existing smart contract
vulnerabilities and categorize smart contract vulnerabilities into three
perspectives: programming language, virtual machine, and blockchain.

The above studies mainly focus on vulnerability detection tools. It is
well known that vulnerability datasets are a decisive factor in the per-
formance assessment of the tools. The existing survey papers, however,
have not acknowledged and investigated the impact of vulnerability
datasets. Besides, most of the reviews do not fully cover existing vulner-
ability defense and repair solutions, which are critical mechanisms for
smart contract security protection apart from vulnerability detection.
In order to fill the above gaps in the field of smart contract security
literature surveys, we conduct a new survey from the perspectives of
vulnerability data sources, vulnerability detection, and vulnerability
defense.

3. Background

3.1. Smart contracts

The concept of smart contract predates blockchain as a way to
automate the construction of contractual protocols, dating back as far
as 1995 when Nick Szabo published [3]. The definition refers to a
promise defined in digital form that the participants can execute on
a smart contract [18]. Similar to traditional software, smart contract
technologies has a life cycle, containing five phases: design, develop-
ment, deployment, invocation, and destruction. Since smart contracts
cannot be changed once they are deployed, they do not require a
maintenance phase in the traditional sense [7]. Compared with tra-
ditional contracts, smart contracts mainly address how to ensure the
validity of the contract. While the validity of a traditional contract
needs to be guaranteed by an institution such as a court of law, a smart
contract codes the execution procedure. Once the conditions are met
after deployment, the coded procedure can be executed automatically
and cannot be interfered with by humans. The main scope of its appli-
cation includes privacy, security, and decentralized functions, such as
decentralized financial lending and decentralized crowdfunding [19].

3.2. Ethereum

Ethereum is an open-source public blockchain platform, which sup-
ports a variety of high-level programming languages, by which de-
velopers can develop any decentralized applications (DApps) [20] on
Ethereum. Ethereum can perfectly integrate blockchain and smart con-
tracts. Ethereum not only inherits the characteristics of data disclosure,
non-tamperability and decentralization of blockchains but also is Tur-
ing complete [21] compared to blockchains. Smart contract code is
compiled into machine code that can be executed on Ethereum through
the Ethereum virtual machine (EVM), which enables it to run on
Ethereum. The EVM is an entirely isolated sandbox environment, so
smart contracts have only very limited access to each other [22].
3

Since the information in the blockchain is open and transparent, while
the information of each node is synchronized. Once a smart contract
is successfully deployed, each node can execute the smart contract,
and everyone can publish the smart contract on Ethereum. In order
to prevent attackers from releasing malicious contracts, each oper-
ation performed by smart contracts on Ethereum will generate gas
consumption.

Since smart contracts usually involve money transactions, it is cru-
cial to secure them effectively as they can cause huge losses if they have
security problems and are exploited by attackers.

3.3. Smart contract security

Smart contract development is still at the early stage of develop-
ment. Smart contracts are usually written by developers and deployed
on Ether. Their life cycle is similar to that of software programs, so
there will inevitably be some security problems [9]. Smart contracts
cannot be changed once they are deployed. Even if security problems
are found, they cannot be maintained by patching or version updating
like traditional software. In other words, adding a self-destruct function
not only increases the risk of contract attacks but also does not recover
the economic loss already caused. A comprehensive audit of smart
contract security is the most effective way to eliminate the security
risks of smart contracts. However, no security audit can guarantee that
a smart contract is 100% problem-free. Therefore, the repair work after
the discovery of security problems is equally important.

4. Overview methodology

The Systematic Literature Review (SLR) method provides an in-
depth and broad overview of a particular area by searching and eval-
uating the existing literature [23]. In this paper, SLR is selected as the
research method, given that the goal of this paper is to investigate and
analyze the current state of art in smart contract security and provide
directions for future research. We follow the SLR guidelines to conduct
the literature analysis.

4.1. Research questions

The research questions need to indicate the goal of the review
article. Smart contract security is a multi-dimensional issue that should
be explored from a holistic perspective. For example, the diversity of
vulnerability data is an important dimension to measure the feasibility
of contract security solutions. Therefore, we explore smart contract se-
curity from four perspectives: current status of smart contract security,
vulnerability data sources, vulnerability detection, and vulnerability
defense. We distill the four security issues and their sub-problems as
follows.

1. RQ1: Security status of smart contracts. RQ1.1: What are security
issues faced by smart contracts? RQ1.2: What are typical smart
contract vulnerabilities?

2. RQ2: Source of smart contract vulnerability data. RQ2.1: What
are existing smart contract vulnerability datasets? RQ2.2: What
are the major methods for generating smart contract vulnerabil-
ity datasets? RQ2.3: How many vulnerabilities are covered in the
existing datasets?

3. RQ3: Security detection methods for smart contracts. RQ3.1:
What are the existing vulnerability detection methods? RQ3.2:
What are the advantages and disadvantages of those detection
methods?

4. RQ4: Defense mechanisms against vulnerabilities. RQ4.1: What
are the existing vulnerability defense methods? RQ4.2: What are
the strengths and limitations of those repair methods? RQ4.3:
What vulnerabilities are covered by those vulnerability repair
methods?

Information and Software Technology 159 (2023) 107221H. Chu et al.
Table 2
Application of PIO principle in smart contract security.

Type Concept Keyword

Population Technology and standards related terminology Model checking OR static analysis
OR symbol execution OR formal validation
OR abstract semantic OR fuzzing

Intervention Specific behaviors and methods Smart contract attack OR smart contract safety{Security}
OR contract verification OR contract analysis
OR contract vulnerability OR code vulnerability
OR code safety{Security} OR contract repair{Patch}
4.2. Literature search

This section focuses on how to select the relevant literature for
answering the research questions above. Two major steps, namely
comprehensive search and primary screening, are included.

4.2.1. Comprehensive search
First, we conduct a comprehensive search to find references related

to the research questions. We adopt the PIO (Population, Intervention,
and Outcome) principle [24] to help us identify relevant keywords
and databases specifically, where population represents terms related
to technology and standards, and intervention means specific issues in
the field. The search is performed using Population AND Intervention,
with detailed PIO information shown in Table 2.

To avoid the influence of preference factors on the research results,
only the characters listed in Table 2 are used as our query words. We
target seven scientific databases as the sources for the literature search,
as shown below.

• Google Scholar(https://scholar.google.com/)
• IEEE Xplore(https://ieeexplore.ieee.org/)
• DBLP(https://dblp.org/)
• Spring Link(https://link.springer.com/)
• ACM Digital Library(https://dl.acm.org/)
• Web of Science(https://www.webofscience.com/)
• EI Compendex(https://www.engineeringvillage.com/)

These databases contain relevant scientific results published in the
field of computing. To conduct our research, we first manually remove
the duplicated results retrieved. Although the concept of smart con-
tracts was proposed as early as 1992, the smart contract application
platform Ether was proposed by Vitalik Buterin in 2015. Hence, the
starting year of our literature collection is 2015. In addition, to ensure
the completeness of our search results, we also check the related
references from the retrieved relevant papers and monitor the lists of
papers recently accepted by relevant top conferences.

4.2.2. Literature screening
After the above-mentioned search steps, we retrieved hundreds of

papers. However, many of them are not quite relevant to the theme
of this survey. Therefore, we screen the keywords, abstracts, main
contributions, and conclusions of each paper and select the papers
containing smart contract security related topics in those areas.

4.3. Quality evaluation

We identify the key information of each article by scanning its key-
words, abstract, contribution, method, and conclusion, which facilitates
us to classify the articles. As a result, we classify the literature into the
classes of vulnerability data collection, vulnerability detection, and vul-
nerability remediation. In addition, to ensure the quality of our selected
literature, we assessed the quality of the publications based on the
Computing Research and Education (CORE) [25] ranking, which contains
five categories: A*, A, B, C and No Grade. In addition, we also adopted
the journal and conference ranking released by the China Computer
Federation (CCF) to evaluate the quality of the publication venues [26],
4

Fig. 1. Literature quality statistic.

and marked them in Table 3. The ranking results of the two quality
assessment methods are shown in Fig. 1. Smart contract vulnerability
detection-related papers accounted for the most significant proportion
of 85.7% (42/49), of which 11 papers were published in the high-
level platform, followed by smart contract vulnerability repair-related
papers proportion of 10.2% (5/49), of which four papers published in
the high-level platform, smart contract vulnerability injection-related
papers less, accounting for 2% (1/49), but the paper published in
the high-level platform. This paper argues that the main reasons for
this uneven distribution are: first, the most effective way to avoid
defects in smart contracts is smart contract vulnerability detection,
and accurate, comprehensive smart contract vulnerability detection
can directly prevent the existence of security risks in smart contracts.
Second, the development of smart contracts is relatively short, and a
sound smart contract security protection mechanism requires time to
accumulate. So, there are still relatively few papers on smart contract
vulnerability repair. Finally, smart contract vulnerability datasets with
logos require the development of complete and comprehensive vulner-
ability identification rules, which is difficult, so work on smart contract
vulnerability injection still needs to be accumulated.

https://scholar.google.com/
https://ieeexplore.ieee.org/
https://dblp.org/
https://link.springer.com/
https://dl.acm.org/
https://www.webofscience.com/
https://www.engineeringvillage.com/

Information and Software Technology 159 (2023) 107221H. Chu et al.
Table 3
Research literature summary.

Number Year Author Specific description

1 2020 Ghaleb et al SolidiFI, an automated and systematic approach for evaluating static analysis tools for smart contracts.
ISSTA, CCF-A

2 2017 Chen et al GASPER, a model for automatically locating gas-consuming highs by analyzing the bytecode of smart contracts.
SANER, CCF-B

3 2018 Nikolić et al MAIAN, a dynamic analysis tool that uses symbolic analysis to detect three smart contract vulnerabilities.
ACSAC, CCF-B

4 2019 Mossberg et al Manticore, a dynamic symbolic execution framework, platform-independent symbolic restrictions. ASE, CCF-A

5 2016 Luu et al Oyente, a symbolic execution detection tool for building contract control flow graphs at the bytecode level.
CCS, CCF-A

6 2018 Torres et al Osiris, an instrumentation tool that leverages symbolic execution and taint analysis at the bytecode level.
ACSAC, CCF-B

7 2018 Tsankov et al Securify, a security analyzer for smart contracts. CCS, CCF-A

8 2019 Feist et al Slither, a static analysis framework that provides code inspection, code optimization, code understanding and code review.
WETSEB, CCF-Non

9 2018 Tikhomirov et al SmartCheck, a static analysis tool that converts Source code into an XML intermediate representation for inspection.
WETSEB, CCF-Non

10 2018 Kalra et al ZEUS, a security analysis framework for smart contracts using abstract interpretation and symbolic model checking.
NDSS, CCF-B

11 2018 Jiang et al ContractFuzzer, a novel fuzzer for testing security vulnerabilities in ethereum smart contracts. ASE, CCF-A

12 2021 Torres et al ConFuzzius, a hybrid test fuzzifier combining evolutionary fuzzy testing and constraint solving. EuroS&P, CCF-Non

13 2020 Wüstholz et al Harvey, a grey-box fuzzy testing method for contract vulnerability mining. FSE/ESEC, CCF-A

14 2018 Liu et al ReGuard, a dynamic analyzer for reentry errors in smart contracts. ICSE-Companion, CCF-A

15 2020 Nguyen et al sFuzz, an adaptive fuzzing engine for EVM smart contracts. ICSE, CCF-A

16 2019 Fu et al EVMFuzzer, a tool for detecting EVM vulnerabilities using differential fuzzy techniques. FSE/ESEC, CCF-A

17 2018 Zhou et al SASC, a static analysis method for ethereum smart contracts. NTMS, CCF-Non

18 2021 Jiang et al WANA, a scalable smart contract vulnerability detection tool based on Wasm bytecode symbolic execution.
QRS, CCF-C

