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A B S T R A C T

The class imbalance problem significantly hinders the ability of the software defect prediction (SDP) models
to distinguish between defective (minority class) and non-defective (majority class) software instances. Recent
studies on the data resampling technique have shown that Random UnderSampling (RUS) is more effective than
several complex oversampling techniques at alleviating this problem. However, RUS blindly removes majority
class instances, leading to significant information loss. These studies have also pointed out that the conventional
termination condition (i.e., terminating the data resampling technique when the number of instances for both
the minority and majority classes are the same) of the data resampling technique can result in suboptimal
performance.

In fact, the undersampling technique can be likened to a recommender system or a web search engine
that recommends majority class instances to SDP models. Therefore, we propose the Learning-To-Rank
Undersampling technique (LTRUS). Our work is novel in two aspects: (1) We consider the undersampling
process as a learning-to-rank task, optimizing a linear model to rank majority class instances and remove
them from the bottom of the rank to alleviate the class imbalance problem. (2) We propose two termination
conditions for the undersampling technique, which differ from the conventional termination condition.

LTRUS significantly outperforms RUS, the clustering-based undersampling technique, the complexity-based
oversampling technique, SMOTUNED, and Borderline-SMOTE in terms of F-measure, AUC, and MCC by 8.9%,
7.6%, and 18.0% on average under the conventional termination condition. Furthermore, LTRUS under the two
termination conditions we propose yield similar performance, and both outperform LTRUS and all the other
baselines under the conventional termination condition. The experimental results demonstrate the effectiveness
of LTRUS and indicate that the conventional termination condition for the data resampling technique is
improper.
1. Introduction

Software defect prediction (SDP) relies on machine learning models
that use the historical instances (e.g., classes, files and packages) to
predict whether the instances introduced in the future are defective or
non-defective (Feng, Keung, Zhang, Xiao, & Zhang, 2022; Jin, 2021;
Song & Minku, 2022; Tahir, Bennin, Xiao, & MacDonell, 2021; Yu
et al., 2022). This allows practitioners to allocate their limited testing
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resources effectively to those defect-prone instances based on the pre-
diction (Li et al., 2023; Yu et al., 2023). However, datasets benefiting
from software quality assurance activities (Tian, 2005) have more non-
defective (i.e., majority class) instances than defective (i.e., minority
class) ones. The imbalance between the minority class and majority
class instances makes prediction models focus more on the majority
class instances and ignore the minority class instances, leading to
the degradation in the performance1 of prediction models. This phe-
nomenon is called the class imbalance problem (Feng et al., 2020;
vailable online 3 August 2023
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Feng, Keung, Yu, Xiao, & Zhang, 2021; Japkowicz & Stephen, 2002).
Generally, the techniques to alleviate the class imbalance problem
can be categorized into three types: the cost-sensitive learning tech-
nique (Gupta, Jindal, & Bedi, 2022; Iranmehr, Masnadi-Shirazi, &
Vasconcelos, 2019; Petrides & Verbeke, 2022; Yu et al., 2019), the en-
semble learning technique (Abedin, Guotai, Hajek, & Zhang, 2022; Bai,
Jia, & Capretz, 2022; Chen, Jing, Zhou, Li, & Xu, 2022; Feng, Huang,
& Ren, 2018; Jiang et al., 2021; Jiang, Yu, Gong, & Du, 2022; Wu,
Lin, & Ji, 2018), and the data resampling technique (Bennin, Keung,
Phannachitta, Monden, & Mensah, 2017; Douzas, Bacao, & Last, 2018;
Gao, Zhu, & Zhao, 2022; Maldonado, López, & Vairetti, 2019; Tong,
Lu, Xing, Liu, & Wang, 2022; Zhang et al., 2022). The data resampling
technique (Agrawal & Menzies, 2018; Bennin et al., 2017; Feng et al.,
2020), including the undersampling technique and the oversampling
technique, is commonly used to alleviate the class imbalance problem
in SDP. The undersampling technique removes majority class instances,
while the oversampling technique generates minority class instances to
balance datasets.

Based on Tantithamthavorn and Bennin’s studies (Bennin, Keung,
& Monden, 2019; Tantithamthavorn, Hassan, & Matsumoto, 2020), the
Random UnderSampling technique (RUS), which is the most common
and simplest undersampling technique, outperforms several complex
oversampling techniques in SDP, such as Synthetic Minority Over-
sampling TEchnique (SMOTE) (Chawla, Bowyer, Hall, & Kegelmeyer,
2002), ADAptive SYNthetic sampling technique (ADASYN) (He, Bai,
Garcia, & Li, 2008), and SMOTUNED (Agrawal & Menzies, 2018).
This is because current oversampling techniques generate synthetic
minority class instances that introduce noise into datasets (Feng et al.,
2021). On the contrary, RUS removes majority class instances and
does not introduce any noise. The superiority of RUS motivates us to
explore the undersampling technique for alleviating the class imbalance
problem. However, RUS blindly removes the majority class instances
to balance datasets, which ignores that some instances (e.g., borderline
instances Han, Wang, & Mao, 2005) provide more information to pre-
diction models than others. Removing these instances can significantly
hinder the performance of prediction models, while the removal of
others does not.

In fact, the undersampling technique is similar to a recommender
system (Lu, Wu, Mao, Wang, & Zhang, 2015). It recommends some ma-
jority class instances to SDP models while removing others to alleviate
the class imbalance problem. Therefore, we regard the undersampling
process as a learning-to-rank task and propose the Learning-To-Rank
UnderSampling technique (LTRUS). First, we optimize a linear model
𝑓 (𝑋) to calculate the relevance2 of majority class instances to the
performance of prediction models. These instances are then ranked
in descending order based on the relevance. Finally, LTRUS removes
majority class instances from the bottom of the rank until the final
defect ratio of the dataset is 0.5 (i.e., the number of instances for
both the minority and majority classes are equal). By ranking instances
based on their relevance to the performance of prediction models,
we can avoid the drawback of RUS blindly removing majority class
instances and improve the undersampling technique. Fig. 1 illustrates
the procedure of LTRUS.

Furthermore, a previous study (Agrawal & Menzies, 2018) has sug-
gested that terminating the data resampling technique when the final
defect ratio of datasets reaches 0.5 may be inappropriate. Therefore,
we propose two termination conditions to further improve LTRUS.
The first condition optimizes the final defect ratio, instead of rigidly
setting the number of instances for both classes to be equal. We refer
to LTRUS under this condition as LTRUS-ratio in this work. The second
condition optimizes a threshold. If the relevance of the majority class
instances calculated by the optimized model 𝑓 (𝑋) in LTRUS is larger

2 The higher the relevance of specific majority class instances, the better
he performance of the prediction model trained using these instances.
2

Fig. 1. The illustration of LTRUS.

than the optimized threshold, it indicates that these instances are
highly relevant to achieving a good performance of prediction models
and should be preserved. Otherwise, the instances are removed. We
refer to LTRUS under this condition as LTRUS-thres in this study. The
intuition behind LTRUS-thres is that a reasonable termination condition
of the undersampling technique should be one that preserves all the
instances that can improve the performance of prediction models, while
removing those that cannot enhance the performance, regardless of
the final defect ratio. If LTRUS-ratio and LTRUS-thres perform better
than LTRUS, it indicates that the conventional termination condition
of the data resampling technique is improper. We use the differential
evolution algorithm (DE) (Storn & Price, 1997) to optimize the linear
model, the final defect ratio, and the threshold for LTRUS.

We conducted extensive experiments to compare the performance of
LTRUS with several data resampling techniques (i.e., RUS, the compl-
exity-based oversampling technique (COSTE) Feng et al., 2020, the
clustering-based undersampling technique (Cluster) Lin, Tsai, Hu, &
Jhang, 2017, SMOTUNED Agrawal & Menzies, 2018, and Borderline-
SMOTE (Borderline) Han et al., 2005) across 21 datasets collected from
the AEEEM (D’Ambros, Lanza, & Robbes, 2012), Relink (Wu, Zhang,
Kim, & Cheung, 2011), MORPH (Nam & Kim, 2015), SOFTLAB (Blan-
chard & Loubere, 2016), and NASA (Shepperd, Song, Sun, & Mair,
2013) repositories on four common classifiers (i.e., 𝐾-Nearest Neighbor
(KNN), Random Forest (RF), Logistic Regression (LR), and Naive Bayes
(NB)). Our experimental results show that LTRUS significantly outper-
forms the baselines by 8.9%, 7.6%, and 18.0% in terms of F-measure,
the Area Under the ROC Curve (AUC), and the Matthews Correlation
Coefficient (MCC) (Chicco & Jurman, 2020; Song, Guo, & Shepperd,
2018) on average under the conventional termination condition.