19 2021 Yu et al ReDetect, a symbolic execution vulnerability detection tool for EVM bytecode level. MSN, CCF-C

20 2020 Wang et al Artemis, an improved smart contract validation tool. DSA, CCF-Non

21 2020 Huang et al EOSFuzzer, a generic black-box fuzz testing framework for detecting vulnerabilities in EOSIO smart contracts.
Internetware, CCF-Non

22 2020 Ji et al DEPOSafe, an automated detection tool for fake deposit vulnerabilities in smart contracts. ICECCS, CCF-C

23 2019 Fu et al A symbolic execution model for multi-objective path-oriented search (MOPS) strategies based on path prioritization.
Access, CCF-Non

24 2018 Tann et al A Sequence Learning Approach to Detecting Smart Contract Vulnerabilities. arXiv, CCF-Non

25 2022 Hwang et al CodeNet, a CNN-based vulnerability detection method. Access, CCF-Non

26 2019 Liao et al SoliAudit, an approach to smart contract vulnerability assessment using machine learning and fuzzy testing.
IOTSMS, CCF-Non

27 2021 Zhou et al SC-VDM, a CNN-based lightweight smart contract vulnerability detection model. DMBDA, CCF-Non

28 2021 Eshghie et al Dynamic, a monitoring framework for detecting re-entry vulnerabilities in smart contracts. EASE, CCF-C

29 2021 Lutz et al ESCORT, a deep neural network based framework for detecting vulnerabilities in smart contracts. arXiv, CCF-Non

30 2019 Song et al A method for detecting vulnerabilities in ethereum smart contracts using machine learning. NSS, CCF-Non

31 2021 Ashizawa et al Eth2Vec, a machine learning-based static analysis tool for vulnerability detection in smart contracts. BSCI, CCF-Non

32 2021 Liu et al Propose a vulnerability detection method that combines deep learning with expert models. TKDE, CCF-A

33 2021 Gao et al SMARTEMBED, a Solidity detection method based on structural code embedding and similarity checking. TSE, CCF-A

34 2020 Zhuang et al A method for smart contract vulnerability detection using graph neural networks. IJCAI, CCF-A

35 2021 Wu et al Peculiar, a vulnerability detection method based on pre-training techniques and critical data flow graphs.
ISSRE, CCF-B

36 2022 Mi et al VSCL, an automated smart contract vulnerability detection framework using deep neural networks. ICBC, CCF-Non

37 2020 Gogineni et al A Multi-Classification Technique for Learning Smart Contracts Based on AWD-LSTM Model. IOP SciNotes, CCF-Non

38 2018 Liu et al S-GRAM, a new semantic-aware security auditing technology. ASE, CCF-B

39 2022 Huang et al Developing a multi-task learning-based vulnerability detection model for smart contracts. Sensors, CCF-Non

40 2020 Wang et al Contractward, a model for smart contract vulnerability detection using machine learning algorithms. TNSE, CCF-Non

41 2021 Yu et al DeeSCVHunter, a modular and systematic deep learning framework to detect contract vulnerabilities. IJCNN, CCF-C

42 2023 Cai et al A GNN-based vulnerability detection method for smart contracts is proposed. JSS, CCF-B

43 2022 Zhang et al ASGVulDetector and BASGVulDetector to detect vulnerabilities from Source code and bytecode perspective.
Future Internet, CCF-Non

44 2022 Ye et al Vulpedia, a detection method based on detection rules composed of vulnerability signatures. JSS, CCF-B

(continued on next page)
5

Information and Software Technology 159 (2023) 107221H. Chu et al.
Table 3 (continued).
Number Year Author Specific description

45 2021 Nguyen et al SGUARD, a high precision overlay for smart contract vulnerability detection and remediation. S&P, CCF-A

46 2021 Rodler et al EVMPATCH, a framework that supports automatic repair of contract errors based on bytecode rewriting.
USENIX Security, CCF-A

47 2020 Yu et al SCRepair, an automated smart contract repair algorithm using genetic programming search. TOSEM, CCF-A

48 2020 Zhang et al SMARTSHIELD, an automatic bytecode correction method for fixing unsafe cases of unsafe code patterns in smart
contracts.
SANER, CCF-B

49 2020 Jin et al Aroc, a generic smart contract fixer that automatically patches deployed contracts that are vulnerable to attacks.
TSE, CCF-A
c
t
o
c
g
o
v
i

4.4. Paper distribution

We collected information (including year of publication and source)
of each research paper and divides all the papers in term of conference
and journal articles (see Table 3). Next, we analyzed the trend of
publication number each year from 2015 to 2023. In 2015, smart
contract was still in its early stage. The DAO incident in 2016 causing
substantial financial losses began to attract attention of researchers. In
2017, research related to smart contract security began to appear. In
2018, the number of research papers on smart contract vulnerability
detection increased rapidly, while experiencing a slight decrease in
2019. Starting from 2020, researchers are no longer limited to focusing
on the single direction of vulnerability detection. Although the number
of papers has reduced in the past two years, many high-quality papers
were published.

Of the 49 papers investigated, most of the research was published in
conferences, including 7 papers in top software engineering conferences
and 6 in top security conferences. In addition, 3 papers were published
in top software engineering journals. It is clear from the data that the
amount of literature on smart contract security has been increasing. As
an emerging area of research, the amount of literature is significant.

5. Findings

In this section, we present the major findings of the 49 articles
related to the smart contract security of this paper. Table 3 presents an
overview of all the articles, which includes the year, author, and a brief
summary of each article. Then, we answer the four research questions
based on those findings.

5.1. Existing security issues

To answer RQ1, we found that smart contracts are designed for
decentralized, secure, and trustworthy management, with features such
as gas consumption mechanism, immutability, etc. These features are
designed for specific application scenarios, but they also embed threats
to smart contract security. Smart contracts mainly face security issues
in the design phase and contract implementation phase.

In the smart contract design phase, the smart contract development
language is still in the development stage, lacking a perfect specifica-
tion mechanism. High-quality design documents are the prerequisite to
guarantee the standard development of smart contracts. The application
scenarios of smart contracts are diverse, and the requirements for
designers in different application scenarios are also dynamic. In the
face of such complex situations, if designers do not have a sound
understanding of the requirements and design a flawed design solution,
it will have a negative impact on the subsequent development work.

In the smart contract development phase, the programming ability
of contract developers directly affects the quality of a smart contract.
If a developer does not fully follow the design plan, it may lead to
problems such as missing or incorrect functions of a contract. At the
same time, developers who do not fully comply with the security
6

programming guidelines of the contract language often write code that t
Table 4
Smart contract vulnerability types and threat levels.

Threat level Vulnerability type

Solidity language

Reentrancy
Integer overflow and underflow
Unchecked request
Unhandled exception
Unprotected selfdestruct instruction
Uninitialized state variables
Locked ether

EVM Short address attack
Storage overlap attack

Blockchain
Timestamp dependency
Transaction order dependency
Replay attack

is not easily understood and maintained, which may also cause security
problems of smart contracts.

Until now, there have been many studies on vulnerability clas-
sification frameworks. Atzei et al. [6] first classify smart contract
vulnerabilities into three levels: programming language, virtual ma-
chine, and blockchain. Dika et al. [27] follow the classification of
Atzei et al. and further classified the smart contract security issues
into low, medium, and high-risk security levels. The Decentralized
Application Security Project (DASP) summarized 10 high-risk Ethereum
smart contract vulnerabilities. Chen et al. [28] define 20 smart contract
flaws in terms of potential security, usability, maintainability, and
reusability. Zhang et al. [29] propose a vulnerability classification
framework called JiuZhou by extending IEEE Standard Classification for
Software Anomalies, which summarizes 49 smart contract vulnerability
types and defines their severity levels.

In this paper, we classify those smart contract vulnerabilities in
terms of three levels: Solidity language, EVM virtual machine, and
blockchain. We consider the vulnerability of smart contracts while
taking into account the generality of vulnerabilities. The remaining
of this subsection will analyze twelve major security vulnerabilities at
these three levels in detail (see Table 4).

5.1.1. Solidity language level
Solidity is a Turing-complete high-level language, which is the main

language used by developers to write smart contracts. The security
threats brought to smart contracts at the language level mainly orig-
inate from two aspects, i.e., design flaws of the Solidity language, and
mistakes of developers during smart contract coding.

Reentrancy Vulnerability. This vulnerability also appears when
ontracts call each other, and its implementation principle is similar
o the recursive call of a function [30]. An attacker takes advantage
f a developer’s negligence to make a program execute malicious
ode designed by the attacker repeatedly in a transaction until the
as is exhausted, thus causing huge financial losses. The root cause
f the famous Ethereum hard fork DAO incident is the reentrancy
ulnerability. As shown in Fig. 2, the attacker attacks the contract to
nitiate a transaction by repeatedly calling the withdraw function until

he victim’s account balance is 0 or gas is depleted.

Information and Software Technology 159 (2023) 107221H. Chu et al.
Fig. 2. Reentrancy vulnerability.
Fig. 3. Integer overflow and underflow vulnerability.
Integer Overflow and Underflow Vulnerability. When there is
a computation operation on an integer variable in a statement or
expression, an integer overflow and underflow occurs if the developer
does not pay attention to the bounding value of the variable, resulting
in a value that exceeds the upper or lower bound of the variable type
and is different from the value expected by the developer [31]. If the
developer fails to check that variable’s final result before subsequent
operations, financial losses can occur. As shown in Fig. 3, there is no
overflow judgment for amount on line 257. If an attacker makes amount
overflow, then the attacker can bypass the code used to check the
account balance on line 259. Through this vulnerability, an attacker
can transfer a large number of tokens at a low cost.

Unchecked Request Vulnerability. This type of vulnerability oc-
curs in connection with external calls to smart contracts [29]. If an
external control calls data or addresses, an attacker can arbitrarily
specify the call address, function, and parameters. Suppose an external
transfer request is initiated without careful checksumming of the con-
tract. In that case, an attacker could use this type of vulnerability to
make the smart contract perform functions that the developer does not
expect [6]. Such vulnerabilities could affect the contract’s functionality,
allowing even an unauthorized user to transfer tokens from the account
and potentially cause financial losses.

Unhandled Exception Vulnerability. The vulnerability arises from
calls between Ethernet smart contracts, which send tokens using state-
ments such as <address>.send, <address>.call.value, or calling methods
of other contracts using statements such as call. If there is an exception
during the call, such as running out of gas, the call will terminate
and roll back the state, returning false to the calling contract [32].
Suppose the caller uses a lower-level call statement and does not check
this return value. In that case, the subsequent operation will continue,
resulting in a method that is not implemented as expected by the
developer.

Unprotected Selfdestruct Instruction Vulnerability. Because
smart contracts cannot be deleted once deployed, the Solidity language
7

provides a destruction function that requires the user to introduce a
suicide function when developing a contract. Once a contract is faulty,
property loss can be avoided by calling the suicide function to destroy
the contract and transfer the Ether to the specified address. However,
suppose a smart contract with a suicide function lacks permission
control. In that case, any user can call the suicide function to kill
the contract and transfer the contract’s Ether to an address of their
designation [33]. This error can affect the functionality of the contract
and cause financial loss.

Uninitialized State Variables Vulnerability. The occurrence of
this vulnerability is related to the state variables of a smart contract.
If the smart contract does not initialize the state variables during
the development phase, these variables will be automatically assigned
with default values [29]. If these uninitialized state variables can be
accessed directly, these variables will point to unknown storage con-
tents. This causes that the contract functions inconsistently compared
to expectations and increases the risk of vulnerabilities.