We have also observed that LTRUS-ratio and LTRUS-thres exhibit
similar performances, with both outperforming LTRUS. However, the
final defect ratios of the datasets processed by LTRUS-ratio and LTRUS-
thres are significantly different. LTRUS-ratio removes more majority
class instances, resulting in greater alleviation of the class imbalance
problem, but also causing more information loss. On the other hand,
LTRUS-thres removes fewer majority class instances, preserving more
information, but it fails to alleviate the class imbalance problem as
effectively as LTRUS-ratio does. This results in a similar performance
and reveals that there is a trade-off inherent in the undersampling
technique.

In summary, our contributions are:

• We propose an effective undersampling technique (LTRUS) and
two termination conditions for LTRUS to alleviate the class imbal-
ance problem. LTRUS learns to rank the majority class instances
based on their relevance to the prediction model, so that less

important instances are removed.
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• We empirically reveal that (1) the conventional termination con-
dition of the undersampling technique is improper, and (2) there
is an undersampling trade-off between removing more major-
ity class instances to balance datasets and preserving more ma-
jority class instances to provide prediction models with more
information.

• We demonstrate the effectiveness of LTRUS and the two termi-
nation conditions. We have open-sourced the implementation of
LTRUS and the datasets we used in this work to facilitate future
studies (https://codeocean.com/capsule/8719212/tree/v1).

The rest of this paper is structured as follows: We introduce the
otivation of our work in Section 2. Section 3 presents the related
ork and background. We provide details of the proposed methodology

n Section 4. In Section 5, we describe the experimental design. The
xperimental results are presented in Section 6. We discuss our work in
ection 7. Finally, Section 8 summarizes our conclusions and suggests
uture work.

. Motivation

There is a major drawback of RUS that prevents its further im-
rovement. RUS ignores the fact that the information provided by
ach majority class instance is different (e.g., borderline instances and
on-borderline instances Han et al., 2005) for prediction models. It
reats each majority class instance equally and randomly removes them.
owever, some majority class instances are indeed less important and

emoving these instances will not significantly hinder the performance
f prediction models. Conversely, some majority class instances are
rucial for prediction models, and removing them could result in signif-
cant performance degradation of prediction models. Therefore, careful
onsideration is required to determine which majority class instances
hould be removed to improve an undersampling technique.

Essentially, deciding which majority class instances to be removed
y the undersampling technique is similar to some learning-to-rank
asks such as a recommender system (Lu et al., 2015) or a web search
ngine (Karmaker Santu, Sondhi, & Zhai, 2017) to some extent. For
xample, a sound recommender system can recommend more suitable
roducts to users. Prediction models in SDP are like users searching
or instances that can improve their performance, while majority class
nstances are like products that meet the requirement of prediction
odels to varying degrees. Meanwhile, the undersampling technique

s like a recommender system to decide which majority class instances
hould be recommended to prediction models. Therefore, in this study,
e regard the undersampling process as a learning-to-rank task and
ropose a novel undersampling technique called the Learning-To-Rank
nderSampling technique (LTRUS).

Additionally, considering two imbalanced datasets, one includes
ajority class instances that provide redundant information to pre-
iction models, while the other one does not. If we apply the un-
ersampling technique to these two datasets and rigidly set the final
efect ratios of both datasets as 0.5, the latter dataset will lose more
nformation compared to the former one. Therefore, we propose the
ermination condition of optimizing the final defect ratio of LTRUS,
nstead of rigidly setting the final defect ratio as 0.5.

Another novel termination condition is also proposed. Since we
ptimize a linear model to calculate the relevance of majority class
nstances to the performance of prediction models, we optimize a
hreshold to determine which instances should be removed based on
heir output through the optimized linear model. If the output of
n instance is larger than the optimized threshold, it indicates the
elevance of the instance to the performance of the prediction models
s high, and thus it should be preserved. Otherwise, the instance should
e removed. In this condition, we do not consider the final defect ratio
f the entire dataset. Instead, we focus on each individual instance of
he dataset based on its relevance to the prediction models.
3

c

3. Background and related work

In this section, we introduce the background and studies related to
our work.

3.1. The data resampling technique

Many data resampling techniques have been proposed to alleviate
the class imbalance problem in SDP. Although RUS outperforms many
oversampling techniques, the community focuses more on the oversam-
pling technique than the undersampling technique. SMOTE (Chawla
et al., 2002) randomly generates new instances along a line between
a randomly selected minority class instance and one of its 𝐾 mi-
ority class instances. Based on SMOTE, Han et al. (2005) proposed
orderline-SMOTE (Borderline), which improves SMOTE by only us-

ng the borderline minority class instances to generate synthetic in-
tances. Agrawal and Menzies (2018) proposed an automatic version
f SMOTE named SMOTUNED, which optimizes three hyperparame-
ers of SMOTE automatically. These SMOTE-based oversampling tech-
iques (Feng et al., 2021) all select the minority class instances at a
lose distance to generate the synthetic minority class instances, so that
ess noise is generated. However, the synthetic minority class instances
enerated by those minority class instances at a close distance are
ess diverse, which leads to the over-fitting problem (Bennin et al.,
017; Wong, Leung, & Ling, 2013). Bennin et al. (2017) proposed
AHAKIL to alleviate the over-fitting problem caused by the SMOTE-

ased oversampling techniques. MAHAKIL leverages the Mahalanobis
istance to improve the diversity of the generated instances and thus
vercomes the shortcoming of the SMOTE-based oversampling tech-
iques. However, the Mahalanobis distance cannot be calculated when
he number of the minority class instances is smaller than the number
f their metrics, which however is common in the data used to study
he class imbalance problem, limiting the application of MAHAKIL.
dditionally, the prediction model trained using data preprocessed by
AHAKIL fails to retain the ability to correctly predict the minority

lass instances, making MAHAKIL less practical. Feng et al. (2020) pro-
osed the complexity-based oversampling technique (COSTE), which
enerates diverse instances while maintaining the ability of prediction
odels to find the minority class instances. COSTE is designed to
itigate the class imbalance problem in SDP. Although COSTE can be

pplied to other fields than SDP, it will be less explainable by doing so.
hile the oversampling technique is important in alleviating the class

mbalance problem, it has an unavoidable drawback. The instances gen-
rated by the oversampling technique are automatically classified as the
inority class instances, which is not always true. A recent study con-
ucted by Tarawneh, Hassanat, Altarawneh, and Almuhaimeed (2022)
ecommends stopping the use of the oversampling technique. However,
ur previous study (Feng et al., 2021) indicates that the oversampling
echnique benefits the performance of prediction models, even if some
oise instances may be introduced by the oversampling technique.
his is probably because common classifiers used to build prediction
odels have certain noise-resistant abilities (Feng et al., 2022; Kim,
hang, Wu, & Gong, 2011), making the noise instances generated by
he oversampling technique not significantly impair the performance of
rediction models. Meanwhile, the oversampling technique does indeed
lleviate the class imbalance problem. In aggregate, the performance of
rediction models improves, indicating the oversampling technique still
as a positive effect.

Regarding the undersampling technique, RUS is the most common
nd simplest one. It randomly removes the majority class instances,
uring which useful information provided by some instances may lose.
in et al. (2017) proposed a clustering-based undersampling technique.
his undersampling technique can reduce the risk of removing useful
ata from the majority class. The performance of this technique is better
han that of RUS. This technique leverages the 𝐾-means algorithm to

luster the majority class instances and only retains the center majority

https://codeocean.com/capsule/8719212/tree/v1
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class instances to reduce the size of the majority class. However,
choosing an appropriate 𝐾 value for the 𝐾-means algorithm can be
ifficult. This technique determines the 𝐾 value based on the number
f minority class instances, which likely leads to a clustering result that
iffers from the real distribution of the data.

Agrawal and Menzies (2018), Bennin et al. (2019), Kamei, Mon-
en, Matsumoto, Kakimoto, and Matsumoto (2007), Riquelme, Ruiz,
odríguez, and Moreno (2008), Song et al. (2018), Tan, Tan, Dara, and
ayeux (2015), Tantithamthavorn et al. (2020), and Wang and Yao

2013) have focused on empirically investigating the performance of
ifferent data resampling techniques for SDP. In the two recent studies,
ennin et al. (2019) found that RUS outperformed SMOTE, ADASYN,
orderline, Safe-level SMOTE, and Random OverSampling (ROS) on 40
efect datasets. Tantithamthavorn et al. (2020) found that RUS can
chieve higher recall, AUC, and F1-measure values than SMOTE, ROS,
MOTUNED on 101 defect datasets.

The cost-sensitive learning (Iranmehr et al., 2019; Khan, Hayat,
ennamoun, Sohel, & Togneri, 2017; Yu et al., 2019) and the ensemble

earning technique (Feng et al., 2018; Liu, Wang, Zhang, Chen, &
iang, 2017; Wu et al., 2018) are techniques used from different
ngles to alleviate the class imbalance problem. Some studies further
ombine the data resampling technique with the ensemble learning
echnique (Hassanat et al., 2022; Liu, Wu and Zhou, 2009). However,
e focus on the studies of the data resampling technique in this work
nd thus only use these techniques as baselines.