Locked Ether Vulnerability. Smart contracts can be used to man-
age digital assets on a blockchain. In contrast to accounts on Ethereum,
where transactions are made through private keys, smart contract
accounts do not have their private keys and can only manage assets
through code. Once a developer writes only the function of receiving
ether but not the function of sending ether during the development
of a smart contract, the ether in the contract will be locked perma-
nently [34]. All the ether transferred into this contract cannot be
transferred out, thus causing financial losses.

5.1.2. Virtual machine level
The Ethereum virtual machine is the executor of the compiled

bytecode of smart contracts. The virtual machine’s design specification
and bytecode are defined in the Ethereum Technical Yellow Book [35].
The virtual machine level brings smart contract security threats from
two primary sources, i.e., the defects of the virtual machine’s operation

Information and Software Technology 159 (2023) 107221H. Chu et al.
Fig. 4. Timestamp dependency vulnerability.
mechanism, and the security problems caused by the non-standard op-
eration of different Ethereum platforms in the process of implementing
the virtual machine.

Short Address Attack Vulnerability. The vulnerability arises from
the auto-completion operation of the Ethernet virtual machine. The
actual operation of smart contracts relies on the Ethernet virtual ma-
chine [14]. The input parameters required for the operation of func-
tions in the contract will appear in the virtual machine in the form of
fixed-length bytecodes. There are some pitfalls in this way of handling,
as the function input parameters may be subject to short address
attacks when they include address-based parameters with insufficient
bits [6]. For example, when using a transfer function with the address
and transfer amount as input parameters, an attacker can carefully
construct a short address input with insufficient bits to make the auto-
completion of the transfer amount exponentially larger, resulting in a
large financial loss.

Storage Overlap Attack Vulnerability. The data in a smart con-
tract is shared in the storage space. Different clients do not have the
same implementation for the virtual machine, so there will be different
running results of the contract data during the invocation [11]. Since
the blockchain only synchronizes the transaction information between
contracts and does not synchronize the runtime results, the difference in
the runtime results is not easily detected. This type of vulnerability can
lead to data overwriting in the contract, which may break the contract’s
functionality [36].

5.1.3. Blockchain level
Smart contracts achieve decentralization and tamper-proof for the

blockchain, which provides a platform for the implementation of smart
contracts. However, the features of the blockchain also bring certain
security threats to smart contracts.

Timestamp Dependency Vulnerability. As the name implies, the
vulnerability stems from the global variable of the smart contract,
i.e., the timestamp. The timestamp of the block to which the smart
contract belongs is available to developers as a global variable [27].
The timestamp is determined by the system at the time of mining,
allowing for a deviation of 900 s so that miners can control the
timestamp to some extent. If the functionality implemented by the
smart contract changes with the timestamp, then a malicious miner
can control the outcome of the smart contract to some extent to make
it meet his/her needs. As shown in Fig. 4, block.timestamp is used in
the Timestamp contract as a condition for performing key operation.
The contract decides whether to win by the timestamp of the block
where the transaction is sent. Only the first transaction in each block is
allowed to win. If the lowest bit of the block timestamp is 5, the sender
of this transaction will win the prize. Since the miner has the right to
set the timestamp anywhere from 0 to 900 s, the miner can know in
advance whether the lowest bit of the timestamp of the next block is 5
or not and then manipulate the result of the prize.

Transaction Order Dependency Vulnerability. This vulnerability
is a security flaw that relies on the order of transaction execution and
causes differences in transaction results [37]. Since transactions are
8

packaged and sent to the transaction pool for storage, the miner nodes
will select transactions from the transaction pool and put them into
the newly generated blocks according to certain rules. The transactions
and transaction orders selected by different miners are not fixed, so
the order of transactions executed by the contract is uncertain. Miners
generally give priority to transactions with high gas content and put
them into the new blocks. An attacker can make such an attack by
increasing the gas cost. The attacker can make his/her transactions
written into the block before other transactions by increasing the
gas cost, which affects the final result by influencing the contract’s
execution order.

Replay Attack Vulnerability. Because there is a hard fork of the
public chain of Ethernet due to a major security event, many chains
exist on Ethernet now [38]. As a result, if an attacker can predict the
validation value used by a transaction, the attacker can replay that
transaction on another chain [29]. Such vulnerabilities could lead to an
attacker having the ability to replay the transaction on another chain,
causing financial losses to the owner of the smart contract.

5.2. Existing vulnerability sources

To deal with the security threats in smart contracts, researchers
have been analyzing contract vulnerabilities and developing various
detection tools. However, how to evaluate the performance of these
tools is also a problem worthy of study. An ideal evaluation benchmark
can discover the blind spots of vulnerability detection tools, improve
the performance of detection tools and broaden their usage scenar-
ios, which is required by vulnerability analysis. To answer RQ2, we
found that the existing construction methods of evaluation benchmarks
mainly fall into three categories: manually constructing vulnerabilities,
collecting vulnerabilities, and automatically generating vulnerabilities
based on vulnerability injection technologies.

5.2.1. Manually constructed vulnerabilities
To address the problem of lack of open source data, many studies

choose to use manually constructed vulnerability datasets for bench-
mark assessments. A manually written benchmark dataset for evalua-
tion ensures that each test sample contains the required vulnerability
information and provides reasonable assurance that the scope of the as-
sessment covers all the required vulnerabilities. However, over-reliance
on manually generated data inevitably makes the evaluation results
less objective and the models less capable of identifying diverse real
vulnerabilities. In addition, manual vulnerability construction often has
the problem of poor scalability and consumes labor and resources once
the data needs to be extended.

5.2.2. Manually collected vulnerability
Large-scale collection of vulnerability data in real environments and

construction of objective vulnerability datasets as evaluation bench-
marks are also a research hot spot. The method of manual vulnerability
data collection ensures the authenticity of vulnerability data compared
to manually constructed vulnerability data. However, subjectivity can-
not be ignored during the collection process. In addition, not every

Information and Software Technology 159 (2023) 107221H. Chu et al.
kind of vulnerability data has an extensive distribution in the real
environment. Relying entirely on manual collection and construction
of datasets does not guarantee the adequacy and diversity of vulner-
ability data. A few researchers provide smart contract datasets with
vulnerability labels. For example, SmartContractSecurity [39] provides
122 smart contracts containing 33 vulnerability categories. However,
SmartContractSecurity does not classify these vulnerabilities. Crytic [40]
provides a dataset containing 12 vulnerability categories. The NCC
Group [41] proposes a classification of smart contract vulnerabilities
based on the Decentralized Application Security Project (DASP) of
smart contract vulnerability classification [42]. They provide 69 smart
contracts containing 10 vulnerability categories. Apart from the afore-
mentioned labeled datasets, Zhuang et al. [43] collect 42,000 unlabeled
Ethereum smart contracts.

5.2.3. Vulnerability injection method
To ensure that the vulnerability samples used for evaluation are

sufficiently realistic, objective, and comprehensive in coverage, some
studies have proposed to automate the construction of vulnerability
datasets based on vulnerability injection and evaluate the performance
of detection tools accordingly. In terms of technical implementation,
vulnerability injection can be further divided into two main categories:
finding sensitive locations in program code through static analysis tech-
niques and using them to construct an objective vulnerability dataset
by injecting vulnerability fragments in these locations; and inserting
vulnerabilities into the source program by identifying situations where
user-controlled inputs may trigger out-of-bounds reads and writes.
Compared with the manual construction of vulnerabilities and manual
collection of vulnerabilities, the method of constructing vulnerability
datasets based on vulnerability injection removes the over-reliance on
manual work. It can more easily construct vulnerability samples on a
large scale to provide objective and realistic performance evaluation of
vulnerability detection tools. At the same time, part of the vulnerability
injection techniques also enable the customization of vulnerability sam-
ples to match the evaluation needs of various vulnerability detection
tools flexibly. Asem et al. developed the first vulnerability injection
tool for Ethereum smart contracts, SolidiFi [44]. This tool introduces
targeted security vulnerabilities by injecting predefined vulnerabil-
ity fragments into all potential locations of a smart contract. This
tool can inject seven types of smart contract vulnerabilities, including
reentrancy vulnerabilities.

5.2.4. Summary
An ideal evaluation benchmark can discover the blind spots of

vulnerability detection tools and improve the performance of detection
tools, which is demanded by smart contract vulnerability analysis. Ex-
isting evaluation benchmark construction methods are mainly divided
into three categories: manually constructed vulnerabilities, collected
vulnerabilities, and automatically generated vulnerabilities based on
vulnerability injection techniques. Their strengths and weakness are
summarized as follows.

• Manually constructed smart contracts contain vulnerabilities with
high diversity. However, this category of approaches may make
the data set less objective.

• Collected vulnerability data ensures the authenticity of the con-
structed data sets. Its defect is that it cannot guarantee the suffi-
ciency and diversity of the vulnerability data.

• Vulnerability injection based vulnerability data sets reduce the
excessive dependence on manual work. The existing vulnera-
bility injection methods mostly base on artificially formed vul-
nerability fragments. Although the volume of the data set can
be guaranteed, the authenticity of the generated smart contract
vulnerabilities cannot be insured.
9

5.3. Contract security detection methods

Sections 5.1 and 5.2 describe the security issues faced by smart
contracts and the existing vulnerability data sources. Understanding the
main security issues faced by smart contracts can help developers de-
velop practical detection tools. In addition, rich contract vulnerability
data can help users effectively evaluate detection tools’ performance.
To answer RQ3, we divide contract security detection tools into con-
ventional and deep learning-based detection methods. Conventional
detection methods are divided into symbolic execution, formal veri-
fication, and fuzzing. We will provide detail below. We analyze and
introduce different types of methods and compare their advantages and
disadvantages.

5.3.1. Symbolic execution
The principle of symbolic execution is to abstract the external input

into symbolic values, abstract the program in a smart contract into
an execution tree, and then traverse the execution tree based on the
external input values and the semantics of the program. The main idea
of symbolic execution is to convert uncertain inputs into symbolic val-
ues during execution to drive the execution of the program. Symbolic
execution is also divided into two types: static symbolic execution and
dynamic symbolic execution.

In terms of static execution, Oyente [45] is the first static analysis
detection tool proposed. Oyente takes the bytecode of a smart contract
and the state of Ether as input and explores the control flow graph
information of the contract during symbolic execution, and performs
vulnerability detection by path constraints and other information. This
paper introduces Oyente to detect four types of vulnerabilities: reen-
trancy, conditional contention, timestamp dependency, and unhandled
exceptions, and the authors subsequently supplement the open source
code with code for integer overflow vulnerabilities. The types of vul-
nerabilities detected by Oyente are not comprehensive. However, as
the first tool available for smart contract vulnerability detection, it
provides sound foundation for subsequent research. Osiris [46], an
improved version of Oyente, is proposed by Torres et al. to detect
integer-like vulnerabilities in smart contracts using symbolic execution
methods, including security issues such as integer overflow, integer
underflow, and value truncation due to improper type conversion. Chen
et al. [47] propose a static analysis tool GASPER based on symbolic
execution, which automatically locates contracts with high gas con-
sumption for analysis by analyzing smart contracts at the bytecode
level. This tool can automatically discover 3 types of gas consumption
patterns, i.e., SLOAD (load a byte from memory), STORE (save a byte to
memory) and BALANCE (get account balance operation). Mythril [48]
is a symbolic execution engine proposed by Consensys et al. This
approach combines taint analysis and control flow inspection on top
of symbolic execution to allow vulnerability analysis of contracts at the
bytecode level. Mythril can be used to detect 14 types of vulnerabilities
such as reentrancy, integer overflow and underflow, and timestamp de-
pendencies. WANA [49] proposed by Jiang et al. is a generic symbolic
execution engine for Wasm bytecode, which can support vulnerabil-
ity analysis of EOSIO smart contracts. ReDetect [50] is a symbolic
execution-based detection tool proposed by Yu et al. for detecting
reentrancy vulnerabilities in smart contracts at the EVM bytecode level.
Artemis is an improved smart contract validation tool [51]. Artemis is
built on the Oyente symbolic execution framework. To support the de-
tection of new types of vulnerabilities, Artemis extends its vulnerability
detection module to support the analysis of new vulnerability patterns,
which can be used to detect four types of vulnerabilities including
dangerous delegate calls. DEPOSafe [52] is an automated detection
tool for false deposit vulnerabilities in smart contracts. DEPOSafe in-
cludes both symbolic execution-based analysis and dynamic verification
based on behavioral modeling. DEPOSafe feeds the bytecode of a smart
contract and its contract address through a pipeline consisting of a

Information and Software Technology 159 (2023) 107221H. Chu et al.
static detector and dynamic verifier components to generate security
reports.

Dynamic symbolic execution, also known as hybrid symbolic execu-
tion, improves detection accuracy by generating constrained program
inputs through identified paths. Nikolić et al. propose a tool called
MAIAN [33], which detects vulnerabilities by tracing the execution
path of a contract via analyzing multiple invocations during its lifecycle
(each run of a contract is called a single invocation). MAIAN can
detect three types of vulnerabilities: greedy contracts, self-destructive
contracts, and prodigal contracts. Manticore is a dynamic symbolic
execution framework [53] that implements a platform-independent
generic symbolic execution engine that makes no assumptions about
the underlying execution model and operates and manages the pro-
gram based on the lifecycle of the state. Compared to other detection
tools that analyze a single contract, Manticore supports the analysis
of multiple contracts simultaneously. Fu et al. [54] propose a multi-
objective path search (MOPS) strategy based on path priority. First, it
obtains the code regions with security threats and their critical paths by
improving Mythril. Then, a multi-objective-oriented path search strat-
egy is proposed to guide dynamic symbolic execution to cover critical
paths quickly. Finally, security rules are described and corresponding
detection logic is proposed for different vulnerability classes.

5.3.2. Formal verification
Formal verification is an effective technique to verify that a program

conforms to predefined design properties and security specifications.
Traditional verification techniques ascertain the logic of programs and
code by describing them in a logical or descriptive language. Next,
these techniques apply mathematical logic proofs to reason about their
actual behavior to test whether the program meets the functional
requirements of the intended design.

ZEUS [55] is an automated formal verification tool for smart con-
tracts. Zeus translates Solidity source code into the LLVM intermediate
language and uses XACML to write verification rules on top of it. It fur-
ther uses the SeaHorn verifier for formal verification. Zeus designs five
security vulnerability detection rules that can determine the security of
the target program in the process of formal verification. Securify [56]
is a security analyzer for the bytecode level of smart contracts. Securify
obtains semantic information from the bytecode of smart contracts
and describes the semantic facts in Datalog syntax. After inferring the
semantic information, Securify checks it against the predefined security
property rules. The security attribute rules are divided into obedience
mode and violation mode, and the security of the contract is checked
by matching the semantic information with the security attribute rules.

5.3.3. Fuzzing
Fuzzing is a popular and effective software testing technique that

detects anomalies by feeding a large amount of unexpected data to a
smart contract for potential vulnerability discovery. Compared with the
complex design of symbolic execution and formal verification methods,
fuzzing is simple and efficient. It helps uncover more profound vul-
nerabilities in smart contracts. It is tested during operation of smart
contracts.

ContractFuzzer [34] is the first framework applying fuzz testing
techniques to smart contracts for vulnerability detection. It analyzes
the ABI specification of smart contracts, generates inputs that match
the syntax of the contract invocation under test, and defines the char-
acteristics of different defects for detecting contract defects. Contract-
Fuzzer can be used to detect seven types of vulnerabilities, including
re-entry, timestamp dependency, transaction order dependency, etc.
Among them, for the re-entry vulnerability, ContractFuzzer designs a
specific attack contract and detects it by invoking the specific attack
contract to the contract under test, which in turn triggers the re-entry
vulnerability of the contract. Echidna [57] is a smart contract fuzzy
testing framework published by Trail of Bits, which performs analysis
10

and fuzzy execution in the smart contract source code, and fuzzy tests
the contract under test by generating random transaction data that
meet the contract invocation specification. ConFuzzius is a hybrid test
fuzzifier combining evolutionary fuzz testing and constraint solving
proposed by Torres et al. [58]. Harvey is a grey-box fuzzy testing
method for smart contract vulnerability mining proposed by Wüstholz
et al. [59]. Harvey generates simple call sequences by obtaining the
dependencies of different functions seen on global variables to improve
the impact of sequences on program coverage. ReGuard [30] is a
dynamic analyzer for reentrancy errors in smart contracts. ReGuard
uses fuzzy test-based techniques to generate random and diverse trans-
action data as possible attacks. ReGuard then dynamically identifies
potential re-entry vulnerabilities in smart contracts by logging critical
execution traces. sFuzz [60] is a fully automated engine for testing
against smart contracts. sFuzz generates smart contract execution traces
through fuzzy testing and uses vulnerability analysis pattern analysis
to discover potential vulnerabilities in a contract. EOSFuzzer [61] is a
generic black-box fuzzy testing framework for detecting vulnerabilities
in EOSIO smart contracts. EosFuzzer consists of four parts: fuzzy input
generator, fuzzy executor, Wasm VM Instrumentation, and vulnera-
bility detection engine. EVMFuzzer [62] is the first tool to detect
EVM vulnerabilities using differential fuzzy testing. The core idea of
EVMFuzzer is to continuously generate seed contracts and make them
available to the target EVM and the benchmark EVM to find as many
inconsistencies between execution results as possible and eventually
discover output cross-references of vulnerabilities.

5.3.4. Other traditional technology
In addition to the symbolic execution, formal verification, and

fuzzy testing techniques mentioned above, program analysis and taint
analysis are often adopted for smart contract vulnerability detection.
Program analysis is mainly divided into static program analysis and
dynamic program analysis. Static program analysis specifically analyzes
a program through its control flow and data flow information, while
dynamic program analysis requires further access to a program’s opera-
tion information. Taint analysis is a unique program analysis technique
used to achieve more accurate program analysis by labeling critical
data and tracing its flow direction.

Slither [36] is a static analysis framework that provides code
detection, code optimization, code understanding, and code review.
Slither performs lexical and syntactic analysis at the source code level
of smart contracts. It uses abstract syntax trees to generate inheritance
graphs, control flow graphs, and contract expressions and creates an
intermediate language called SlitherIR. This intermediate language im-
plements all static program analysis work at the intermediate language
level, which helps the analysis framework to extend to different high-
level languages and types. SASC [63] is a static program analysis tool
for smart contract vulnerability detection. SASC generates a topology
graph by performing syntactic topology analysis through smart contract
invocation relationships and then identifies potential security risks in a
contract by marking the location of logical risks on the topology graph.
SmartCheck [64] is also a static analysis tool for smart contracts.
SmartCheck converts smart contract source code into an XML-based
parse tree as an intermediate representation (IR) and performs smart
contract vulnerability checking using XPath schema queries on the IR.

Apart from the aforementioned three tools, other tools such as
Oyente [45], Mythril [48], etc. Combine taint analysis with differ-
ent data flow analysis techniques to improve the tools’ vulnerability
detection accuracy.

5.3.5. Deep learning-based approaches
Deep learning is a branch of artificial intelligence that uses algo-

rithms for autonomous learning of data with the ability to improve
itself. Deep learning models have been regarded as black boxes, where
the user is entirely unaware of how the model learns. There is no way
to intervene in the model’s output manually. Applying deep learning

techniques to smart contract vulnerability detection is a trendy topic.

Information and Software Technology 159 (2023) 107221H. Chu et al.
Fig. 5. Workflow of TMP.
Tann et al. [65] use a sequence learning approach to detect smart
contract vulnerabilities, which is the earliest approach to applying
deep learning in the area of smart contract vulnerability detection.
Liao et al. [66] propose a vulnerability detection method called So-
liAudit. SoliAudit uses machine learning and fuzzy testing for smart
contract vulnerability assessment. Gogineni et al. [67] propose a multi-
classification technique based on Average Stochastic Gradient Descent
Weight-Dropped LSTM (AWD-LSTM) models for learning smart con-
tracts by using two neural network models to learn the semantic
information of the input data and classify them. Gao et al. [68] propose
a Solidity code checking method named SmartEmbed based on code
embedding and similarity checking, which can be used for similar con-
tract code detection, error detection, and contract verification. Zhuang
et al. [43] propose a degree-free graph convolutional neural network
(DR-GCN) and a temporal message propagation network (TMP). The
overall flow chart of the method is shown in Fig. 5. Firstly, the control
flow and data flow information is extracted from the smart contract
code, followed by extracting representative key function calls or vari-
ables as nodes and call relationships between functions as edges and
then normalizing the proposed graph. This method supports reentrancy
vulnerabilities, timestamp-dependent vulnerabilities, and infinite loop
vulnerabilities. Zhou et al. [69] propose a lightweight convolutional
neural network (CNN)-based smart contract vulnerability detection
model (SC-VDM) that automatically detects vulnerabilities in smart
contracts on lightweight computers without expert knowledge. Eshghie
et al. [70] propose a monitoring framework named Dynamit for de-
tecting reentrancy vulnerabilities in smart contracts. Dynamit classifies
transaction data by obtaining feature information from transaction
data and using a machine learning model. Wang et al. [71] propose
a smart contract vulnerability detection model (Contractward) using
machine learning that can be used to detect six types of smart contract
vulnerabilities, including reentrancy vulnerabilities. Song et al. [72]
propose a model for detecting smart contract vulnerabilities using
machine learning techniques. Ashizawa et al. [73] propose a static
analysis tool, Eth2Vec, which learns smart contract code by bytecode,
assembly code, and abstract syntax trees to identify smart contract
vulnerabilities. Mi et al. [74] propose an Automating Vulnerability
Detection in Smart Contracts with Deep Learning (VSCL) model that
converts bytecode to sequence code by decompiling. It then generates
new sequences using control flow graphs and depth-first search algo-
rithms. Finally it uses deep neural networks for vulnerability analysis
and detection. Hwang et al. [75] propose a vulnerability detection
method called CodeNet. Feature extraction by converting smart con-
tract bytecodes into images and inputting the extracted images into
a CNN model for vulnerability detection. It can detect four types of
vulnerabilities, including reentrancy vulnerabilities. Lutz et al. [76]
propose the first deep neural network (DNN)-based smart contract vul-
nerability detection framework, ESCORT, which supports lightweight
migration learning for invisible security vulnerabilities. Wu et al. [77]
propose a method, Peculiar, to detect smart contract vulnerabilities
11
based on critical data flow graphs using pre-training techniques, which
is mainly used to detect re-entry vulnerabilities. Liu et al. [78] propose
a linguistic model-based contract vulnerability prediction technique,
S-GRAM, which predicts potential vulnerabilities of contracts by seri-
alizing contract information and analyzing it using statistical linguistic
models. Yu et al. [79] design a modular and systematic deep learning
vulnerability detection framework, DeeSCVHunter, which contains
four preprocessing modules, embedding, training, and evaluation to
detect reentrancy vulnerabilities and timestamp-dependent vulnerabili-
ties. Zhang et al. [80]. propose two static analysis methods, ASGVulDe-
tector and BASGVulDetector, to detect vulnerabilities in Ethereum
smart contracts from the source code and bytecode perspectives. Ye
et al. [81]. propose a detection method called Vulpedia by extract-
ing structured program features from vulnerable and non-vulnerable
contracts as vulnerability signatures and constructing a systematic
detection method based on detection rules composed of vulnerability
signatures.