.2. Learning-to-rank

The learning-to-rank algorithm is normally used to construct a
anking model that produces a desirable rank of objects based on
heir importance, relevance, or preference (Liu et al., 2009; Usta,
ltingovde, Ozcan, & Ulusoy, 2021; Wang, Wu, Qi, & Zhao, 2021).
he learning-to-rank algorithm is commonly applied in recommender
ystems, search engines, answer selections, and other similar areas. The
earning-to-rank algorithm can be further categorized as the pointwise
lgorithm, the pairwise algorithm, and the listwise algorithm. The
ointwise algorithm directly predicts the number of defects or defect
ensity of instances and ranks the instances based on their predicted
alues (Kamei et al., 2012; Ohlsson & Alberg, 1996). The pairwise
lgorithm predicts the relationship between any two instances (Nguyen,
n, Hai, & Phuong, 2014; Yu et al., 2019). For example, there are three

nstances A, B, and C. The pairwise algorithm predicts that the rank of
is higher than that of B, and the rank of B is higher than that of

. Therefore, the final rank of A, B, and C becomes A > B > C. The
istwise algorithm directly ranks all instances as a list by optimizing
erformance measures (Yang, Tang, & Yao, 2014).

In this study, we construct the rank of the majority class instances
ased on their relevance to the performance of prediction models. We
reserve the instances that rank high and remove the bottom instances
o alleviate the class imbalance problem.

.3. The differential evolution algorithm

DE is an evolutionary algorithm proposed by Storn and Price (1997)
hat is based on the mutation, crossover and selection operations to
xplore the optimal solution that best fits a fitness function. The steps
f DE are briefly outlined below:

First, DE initializes a group of candidate solutions. Each solution is
vector, and the range of each feature of this vector is limited by a

redefined minimum and maximum bound. Then, the mutant vector is
enerated by perturbing the candidate vector based on a scaling factor.
fter the mutation operation, the crossover operation is applied to

ncrease the diversity of the vector based on the crossover rate. Finally,
he vector that best fits the fitness function is recorded as a new member
f the next generation. The process is iterated until the stop criterion
f DE is met, and the best-performing candidate is selected as the final
4

olution. 𝐴
. Methodology

In this section, we describe the Learning-To-Rank UnderSampling
echnique (LTRUS).

.1. LTRUS

Our goal is to build a model that can correctly rank the majority
lass instances so that instances less relevant to the performance of
rediction models are removed from the rank to alleviate the class im-
alance problem in SDP. Weyuker, Ostrand, and Bell (2010) concludes
hat linear models are good and realistic enough for SDP; therefore, we
uild a linear model for the majority class instances, given by:

(𝑋) = 𝐴 ⋅𝑋 =
𝑑
∑

𝑖=1
𝛼𝑖𝑥𝑖, (1)

where 𝑋 ∈ 𝐑𝑑×1 represents the feature vector of majority class in-
stances from a dataset, 𝑥𝑖 is the 𝑖th feature of 𝑋, 𝑑 is the dimension
of 𝑋, 𝐴 ∈ 𝐑1×𝑑 is the weight vector, and 𝛼𝑖 is the corresponding

eight of the feature 𝑥𝑖 to be optimized. We employ DE to optimize
he weight vector. For an evolutionary algorithm, a fitness function
eeds to be set. In this study, we designated the fitness function
o maximize the Matthews Correlation Coefficient (MCC) (Chicco &
urman, 2020) values of prediction models. The MCC, being an un-
iased performance metric, offers a superior reflection of the overall
erformance of prediction models (Song et al., 2018) on the whole
ata of each dataset. Upon determining the optimized model 𝑓 (𝑋),

we apply it to each majority class instance to obtain a correspond-
ing numerical value. Subsequently, we rank these instances based on
these numerical values. As the optimization of 𝑓 (𝑋) is tailored to

aximize the performance of prediction models, the numerical value
erived from each majority class instance can provide insights into
ts relevance to model performance. Instances ranked higher correlate
ith superior model performance, while lower-ranked instances are

ess impactful. Removing the lower-ranked majority class instances
hus results in an insignificant impact on model performance, whilst
uccessfully addressing the class imbalance problem.

Fig. 2 shows an illustration of LTRUS, where 𝐴𝑁 represents the
andidate solution generated by DE, and 𝐴 represents the final optimal
olution for the linear model 𝑓 (𝑋) of LTRUS. 𝑋1, 𝑋2, 𝑋3, 𝑋4, and 𝑋5
epresent the majority class instances in the dataset. Upon determining
, LTRUS performs a dot product operation on 𝐴 with each instance

i.e., 𝐴 ⋅𝑋1, 𝐴 ⋅𝑋2, 𝐴 ⋅𝑋3, 𝐴 ⋅𝑋4, and 𝐴 ⋅𝑋5), producing a numerical
alue for each. These instances, 𝑋1, 𝑋2, 𝑋3, 𝑋4, and 𝑋5, are then
anked by LTRUS based on their respective numerical values. The
olored instances in Fig. 2 represent the instances to be removed as they
re ranked bottom and less relevant to the performance of prediction
odels.

The next subsections present the detailed steps of LTRUS.

.1.1. Generate candidate solutions
DE in LTRUS first randomly generates 𝑁 vectors 𝐴(𝐺)

𝑖 at generation
G) = 0, where 𝑁 is an integer hyperparameter predefined by users.
hese 𝑁 vectors 𝐴(𝐺)

𝑖 constitute a population. Each vector 𝐴(𝐺)
𝑖 will be

een as a candidate solution for Eq. (1) in LTRUS. The dimension 𝑑 of
(𝐺)
𝑖 equals to the dimension of 𝑋.
(𝐺)
𝑖 = (𝛼(𝐺)

𝑖,1 , 𝛼(𝐺)
𝑖,2 ,… , 𝛼(𝐺)

𝑖,𝑑 ), (2)

here 𝛼(𝐺)
𝑖,𝑑 is each feature of 𝐴(𝐺)

𝑖 to be optimized. There is a maximum
ound and a minimum bound limiting the initial value of each feature
f 𝐴(𝐺)

𝑖 . The following is the maximum bound:

(𝐺)
𝑚𝑎𝑥 = (𝛼(𝐺)

𝑚𝑎𝑥,1, 𝛼
(𝐺)
𝑚𝑎𝑥,2,… , 𝛼(𝐺)

𝑚𝑎𝑥,𝑑 ), (3)

nd the minimum bound is
(𝐺) (𝐺) (𝐺) (𝐺)

𝑚𝑖𝑛 = (𝛼𝑚𝑖𝑛,1, 𝛼𝑚𝑖𝑛,2,… , 𝛼𝑚𝑖𝑛,𝑑 ). (4)
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The bound for each feature is the same. The value of the 𝑗th feature
of 𝐴(𝐺)

𝑖 is initialized according to the following equation:

𝛼(𝐺)
𝑖,𝑗 = 𝛼(𝐺)

𝑚𝑖𝑛,𝑗 + 𝑟𝑎𝑛𝑑 ∗ (𝛼(𝐺)
𝑚𝑎𝑥,𝑗 − 𝛼(𝐺)

𝑚𝑖𝑛,𝑗 ), (5)

where 𝑟𝑎𝑛𝑑 is a random value ranging from 0 to 1.

4.1.2. Operate on the population
To increase the diversity of the population, the mutation operation

is applied to the vectors. The mutant vector is generated by performing
operations on 𝐴(𝐺)

𝑖 .

𝑉 (𝐺+1)
𝑖 = 𝐴(𝐺)

𝑟1
+ 𝐹 ∗ (𝐴(𝐺)

𝑟2
− 𝐴(𝐺)

𝑟3
), (6)

where 𝐴(𝐺)
𝑟1 , 𝐴(𝐺)

𝑟2 , and 𝐴(𝐺)
𝑟3 are randomly chosen from 𝑁 vectors of the

opulation. 𝐹 is the scaling factor.
Then a trial vector is introduced to further increase the diversity.

(𝐺+1)
𝑖 = (𝑢(𝐺+1)

𝑖,1 , 𝑢(𝐺+1)
𝑖,2 ,… , 𝑢(𝐺+1)

𝑖,𝑑 ). (7)

Each feature 𝑢(𝐺+1)
𝑖,𝑗 of the trial vector 𝑈 (𝐺+1)

𝑖 is calculated according
o the following crossover operation:

(𝐺+1)
𝑖,𝑗 =

{

𝑣(𝐺+1)
𝑖,𝑗 if (𝑟𝑎𝑛𝑑𝑏(𝑗) ≤ CR) or 𝑗 = 𝑟𝑛𝑏𝑟(𝑖)

𝛼(𝐺)
𝑖,𝑗 if (𝑟𝑎𝑛𝑑𝑏(𝑗) > CR) and 𝑗 ≠ 𝑟𝑛𝑏𝑟(𝑖)

. (8)

n Eq. (8), 𝑣(𝐺+1)
𝑖,𝑗 is the 𝑗th feature of the 𝑖th mutant vector. 𝐶𝑅 is

hyperparameter controlling the crossover rate. 𝑟𝑎𝑛𝑑𝑏(𝑗) is randomly
enerated between 0 and 1. 𝑟𝑛𝑏𝑟(𝑖) is also randomly generated to decide
he value of the feature 𝑢(𝐺+1)

𝑖,𝑗 .