The above methods usually perform feature learning for a single
representation of information. To learn a more comprehensive set of
smart contract vulnerability features, Liu et al. [68] propose combining
graph neural networks with custom expert knowledge for smart con-
tract vulnerability detection, which can be used to detect reentrancy
vulnerabilities, timestamp-dependent vulnerabilities, and infinite loop
vulnerabilities. Huang et al. [82] propose a multi-task learning-based
smart contract vulnerability detection model, which improves the de-
tection capability of the model by setting auxiliary tasks to learn more
directional vulnerability features. Cai et al. [83] propose a GNN-based
approach for smart contract vulnerability detection. A graphical repre-
sentation of smart contract functions is constructed by combining an
abstract syntax tree (AST), a control flow graph (CFG), and a program
dependency graph (PDG). Program slicing is employed to normalize the
graph. Finally, a bidirectional gated graph neural network model with
a hybrid attention pool is used to identify potential vulnerabilities in
smart contract functions.

5.3.6. Summary
Vulnerability detection is one of the most active research directions

in smart contract security. It is well acknowledged as one of the most
effective ways to prevent contracts from being attacked [36]. Existing
smart contract vulnerability detection methods are mainly divided
into conventional detection methods and deep learning-based detection
methods. Among the conventional detection methods, fuzz testing, sym-
bolic execution and formal verification are the three most commonly
used techniques. Most existing literature focuses on fuzz testing, sym-
bolic execution, formal verification and deep learning-based detection
methods.

• Fuzzy testing techniques rely on the runtime information of smart
contract programs. The targeted vulnerabilities must be path
reachable to make the vulnerability detection more accurate. The
challenge lies in how to generate better input to improve the
coverage of a program.

Information and Software Technology 159 (2023) 107221H. Chu et al.
Fig. 6. Workflow of SMARTSHIELD.
• Symbolic execution techniques can explore the execution path of
a program more precisely by collecting and solving constraints.
Such techniques can even analyze the dependencies between
transactions to solve the appropriate sequence of transactions.
However, this type of methods can be stranded by contracts with
complex constraints and long sequences of transactions.

• Formal verification is capable of analyzing more semantic infor-
mation and ensuring that a contract program matches the tar-
geted design. Nevertheless, custom vulnerability detection model-
ing relies on knowledge of domain experts, and the vulnerabilities
detected are not necessarily realistic.

• Deep learning-based detection methods do not rely on experts to
develop detection rules, which have higher scalability in compar-
ison to conventional approaches. However, since users usually
treat deep learning models as black boxes, they are completely
unaware how the model learns and there is the problem of poor
interpretability.

5.4. Vulnerability defense method

Smart contract vulnerability defense is an important part of smart
contract security. Due to the immutability of smart contracts, tra-
ditional software vulnerability repair methods cannot be applied to
smart contracts. This also makes it challenging to repair smart contract
vulnerabilities. In response to RQ4, we mainly divide smart contract
vulnerability defense methods into two aspects: security programming
and vulnerability repair.

5.4.1. Secure programming
Since smart contracts cannot be modified once being deployed on

Ethereum, it becomes especially important to write more secure code
that does not contain vulnerabilities. The existing work is divided
into two main classes: developing a more secure third-party library
for Solidity, and developing a more secure language for writing smart
contracts. Both of them reduce security risks by advancing the quality
of smart contract code.

OpenZeppelin has developed a variety of third-party code libraries2

for Solidity, which include ERC standard tokens, access rights control,
secure arithmetic runs, etc. Smart contract developers can simply im-
port these code bases during the contract development process with
these libraries. One of OpenZeppelin’s most famous third-party libraries
is Safemath, which can be referenced in contracts to prevent integer
overflow vulnerabilities when performing arithmetic operations.

2 https://docs.openzeppelin.com/contracts/4.x/.
12
Vyper [84] is a Python-influenced programming language tailored
specifically for smart contract development. The Vyper language does
not provide features such as Modifiers, Class inheritance, Function
overloading, Infinite-length loops, etc. which can easily cause contract
security problems. The Vyper language adds Bounds and overflow
checking, support for signed integers and decimal fixed-point numbers,
and other features to improve the security of smart contracts. Digital
Asset Modeling Language (DAML) [85] is a high-performance program-
ming language for developing and deploying distributed applications in
a blockchain environment. The DAML language has a variety of built-
in modules that developers can call by simply importing the modules
they need, avoiding input errors that developers make in the process
of writing code. DAML language has a variety of built-in modules that
developers can call by simply importing the modules they need, avoid-
ing input errors that developers make while writing code. In addition,
the DAML language provides a locking mode where only designated
users can lock assets through active and authorized operations. When
a contract is locked, some or all of the choices specified on that contract
may not be executed, which improves the security of smart contracts.

5.4.2. Vulnerability repair
At the smart contract source code level, Yu et al. [86] propose

the first generic automated contract repair method, SCRepair, which
uses a parallel genetic repair algorithm. Given a smart contract with
security vulnerabilities and a test suite, this tool is able to repair the
given vulnerabilities by performing a random search on the contract.
In addition, taking into account the gas consumption, the generated
patches are sorted by gas and used to generate gas-optimized security
contracts. Nguyen et al. [87] develope a method, SGUARD, to auto-
matically transform smart contracts. SGUARD first collects symbolic
execution traces of smart contracts, and then statically analyzes the
collected traces to identify potential vulnerability types in the contracts.
Next, based on the contract’s AST, it identifies the source code corre-
sponding to the vulnerability and apply a specific fix pattern for each
vulnerability type to fix the contract vulnerability.

At the smart contract bytecode level, Zhang et al. [88] propose a
bytecode correction system called SMARTSHIELD to fix three smart
contract vulnerabilities. The workflow of this method is shown in Fig. 6.
SMARTSHIELD first analyzes the AST and EVM bytecodes of the con-
tract to extract bytecode-level semantic information. Next, based on the
extracted semantic information, it fixes the insecure control flow and
data operations. Finally, it generates the corrected EVM bytecode and a
fix report. Rodler et al. [89] propose a framework called EVMPATCH
that can immediately and automatically patch faulty smart contracts.
This framework consists of four main components: a vulnerability
detection engine, a bytecode rewriter, a patch testing component, and

https://docs.openzeppelin.com/contracts/4.x/

Information and Software Technology 159 (2023) 107221H. Chu et al.

c
r
N
p
c
c
v

5

t
S
m
e
t
d
s

6

s

6

6

i
c
r
a
l
m

Table 5
Comparison of the main methods of vulnerability data collection.

Main technology Tools Number Type Method comparison

Manually constructed – – – Advantages, increase the richness of vulnerability types.
Disadvantages, the evaluation results are not objective enough, and the interference
of human factors cannot be avoided.

Manually collected
SmartContractSecurity 122 37 Advantages, ensures the authenticity of the data.

Disadvantages, the adequacy and diversity of the number and types of
vulnerabilities cannot be guaranteed.

DASP 69 10
Crytic 25 12

Vulnerability injection SolidiFi 50 7 Advantages, it avoids over-reliance on manual labor and ensures the richness and
diversity of data distribution.
Disadvantages, the quality of generated contracts needs to be improved.
a contract deployment component. EVMPATCH utilizes a bytecode
rewriter to ensure that patches are minimally invasive and that newly
patched contracts are compatible with the original contract. It is ver-
ified that EVMPATCH can fix both integer overflow and permission
control flaws.

The above approaches all target vulnerability fixing for undeployed
off-chain smart contracts. In contrast, Jin et al. [90] propose a generic
smart contract fixer named Aroc that patches vulnerable deployed on-
hain contracts. Aroc first generates a patch contract containing secu-
ity rules based on the fixed template and deploys it to the blockchain,
ext, the contract with the security vulnerability is bundled with the
atch contract so that subsequent transactions need to invoke the patch
ontract before invoking the original contract. In this way, the smart
ontract is repaired to ensure that transactions that trigger potential
ulnerabilities are blocked in the patch contract.

.4.3. Summary
Vulnerability defense is an important means to combat smart con-

ract attacks. It is also one of the important goals of security research.
mart contracts have the characteristics that (1) the code cannot be
odified once the it is deployed and (2) they are run in a decentralized

nvironment. In this regard, its security defense is more difficult than
raditional programs. Existing work mainly focuses on two research
irections of smart contract security defense, namely, smart contract
ecurity programming and vulnerability repair.

• Smart contract security programming is mainly divided into de-
veloping safer third-party libraries and safer smart contract writ-
ing languages. Both of them aim to reduce smart contract security
risks by improving the quality of code. However, this type of
method cannot deal with all smart contract vulnerabilities. It can
only provide protection for smart contracts in the development
stage, which cannot interfere with deployed smart contracts.

• Vulnerability repair methods are mainly divided into on-chain
repair and off-chain repair. Developers can adopt this technique
to improve the security of smart contracts. Although on-chain
repair can fix deployed smart contracts, this type of method also
destroys immutability of smart contracts.

. Discussion

We discuss limitations of the existing research on smart contract
ecurity and future research directions.

.1. Inadequacy of existing research

.1.1. Inadequacy of data sources
The existing open source datasets suffer from low data volume and

nsufficient coverage of vulnerabilities. The manually constructed smart
ontract datasets rely heavily on human factors and cannot objectively
eflect the real performance of tools. Hence, few people adopt this
pproach to build datasets and conduct evaluations. The manual col-
ection approach ensures the authenticity of the data compared to the
anual construction approach. Nevertheless, the distribution of the
13
data volumes among the vulnerability types is sparse, which has a
certain deviation compared to the real environment. The automated
injection approach can avoid the subjective influence of human fac-
tors on dataset construction. Researchers can construct vulnerability
samples in large quantities to ensure the variety of vulnerabilities
in the generated contracts. However, compared to real contracts, the
vulnerability fragments injected by tools are manually constructed,
which often encounter the problem of poor authenticity. Hence, the
quality of automated generated contracts still needs to be improved.

We summarize the existing vulnerability data sources in terms of the
amount of vulnerability data and the types of vulnerabilities included,
and analyze the advantages and disadvantages among these methods.
The results are shown in Table 5.

6.1.2. Inadequacy of existing vulnerability detection methods
Smart contract vulnerability detection is one of the most extensively

studied directions in smart contract security. Existing vulnerability
detection methods are mainly divided into two aspects: traditional de-
tection and deep learning-based detection. Symbolic execution, formal
verification, and fuzzy testing are the three mainstream methods of
traditional smart contract vulnerability detection, which have their
advantages and disadvantages. Symbolic execution techniques need
to rely on constraint collection and solution, how to explore a more
comprehensive execution path, and dependencies between transactions
with the knowledge of the sequence of transactions. The problem of
state space explosion makes it difficult to solve the complex constraints,
which seriously limits the accuracy of detection. Formal verification
can obtain more semantic-level information. However, the models used
for vulnerability detection is often restricted by limited human expe-
rience, the low level of automation of such tools, and the problem
of unreachable paths. Fuzzy testing is simple and efficient. However,
fuzzy testing techniques rely heavily on contract runtime information.
Fuzzy testing can successfully discover vulnerabilities only if the path
is reachable. The technical difficulty of fuzzy testing lies on generating
better quality input information to improve the test coverage.

Traditional detection relies heavily on manual rules. It has the prob-
lem of poor extendibility. Attackers can deliberately design dangerous
contracts that bypass detection performed by traditional tools based
on these designed detection rules, thus causing financial losses. On
contrast, deep learning-based detection methods do not need experts
to develop detection rules. They are more extendable than traditional
detection methods. However, because of the black-box nature of deep
learning models, the results detected by the models cannot explain the
cause.

We summarize the most representative research work and vulnera-
bility detection tools and analyze the advantages and disadvantages of
these approaches in terms of the auxiliary approach, the analysis level
of the tools, the number of detectable vulnerabilities, and whether they

are open source. The results are shown in Table 6.

Information and Software Technology 159 (2023) 107221H. Chu et al.
Table 6
Comparison of the main methods of vulnerability detection tools.

Main
technology

Tools Assistive technology Analysis level Number Open
source

Method comparison

Symbol
execution

Oyente – Bytecode 5 Yes

Advantages, the most widely used method in traditional tools,
Disadvantages, in the face of multi-layer deep calling
sequences, there will be a path explosion problem.

Osiris Taint analysis Bytecode 1 Yes
Mythril Taint analysis Bytecode 14 Yes
DEPOSafe Behavior modeling Bytecode 1 No
Artemis – Bytecode 4 No
MAIAN – Source code 3 Yes

Formal
verification

ZEUS – Source code 7 No Advantages, security specifications are used to detect contracts.
Disadvantages, there is a problem with unreachable execution paths.Securify – Source code 4 Yes

Fuzzing

ConFuzzius – Bytecode 7 Yes Advantages, different inputs and coverage can be customized.
Disadvantages, it cannot be tested for smart contracts without
source code.

Harvey Program analysis Source code 4 Yes
sFuzz – Bytecode 9 Yes
EVMFuzzer – Bytecode 5 Yes

Other
technology

Slither Program analysis Source code 26 Yes Advantages, the daily overhead is relatively small.
Disadvantages, the detection rate of false positives is high.SmartCheck Program analysis Source code 20 Yes

Deep learning

TMP – Source code 3 Yes

Advantages, no need to manually formulate detection rules.
Disadvantages, the method has the problem of poor
interpretability.

CodeNet – Bytecode 4 No
AME Expert knowledge Source code 3 Yes
CGE Expert knowledge Source code 3 Yes
ContractWard – Bytecode 6 No
DeeSCVHunter – Source code 2 No
6.1.3. Inadequacy of existing vulnerability defense methods
For vulnerability defense of smart contracts, existing research fo-

cuses on two aspects: secure programming and vulnerability remedia-
tion.

Most researchers focus on secure programming in the smart con-
tract language level to reduce the security risk of contracts. Secure
programming is mainly divided into developing a more secure third-
party code base in solidity language and using a more secure language
to write smart contracts. These two methods can reduce the risk of
introducing security vulnerabilities in the development phase of smart
contracts. Still, this approach cannot solve the smart contract vulnera-
bility defense problem. Once these third-party inventories in security
vulnerabilities or new programming language contain vulnerability
flaws, these flaws will impact smart contract security.

In the area of smart contract security, it is important to discover
abnormal contract behavior and flaws in a smart contract. It is even
more challenging to fix contract errors and ensure the correctness of
deployed contracts in a timely manner. Existing smart contract fixes
focus on providing fixes for non-deployed smart contracts and new
smart contract vulnerabilities are constantly being discovered. How-
ever, even if all known vulnerabilities are fixed, these off-chain fixes
cannot help once new vulnerability issues arise for contracts that are
running on Ether. Aroc [90] can fix the deployed contract by bundling
the problematic contract with the patch contract for invocation. Still,
the extendibility is limited because it relies on the repair template
to generate the patch contract. In addition, this method breaches the
tamper-evident property of the contract and the fairness of the contract
participants. How to balance contract security and fairness requires
researchers to conduct more profound research.

We summarize the existing vulnerability remediation tools and
analyze the advantages and disadvantages of these approaches in terms
of the analysis level of the tools, the number of fixable vulnerabilities
and whether they are open source. The results are shown in Table 7.

6.1.4. Inadequacy of existing review studies
Parizi et al. [32] empirically evaluate open source smart contract

detection tools for smart contract vulnerabilities on Ether, including
four tools, i.e., Oyente, Mythril, Security, and SmaerCheck. This review
does not systematically analyze and classify contract vulnerabilities and
detection tools. Sayeed et al. [13] classify smart contract vulnerabilities
into four types using attack principles and systematically analyze seven
14

smart contract vulnerabilities and ten vulnerability detection tools.
Kushwaha et al. [11] systematically review the security vulnerabilities
in the Ethereum blockchain. They discuss the corresponding preven-
tion mechanism by analyzing the existing smart contract vulnerability
attack mechanism, and analyze 25 vulnerability detection tools.

Compared with the existing review literature, the strength of this pa-
per is that we have conducted a more comprehensive analysis through
three aspects of smart contract security, i.e., vulnerability detection,
vulnerability sources, and vulnerability repair. This paper discusses
security issues and security assurance methods at different stages, from
contract design, implementation, and testing to operation. It summa-
rizes ten mainstream vulnerabilities from three levels: language, virtual
machine, and blockchain. We examine 49 vulnerability injection, de-
tection, and repair methods, and analyze the shortcomings of existing
research results.

6.2. Future research direction

This paper summarizes the following three future research direc-
tions based on our above discussion on the shortcomings of existing
smart contract security methods.

1. Combining secure programming specifications and risk de-
tection blocking. Since smart contracts cannot be changed once
being deployed, it is important to ensure they are secure and
reliable. As the existing smart contract development language
Solidity is in the development stage, many challenges still have
not yet been solved. Developing a more secure programming
specification can reduce the contract security risk in the de-
velopment stage. In addition, all-round security testing can be
conducted by means of vulnerability testing for developed and
undeployed smart contracts, and real-time operational monitor-
ing and analysis can be conducted for deployed smart contracts.
Timely security risk detection and blocking for post-deployment
contracts can ensure the security of the contracts at runtime.
Combining secure programming specifications with security risk
blocking ensures the security of smart contracts at all stages,
from design and development to operation.

2. Constructing large-scale and high-diversity baseline vulner-
ability assessment datasets. Due to the existing vulnerability
data collection methods, the constructed benchmark datasets
generally have problems such as insufficient data volume and

uneven distribution of vulnerability types. In order to build a

Information and Software Technology 159 (2023) 107221H. Chu et al.

o
s
s
s
m
a

6

r
l

p
a
H
t
m
s
a

Table 7
Comparison of vulnerability repair tool methods.

Main technology Tools Analysis level Number Open source Method comparison

Off-chain repair

SCRepair Source code 4 Yes
Advantages, uulnerability can be fixed with a specific fix template
Disadvantages, increase gas consumption for new contracts.

SGUARD Source code 4 Yes
SMARTSHIELD Bytecode 3 No
EVMPATCH Bytecode 2 Yes

On-chain repair Aroc Source code 4 No Advantages, it can fix deployed smart contracts.
Disadvantages, it can break the tamper-evident nature of the
contract and affect fairness.
benchmark dataset with a sufficient amount and rich variety
of vulnerability data, we may consider using automatic vul-
nerability injection technologies to improve the quality of the
vulnerability fragments for injection and ensure the authenticity
of the generated smart contracts under the premise of manually
collecting real smart contract vulnerability data. This approach
avoids the subjectivity of manual construction and enriches the
types of vulnerabilities in the dataset. The final goal is to build
labeled benchmark datasets containing multiple vulnerability
types to facilitate the evaluation of vulnerability detection and
remediation tools.

3. Combining traditional detection methods with deep learn-
ing methods. For the smart contract security problem, most ex-
isting research uses a single traditional or deep learning method
for contract vulnerability detection. To achieve broader coverage
of contract vulnerability detection, we may consider the organic
combination of traditional detection and deep learning methods.
This paradigm can realize targeted extraction of feature infor-
mation for different contract vulnerability features, integration
of the smart contract’s syntax and semantic information, and
construction of a complete contract security analysis framework
for more accurate smart contract security analysis.

4. Combining on-chain and off-chain repair. For well-developed
smart contracts, it is necessary to strengthen the security protec-
tion of smart contracts based on vulnerability repair. The exist-
ing research mainly focuses on how to repair the detected vul-
nerabilities before contract deployment. For the non-deployed
smart contracts, off-chain repair solutions with better perfor-
mance are required to ensure contract security. For the deployed
contracts, on-chain repair technologies need to be further devel-
oped to update the patch contract in real time to ensure contract
security. In this regard, comprehensive contract security repair
frameworks are demanded to protect smart contract security
from both off-chain and on-chain.

Overall, future research on smart contract security can be carried
ut in the above directions, including customizing the corresponding
pecification mechanism for different research goals, creating large-
cale evaluation datasets with reasonable diversity, solving existing
ecurity problems while gradually improving the security of existing
ethods, and fixing vulnerabilities both off-chain and on-chain, to

chieve a full range of smart contract security protection.

.3. Threat to validity

Two potential limitations may exist in the methodology of this
eview: (1) limitations in the scope of the publication search and (2)
ack of accuracy and completeness in the data extraction process.

First, to ensure the fairness of the research literature selection
rocess, we develop a literature search strategy and define keywords
nd search terms that enable us to search for relevant literature.
owever, selecting keywords is somewhat subjective, which may lead

o omitting some relevant studies. In addition, we select a set of
ainstream computer science databases as the sources of the literature

earch to cover as many relevant studies as possible. Nonetheless,
lthough the concept of smart contracts emerged relatively early, the
15
academic research on smart contracts is still in its infancy stage. The
relevant industry websites may contain more current information than
the academic websites. Hence, our findings may have missed some
industry conducted studies. Second, the data extraction results may
be somewhat inaccurate. Due to the short development time of smart
contracts, there is no official specification of vulnerability definition.
Consequently, existing studies have diverse definitions or descriptions
regarding smart contract security problems. When we categorize and
summarize the 45 relevant articles, we find that some studies lack
sufficient information to adequately describe the characteristics of
vulnerabilities. The vulnerability test samples and experimental settings
in some works are also inadequately presented, which can affect the
accuracy of our analysis.

7. Conclusion

This paper surveys the main features of smart contracts and analyzes
the main threats faced by smart contracts at three levels: language,
virtual machine and blockchain. It explores smart contract security
assessment and analysis with a comprehensive set of dimensions. These
include a review of the source of vulnerability data and the existing
ways of collecting vulnerability data, followed by introducing the
progress of existing smart contract security research work on vulnera-
bility injection, vulnerability detection and vulnerability defense. Next,
we analyze the advantages and disadvantages of these research tech-
niques, upon which four future research directions for smart contract
security research are summarized.

Declaration of competing interest

No author associated with this paper has disclosed any potential or
pertinent conflicts which may be perceived to have impending conflict
with this work. For full disclosure statements refer to https://doi.org/
10.1016/j.infsof.2023.107221.

Data availability

The data that has been used is confidential.

Acknowledgment

This work is funded by the National Natural Science Foundation of
China under Grant No.62272145 and No.U21B2016.

References

[1] M. Alharby, A. Van Moorsel, Blockchain-based smart contracts: A systematic
mapping study, 2017, arXiv preprint arXiv:1710.06372.

[2] R. Gupta, S. Tanwar, F. Al-Turjman, P. Italiya, A. Nauman, S.W. Kim, Smart
contract privacy protection using AI in cyber-physical systems: tools, techniques
and challenges, IEEE Access 8 (2020) 24746–24772.

[3] N. Szabo, Formalizing and securing relationships on public networks, First
Monday (1997).

[4] M. Wohrer, U. Zdun, Smart contracts: security patterns in the ethereum ecosys-
tem and solidity, in: 2018 International Workshop on Blockchain Oriented
Software Engineering, IWBOSE, IEEE, 2018, pp. 2–8.

[5] Y. Yuan, F.-Y. Wang, et al., Blockchain: the state of the art and future trends,
Acta Automat. Sinica 42 (4) (2016) 481–494.

https://doi.org/10.1016/j.infsof.2023.107221
https://doi.org/10.1016/j.infsof.2023.107221
https://doi.org/10.1016/j.infsof.2023.107221
http://arxiv.org/abs/1710.06372
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb2
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb2
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb2
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb2
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb2
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb3
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb3
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb3
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb4
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb4
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb4
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb4
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb4
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb5
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb5
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb5

Information and Software Technology 159 (2023) 107221H. Chu et al.
[6] N. Atzei, M. Bartoletti, T. Cimoli, A survey of attacks on ethereum smart contracts
(sok), in: International Conference on Principles of Security and Trust, Springer,
2017, pp. 164–186.