.1.3. Select the final solution
Finally, if the trial vector 𝑈 (𝐺+1)

𝑖 performs better than 𝐴(𝐺)
𝑖 , it will

replace 𝐴(𝐺)
𝑖 as a new candidate solution for the next generation of the

population. When DE converges, LTRUS will select the best-performing
candidate 𝐴 as the final solution and the model 𝑓 (𝑋) is finally built.

4.1.4. Apply to the imbalanced dataset
Then, the majority class instances in the imbalanced dataset are fed

into 𝑓 (𝑋). Based on the outputs of 𝑓 (𝑋), the instances are ranked in
descending order and the majority class instances are removed from
the bottom. The termination condition of LTRUS is the same as the
conventional data resampling technique. The termination condition
means that the technique is terminated once the condition is met.
LTRUS terminates when the number of the majority class is equal to the
number of the minority class instances (i.e., the termination condition
of LTRUS). Fig. 1 shows a dataset including 5 majority class instances
(A, B, C, D, and E) and 3 minority class instances (F, G, and H). The
5

majority class instances A, B, C, D, and E are fed into 𝑓 (𝑋), and then
the rank of these majority class instances is generated. To achieve
the balance of the dataset, we remove the bottom instances E and A.
Finally, we apply the instances B, C, D, F, G, and H to classifiers to
train prediction models. Notably, the optimal linear model 𝑓 (𝑋) is only
used to rank the majority class instances. It is not the prediction model.
Additionally, the values of each feature of the majority class instances
are not changed by the optimal weight 𝛼𝑖 throughout the whole process.

e can see that the dataset is balanced after applying LTRUS.

.2. LTRUS-ratio

Compared with LTRUS, LTRUS-ratio optimizes one additional pa-
ameter (i.e., the final defect ratio) as the termination condition. Unlike
TRUS, whose termination condition is that the number of majority
lass instances is the same as the number of minority class instances
i.e., the dataset is perfectly balanced), LTRUS-ratio removes the ma-
ority class instances from the bottom of the rank until the final defect
atio meets the optimized defect ratio. Then, LTRUS-ratio is terminated.

.3. LTRUS-thres

LTRUS-thres optimizes another parameter (i.e., the threshold) as
he termination condition, which is different from LTRUS-ratio. When
ach majority class instance is fed into 𝑓 (𝑋), its corresponding output
rom 𝑓 (𝑋) is obtained. If the output of a given majority class instance
s greater than the optimized threshold, the instance is preserved.
therwise, it is removed.

.4. Hyperparameter configuration

In LTRUS, we set the number 𝑁 of the initial candidate solutions as
en times the dimension 𝑑 of an instance by convention. The number

of the generations is set as ten, as convergence is achieved on all
lassifiers with no more than ten generations. The maximum bound
𝑚𝑎𝑥,𝑑 and the minimum bound 𝛼𝑚𝑖𝑛,𝑑 are respectively set as 1 and -
. Different combinations of the scaling factor 𝐹 and the crossover
ate 𝐶𝑅 are tried. Experimentally, we set the scaling factor as 0.3
nd the crossover rate as 0.9 to achieve satisfactory performance with
he least execution time. Besides the hyperparameters in LTRUS, we
et the range of the final defect ratio to be optimized from 0 to 1 in
TRUS-ratio and the range of the threshold to be optimized from −𝑑
o 𝑑 in LTRUS-thres, where 𝑑 is the vector dimension of an instance.
his setting is because we perform the min–max normalization across
ach feature vector of instances, which means the outputs of 𝑓 (𝑋)
ill be neither larger than 𝑑 nor smaller than −𝑑. The details of the
yperparameter configuration are shown in Table 1.
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Table 1
Hyperparameter configuration.

Hyperparameters Values

The candidate solutions, 𝑁 10 × 𝑑
The number of generations, 𝐺 10
The scaling factor, 𝐹 0.3
The crossover rate, 𝐶𝑅 0.9
The minimum bound 𝛼𝑚𝑖𝑛,𝑑 −1
The maximum bound 𝛼𝑚𝑎𝑥,𝑑 1
The final defect ratio for LTRUS-ratio (0, 1)
The threshold for LTRUS-thres (−𝑑, 𝑑)

5. Experimental design

This section presents the baseline techniques, the information of
the datasets, the classifiers, the performance measures, the detailed
experimental procedure, and the statistical test.