[7] Y. Liu, F.R. Yu, X. Li, H. Ji, V.C. Leung, Blockchain and machine learning for
communications and networking systems, IEEE Commun. Surv. Tutor. 22 (2)
(2020) 1392–1431.

[8] S. Wang, L. Ouyang, Y. Yuan, X. Ni, X. Han, F.-Y. Wang, Blockchain-enabled
smart contracts: architecture, applications, and future trends, IEEE Trans. Syst.
Man Cybern.: Syst. 49 (11) (2019) 2266–2277.

[9] M. Kaulartz, J. Heckmann, Smart contracts–anwendungen der blockchain-
technologie, Comput. Recht 32 (9) (2016) 618–624.

[10] M.I. Mehar, C.L. Shier, A. Giambattista, E. Gong, G. Fletcher, R. Sanayhie, H.M.
Kim, M. Laskowski, Understanding a revolutionary and flawed grand experiment
in blockchain: the DAO attack, J. Cases Inf. Technol. (JCIT) 21 (1) (2019) 19–32.

[11] S.S. Kushwaha, S. Joshi, D. Singh, M. Kaur, H.-N. Lee, Systematic review of
security vulnerabilities in ethereum blockchain smart contract, IEEE Access
(2022).

[12] D. Harz, W. Knottenbelt, Towards safer smart contracts: A survey of languages
and verification methods, 2018, arXiv preprint arXiv:1809.09805.

[13] S. Sayeed, H. Marco-Gisbert, T. Caira, Smart contract: Attacks and protections,
IEEE Access 8 (2020) 24416–24427.

[14] Z. Wang, H. Jin, W. Dai, K.-K.R. Choo, D. Zou, Ethereum smart contract security
research: survey and future research opportunities, Front. Comput. Sci. 15 (2)
(2021) 1–18.

[15] Y. Huang, Y. Bian, R. Li, J.L. Zhao, P. Shi, Smart contract security: A software
lifecycle perspective, IEEE Access 7 (2019) 150184–150202.

[16] O. Sürücü, U. Yeprem, C. Wilkinson, W. Hilal, S.A. Gadsden, J. Yawney, N.
Alsadi, A. Giuliano, A survey on ethereum smart contract vulnerability detection
using machine learning, in: Disruptive Technologies in Information Sciences VI,
Vol. 12117, SPIE, 2022, pp. 110–121.

[17] A.J. Perez, S. Zeadally, Secure and privacy-preserving crowdsensing using smart
contracts: Issues and solutions, Comp. Sci. Rev. 43 (2022) 100450.

[18] M. Bartoletti, L. Pompianu, An empirical analysis of smart contracts: platforms,
applications, and design patterns, in: International Conference on Financial
Cryptography and Data Security, Springer, 2017, pp. 494–509.

[19] A. Vacca, A. Di Sorbo, C.A. Visaggio, G. Canfora, A systematic literature review
of blockchain and smart contract development: Techniques, tools, and open
challenges, J. Syst. Softw. 174 (2021) 110891.

[20] A.M. Antonopoulos, G. Wood, Mastering Ethereum: Building Smart Contracts and
Dapps, O’reilly Media, 2018.

[21] D. Vujičić, D. Jagodić, S. Ranđić, Blockchain technology, bitcoin, and Ethereum:
A brief overview, in: 2018 17th International Symposium Infoteh-Jahorina
(Infoteh), IEEE, 2018, pp. 1–6.

[22] S. Corbet, B. Lucey, L. Yarovaya, Datestamping the Bitcoin and Ethereum
bubbles, Finance Res. Lett. 26 (2018) 81–88.

[23] S. Keele, et al., Guidelines for Performing Systematic Literature Reviews in
Software Engineering, tech. rep., Technical report, ver. 2.3 ebse technical report,
ebse, 2007.

[24] M. Petticrew, H. Roberts, Systematic Reviews in the Social Sciences: A Practical
Guide, John Wiley & Sons, 2008.

[25] Computing research and education. https://www.core.edu.au/.
[26] The China Computer Federation. https://www.ccf.org.cn/.
[27] T. Durieux, J.F. Ferreira, R. Abreu, P. Cruz, Empirical review of automated

analysis tools on 47,587 ethereum smart contracts, in: Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering, 2020, pp.
530–541.

[28] H. Chen, M. Pendleton, L. Njilla, S. Xu, A survey on ethereum systems security:
Vulnerabilities, attacks, and defenses, ACM Comput. Surv. 53 (3) (2020) 1–43.

[29] P. Zhang, F. Xiao, X. Luo, A framework and dataset for bugs in ethereum smart
contracts, in: 2020 IEEE International Conference on Software Maintenance and
Evolution, ICSME, IEEE, 2020, pp. 139–150.

[30] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, B. Roscoe, Reguard: finding reentrancy
bugs in smart contracts, in: 2018 IEEE/ACM 40th International Conference on
Software Engineering: Companion (ICSE-Companion), IEEE, 2018, pp. 65–68.

[31] K. Delmolino, M. Arnett, A. Kosba, A. Miller, E. Shi, Step by step towards
creating a safe smart contract: Lessons and insights from a cryptocurrency lab, in:
International Conference on Financial Cryptography and Data Security, Springer,
2016, pp. 79–94.

[32] R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, A. Singh, Empirical vulnerability
analysis of automated smart contracts security testing on blockchains, 2018,
arXiv preprint arXiv:1809.02702.

[33] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, A. Hobor, Finding the greedy, prodigal,
and suicidal contracts at scale, in: Proceedings of the 34th Annual Computer
Security Applications Conference, 2018, pp. 653–663.

[34] B. Jiang, Y. Liu, W.K. Chan, Contractfuzzer: Fuzzing smart contracts for vulnera-
bility detection, in: 2018 33rd IEEE/ACM International Conference on Automated
Software Engineering, ASE, IEEE, 2018, pp. 259–269.

[35] G. Wood, et al., Ethereum: A secure decentralised generalised transaction ledger,
Ethereum Proj. Yellow Pap. 151 (2014) (2014) 1–32.
16
[36] J. Feist, G. Grieco, A. Groce, Slither: a static analysis framework for smart
contracts, in: 2019 IEEE/ACM 2nd International Workshop on Emerging Trends
in Software Engineering for Blockchain, WETSEB, IEEE, 2019, pp. 8–15.

[37] M. Di Angelo, G. Salzer, A survey of tools for analyzing ethereum smart
contracts, in: 2019 IEEE International Conference on Decentralized Applications
and Infrastructures, DAPPCON, IEEE, 2019, pp. 69–78.

[38] E.B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, M. Virza,
Zerocash: Decentralized anonymous payments from bitcoin, in: 2014 IEEE
Symposium on Security and Privacy, IEEE, 2014, pp. 459–474.

[39] SmartContractSecurity. Smart contract weakness classification and test cases.
https://swcregistry.io/.

[40] Examples of solidity security issues. https://github.com/crytic/not-so-smart-
contracts.

[41] The NCC Group. https://www.nccgroup.com/.
[42] Decentralized application security project. https://dasp.co/.
[43] Y. Zhuang, Z. Liu, P. Qian, Q. Liu, X. Wang, Q. He, Smart contract vulnerability

detection using graph neural network, in: IJCAI, 2020, pp. 3283–3290.
[44] A. Ghaleb, K. Pattabiraman, How effective are smart contract analysis tools?

evaluating smart contract static analysis tools using bug injection, in: Proceedings
of the 29th ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2020, pp. 415–427.

[45] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, A. Hobor, Making smart contracts
smarter, in: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016, pp. 254–269.

[46] C.F. Torres, J. Schütte, R. State, Osiris: Hunting for integer bugs in ethereum
smart contracts, in: Proceedings of the 34th Annual Computer Security
Applications Conference, 2018, pp. 664–676.

[47] T. Chen, X. Li, X. Luo, X. Zhang, Under-optimized smart contracts devour
your money, in: 2017 IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering, SANER, IEEE, 2017, pp. 442–446.

[48] B. Mueller, Smashing ethereum smart contracts for fun and real profit, in: HITB
SECCONF Amsterdam, Vol. 9, 2018, p. 54.

[49] B. Jiang, Y. Chen, D. Wang, I. Ashraf, W. Chan, WANA: Symbolic execution
of wasm bytecode for extensible smart contract vulnerability detection, in: 2021
IEEE 21st International Conference on Software Quality, Reliability and Security,
QRS, IEEE, 2021, pp. 926–937.

[50] R. Yu, J. Shu, D. Yan, X. Jia, ReDetect: Reentrancy vulnerability detection in
smart contracts with high accuracy, in: 2021 17th International Conference on
Mobility, Sensing and Networking, MSN, IEEE, 2021, pp. 412–419.

[51] A. Wang, H. Wang, B. Jiang, W.K. Chan, Artemis: An improved smart contract
verification tool for vulnerability detection, in: 2020 7th International Conference
on Dependable Systems and their Applications, DSA, IEEE, 2020, pp. 173–181.

[52] R. Ji, N. He, L. Wu, H. Wang, G. Bai, Y. Guo, Deposafe: Demystifying the fake
deposit vulnerability in ethereum smart contracts, in: 2020 25th International
Conference on Engineering of Complex Computer Systems, ICECCS, IEEE, 2020,
pp. 125–134.

[53] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist, T. Brun-
son, A. Dinaburg, Manticore: A user-friendly symbolic execution framework for
binaries and smart contracts, in: 2019 34th IEEE/ACM International Conference
on Automated Software Engineering, ASE, IEEE, 2019, pp. 1186–1189.

[54] M. Fu, L. Wu, Z. Hong, F. Zhu, H. Sun, W. Feng, A critical-path-coverage-
based vulnerability detection method for smart contracts, IEEE Access 7 (2019)
147327–147344.

[55] S. Kalra, S. Goel, M. Dhawan, S. Sharma, Zeus: analyzing safety of smart
contracts, in: Network and Distributed System Security Symposium, 2018, pp.
1–12.

[56] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, M. Vechev,
Securify: Practical security analysis of smart contracts, in: Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security, 2018,
pp. 67–82.

[57] Echidna: A fast smart contract fuzzer. https://github.com/crytic/echidna.
[58] C.F. Torres, A.K. Iannillo, A. Gervais, R. State, ConFuzzius: A data dependency-

aware hybrid fuzzer for smart contracts, in: 2021 IEEE European Symposium on
Security and Privacy (EuroS&P), IEEE, 2021, pp. 103–119.

[59] V. Wüstholz, M. Christakis, Harvey: A greybox fuzzer for smart contracts, in:
Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, 2020,
pp. 1398–1409.

[60] T.D. Nguyen, L.H. Pham, J. Sun, Y. Lin, Q.T. Minh, Sfuzz: An efficient adaptive
fuzzer for solidity smart contracts, in: Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, 2020, pp. 778–788.

[61] Y. Huang, B. Jiang, W.K. Chan, EOSFuzzer: Fuzzing EOSIO smart contracts for
vulnerability detection, in: 12th Asia-Pacific Symposium on Internetware, 2020,
pp. 99–109.

[62] Y. Fu, M. Ren, F. Ma, H. Shi, X. Yang, Y. Jiang, H. Li, X. Shi, Evmfuzzer: detect
evm vulnerabilities via fuzz testing, in: Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2019, pp. 1110–1114.

[63] E. Zhou, S. Hua, B. Pi, J. Sun, Y. Nomura, K. Yamashita, H. Kurihara, Security
assurance for smart contract, in: 2018 9th IFIP International Conference on New
Technologies, Mobility and Security, NTMS, IEEE, 2018, pp. 1–5.

http://refhub.elsevier.com/S0950-5849(23)00075-7/sb6
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb6
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb6
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb6
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb6
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb7
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb7
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb7
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb7
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb7
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb8
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb8
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb8
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb8
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb8
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb9
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb9
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb9
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb10
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb10
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb10
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb10
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb10
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb11
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb11
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb11
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb11
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb11
http://arxiv.org/abs/1809.09805
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb13
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb13
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb13
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb14
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb14
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb14
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb14
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb14
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb15
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb15
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb15
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb16
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb16
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb16
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb16
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb16
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb16
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb16
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb17
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb17
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb17
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb18
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb18
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb18
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb18
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb18
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb19
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb19
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb19
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb19
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb19
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb20
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb20
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb20
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb21
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb21
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb21
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb21
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb21
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb22
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb22
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb22
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb23
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb23
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb23
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb23
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb23
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb24
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb24
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb24
https://www.core.edu.au/
https://www.ccf.org.cn/
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb27
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb27
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb27
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb27
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb27
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb27
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb27
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb28
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb28
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb28
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb29
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb29
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb29
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb29
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb29
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb30
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb30
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb30
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb30
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb30
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb31
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb31
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb31
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb31
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb31
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb31
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb31
http://arxiv.org/abs/1809.02702
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb33
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb33
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb33
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb33
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb33
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb34
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb34
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb34
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb34
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb34
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb35
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb35
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb35
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb36
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb36
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb36
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb36
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb36
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb37
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb37
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb37
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb37
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb37
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb38
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb38
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb38
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb38
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb38
https://swcregistry.io/
https://github.com/crytic/not-so-smart-contracts
https://github.com/crytic/not-so-smart-contracts
https://github.com/crytic/not-so-smart-contracts
https://www.nccgroup.com/
https://dasp.co/
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb43
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb43
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb43
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb44
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb44
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb44
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb44
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb44
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb44
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb44
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb45
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb45
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb45
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb45
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb45
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb46
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb46
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb46
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb46
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb46
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb47
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb47
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb47
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb47
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb47
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb48
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb48
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb48
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb49
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb49
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb49
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb49
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb49
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb49
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb49
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb50
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb50
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb50
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb50
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb50
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb51
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb51
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb51
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb51
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb51
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb52
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb52
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb52
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb52
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb52
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb52
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb52
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb53
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb53
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb53
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb53
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb53
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb53
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb53
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb54
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb54
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb54
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb54
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb54
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb55
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb55
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb55
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb55
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb55
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb56
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb56
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb56
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb56
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb56
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb56
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb56
https://github.com/crytic/echidna
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb58
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb58
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb58
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb58
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb58
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb59
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb59
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb59
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb59
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb59
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb59
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb59
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb60
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb60
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb60
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb60
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb60
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb61
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb61
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb61
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb61
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb61
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb62
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb62
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb62
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb62
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb62
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb62
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb62
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb63
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb63
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb63
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb63
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb63

Information and Software Technology 159 (2023) 107221H. Chu et al.
[64] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko,
Y. Alexandrov, Smartcheck: Static analysis of ethereum smart contracts, in:
Proceedings of the 1st International Workshop on Emerging Trends in Software
Engineering for Blockchain, 2018, pp. 9–16.

[65] W.J.-W. Tann, X.J. Han, S.S. Gupta, Y.-S. Ong, Towards safer smart contracts: A
sequence learning approach to detecting security threats, 2018, arXiv preprint
arXiv:1811.06632.

[66] J.-W. Liao, T.-T. Tsai, C.-K. He, C.-W. Tien, Soliaudit: Smart contract vulnerability
assessment based on machine learning and fuzz testing, in: 2019 Sixth Interna-
tional Conference on Internet of Things: Systems, Management and Security,
IOTSMS, IEEE, 2019, pp. 458–465.

[67] A.K. Gogineni, S. Swayamjyoti, D. Sahoo, K.K. Sahu, R. Kishore, Multi-class
classification of vulnerabilities in smart contracts using AWD-LSTM, with pre-
trained encoder inspired from natural language processing, IOP SciNotes 1 (3)
(2020) 035002.

[68] Z. Liu, P. Qian, X. Wang, Y. Zhuang, L. Qiu, X. Wang, Combining graph neural
networks with expert knowledge for smart contract vulnerability detection, IEEE
Trans. Knowl. Data Eng. (2021).

[69] K. Zhou, J. Cheng, H. Li, Y. Yuan, L. Liu, X. Li, SC-VDM: A lightweight smart
contract vulnerability detection model, in: International Conference on Data
Mining and Big Data, Springer, 2021, pp. 138–149.

[70] M. Eshghie, C. Artho, D. Gurov, Dynamic vulnerability detection on smart
contracts using machine learning, in: Evaluation and Assessment in Software
Engineering, 2021, pp. 305–312.

[71] W. Wang, J. Song, G. Xu, Y. Li, H. Wang, C. Su, Contractward: Automated
vulnerability detection models for ethereum smart contracts, IEEE Trans. Netw.
Sci. Eng. 8 (2) (2020) 1133–1144.

[72] J. Song, H. He, Z. Lv, C. Su, G. Xu, W. Wang, An efficient vulnerability detection
model for ethereum smart contracts, in: International Conference on Network and
System Security, Springer, 2019, pp. 433–442.

[73] N. Ashizawa, N. Yanai, J.P. Cruz, S. Okamura, Eth2Vec: learning contract-wide
code representations for vulnerability detection on ethereum smart contracts, in:
Proceedings of the 3rd ACM International Symposium on Blockchain and Secure
Critical Infrastructure, 2021, pp. 47–59.

[74] F. Mi, Z. Wang, C. Zhao, J. Guo, F. Ahmed, L. Khan, VSCL: Automating
vulnerability detection in smart contracts with deep learning, in: 2021 IEEE
International Conference on Blockchain and Cryptocurrency, ICBC, IEEE, 2021,
pp. 1–9.

[75] S.-J. Hwang, S.-H. Choi, J. Shin, Y.-H. Choi, CodeNet: Code-targeted convolu-
tional neural network architecture for smart contract vulnerability detection,
IEEE Access 10 (2022) 32595–32607.
17
[76] O. Lutz, H. Chen, H. Fereidooni, C. Sendner, A. Dmitrienko, A.R. Sadeghi, F.
Koushanfar, ESCORT: ethereum smart contracts vulnerability detection using
deep neural network and transfer learning, 2021, arXiv preprint arXiv:2103.
12607.

[77] H. Wu, Z. Zhang, S. Wang, Y. Lei, B. Lin, Y. Qin, H. Zhang, X. Mao, Peculiar:
Smart contract vulnerability detection based on crucial data flow graph and pre-
training techniques, in: 2021 IEEE 32nd International Symposium on Software
Reliability Engineering, ISSRE, IEEE, 2021, pp. 378–389.

[78] H. Liu, C. Liu, W. Zhao, Y. Jiang, J. Sun, S-gram: towards semantic-aware security
auditing for ethereum smart contracts, in: 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering, ASE, IEEE, 2018, pp. 814–819.

[79] X. Yu, H. Zhao, B. Hou, Z. Ying, B. Wu, DeeSCVHunter: A deep learning-based
framework for smart contract vulnerability detection, in: 2021 International Joint
Conference on Neural Networks, IJCNN, IEEE, 2021, pp. 1–8.

[80] Y. Zhang, D. Liu, Toward vulnerability detection for ethereum smart contracts
using graph-matching network, Future Internet 14 (11) (2022) 326.

[81] J. Ye, M. Ma, Y. Lin, L. Ma, Y. Xue, J. Zhao, Vulpedia: Detecting vulnerable
ethereum smart contracts via abstracted vulnerability signatures, J. Syst. Softw.
192 (2022) 111410.

[82] J. Huang, K. Zhou, A. Xiong, D. Li, Smart contract vulnerability detection model
based on multi-task learning, Sensors 22 (5) (2022) 1829.

[83] J. Cai, B. Li, J. Zhang, X. Sun, B. Chen, Combine sliced joint graph with graph
neural networks for smart contract vulnerability detection, J. Syst. Softw. 195
(2023) 111550.

[84] Vyper. https://vyper.readthedocs.io/.
[85] DAML. www.digitalasset.com.
[86] X.L. Yu, O. Al-Bataineh, D. Lo, A. Roychoudhury, Smart contract repair, ACM

Trans. Softw. Eng. Methodol. (TOSEM) 29 (4) (2020) 1–32.
[87] T.D. Nguyen, L.H. Pham, J. Sun, SGUARD: towards fixing vulnerable smart

contracts automatically, in: 2021 IEEE Symposium on Security and Privacy, SP,
IEEE, 2021, pp. 1215–1229.

[88] Y. Zhang, S. Ma, J. Li, K. Li, S. Nepal, D. Gu, Smartshield: Automatic smart
contract protection made easy, in: 2020 IEEE 27th International Conference on
Software Analysis, Evolution and Reengineering, SANER, IEEE, 2020, pp. 23–34.

[89] M. Rodler, W. Li, G.O. Karame, L. Davi, {Evmpatch}: Timely and automated
patching of ethereum smart contracts, in: 30th USENIX Security Symposium
(USENIX Security 21), 2021, pp. 1289–1306.

[90] H. Jin, Z. Wang, M. Wen, W. Dai, Y. Zhu, D. Zou, Aroc: An automatic repair
framework for on-chain smart contracts, IEEE Trans. Softw. Eng. (2021).

http://refhub.elsevier.com/S0950-5849(23)00075-7/sb64
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb64
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb64
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb64
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb64
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb64
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb64
http://arxiv.org/abs/1811.06632
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb66
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb66
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb66
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb66
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb66
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb66
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb66
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb67
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb67
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb67
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb67
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb67
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb67
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb67
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb68
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb68
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb68
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb68
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb68
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb69
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb69
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb69
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb69
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb69
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb70
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb70
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb70
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb70
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb70
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb71
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb71
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb71
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb71
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb71
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb72
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb72
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb72
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb72
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb72
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb73
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb73
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb73
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb73
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb73
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb73
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb73
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb74
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb74
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb74
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb74
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb74
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb74
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb74
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb75
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb75
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb75
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb75
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb75
http://arxiv.org/abs/2103.12607
http://arxiv.org/abs/2103.12607
http://arxiv.org/abs/2103.12607
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb77
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb77
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb77
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb77
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb77
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb77
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb77
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb78
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb78
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb78
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb78
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb78
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb79
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb79
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb79
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb79
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb79
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb80
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb80
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb80
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb81
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb81
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb81
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb81
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb81
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb82
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb82
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb82
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb83
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb83
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb83
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb83
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb83
https://vyper.readthedocs.io/
http://www.digitalasset.com
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb86
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb86
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb86
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb87
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb87
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb87
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb87
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb87
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb88
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb88
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb88
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb88
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb88
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb89
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb89
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb89
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb89
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb89
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb90
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb90
http://refhub.elsevier.com/S0950-5849(23)00075-7/sb90

	A survey on smart contract vulnerabilities: Data sources, detection and repair
	Introduction
	Related Work
	Background
	Smart Contracts
	Ethereum
	Smart Contract Security

	Overview Methodology
	Research Questions
	Literature Search
	Comprehensive Search
	Literature Screening

	Quality Evaluation
	Paper Distribution

	Findings
	Existing Security Issues
	Solidity language level
	Virtual Machine Level
	Blockchain Level

	Existing Vulnerability Sources
	Manually Constructed Vulnerabilities
	Manually Collected Vulnerability
	Vulnerability Injection Method
	Summary

	Contract Security Detection Methods
	Symbolic Execution
	Formal Verification
	Fuzzing
	Other Traditional Technology
	Deep Learning-based Approaches
	Summary

	Vulnerability Defense Method
	Secure Programming
	Vulnerability Repair
	Summary

	Discussion
	Inadequacy of Existing Research
	Inadequacy of Data Sources
	Inadequacy of Existing Vulnerability Detection Methods
	Inadequacy of Existing Vulnerability Defense Methods
	Inadequacy of Existing Review Studies

	Future Research Direction
	Threat to Validity

	Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgment
	References