5.1. Baselines

To investigate the performance of LTRUS for SDP, we compare it
with five baseline techniques, i.e., RUS, Cluster, COSTE, SMOTUNED,
and Borderline. RUS and Borderline are widely used as baseline data
resampling techniques in SDP (Bennin et al., 2017; Feng et al., 2020),
while SMOTUNED and COSTE are recently proposed oversampling
techniques for SDP. SMOTE is the most common baseline in the field
of the class imbalance problem. However, since we adopt SMOTUNED,
which is the automatic version of SMOTE, we do not adopt SMOTE
in this study. The following is a brief introduction to the baseline
techniques.

RUS. RUS is an undersampling technique that randomly removes in-
stances from the majority class and keeps the minority class instances
unchanged until the balance of a dataset is achieved.

Cluster. Cluster leverages the 𝐾-means algorithm to cluster the major-
ty class instances and only reserves the center majority class instances
or each cluster to reduce the size of the majority class. The number
f 𝐾 in the 𝐾-means algorithm is set to be equal to the number of the
inority class instances.

OSTE. COSTE leverages the complexity instead of the distance to aid
n selecting the instances used to generate synthetic instances. The
omplexity is calculated as the weighted sum of each feature. DE is
mployed to explore the optimal weight of the features.

MOTUNED. There are three hyperparameters in SMOTE: the number
of the nearest neighbor minority class instances, the power parameter

f the Minkowski distance metric, and the final defect ratio in a
ataset. SMOTUNED employs DE to explore the optimal values of these
hree hyperparameters. Since SMOTUNED is the automatic version of
MOTE, we adopt SMOTUNED instead of SMOTE as the baseline.

orderline. Borderline puts more focus on the borderline instances,
ecause these instances are more informative. Borderline first randomly
elects one of the borderline instances. Then one of the 𝐾 nearest
eighbor minority class instances of the selected borderline instance is
elected, and one synthetic instance is randomly generated on the line
etween the two selected instances. This procedure is iterated until the
umber of instances for both the minority and majority classes are the
ame.

COSTE and SMOTUNED both employ DE to explore the optimal
alues of the parameters. The fitness functions of DE in the original
OSTE and SMOTUNED are set to maximize the AUC values. In this
tudy, we modify the fitness functions of these two techniques to
6

aximize the MCC values, as LTRUS does, to make a fair comparison.
.2. Datasets

To ensure the generalizability of our experimental result, we utilized
1 imbalanced datasets from the AEEEM (D’Ambros et al., 2012),
eLink (Wu et al., 2011), PROMISE (Menzies et al., 2012), SOFT-
AB (Turhan, Menzies, Bener, & Di Stefano, 2009), and NASA repos-
tories (Shepperd et al., 2013). For the PROMISE repository, there are
ultiple versions for each project. We only used the first version of

ach project (Gong, Jiang, Wang, & Jiang, 2019).
The AEEEM datasets were collected by D’Ambros et al. These

atasets contain the Chidamber and Kemerer (CK) metrics (Chidamber
Kemerer, 1994), the object-oriented (OO) metrics (Basili, Briand, &
elo, 1996), the metric of the previous defect number (Kim, Zimmer-
ann, Whitehead, & Zeller, 2007), the change metrics (Moser, Pedrycz,
Succi, 2008), the complexity code change metrics (Hassan, 2009),

nd the churn and entropy of the CK and OO metrics (D’Ambros, Lanza,
Robbes, 2010). There are 61 metrics in the AEEEM datasets. The

eLink datasets were collected by Wu et al. These datasets contain
6 complexity metrics (e.g. lines of code and number of classes). The
romise datasets contain the CK metrics and the OO metrics. The
umber of metrics in the Promise datasets is 21. The NASA and the
OFTLAB datasets were collected from the National Aeronautics and
pace Administration (NASA) and a Turkish software company, re-
pectively. They share the same metrics which are Halstead (Halstead,
977) and McCabe’s cyclomatic metrics (McCabe, 1976). In addition,
he NASA datasets contain additional metrics such as parameter count
nd percentage of comments. We used the cleaned version (Shepperd
t al., 2013) of the NASA datasets since previous studies have pointed
ut that there are mislabeled instances in the original version.

We present the details of the datasets we utilized in Table 2, where
Instances represents the number of instances in a dataset, and %

efect ratio is the defect ratio of a dataset.

.3. Classifiers

In this study, we adopt four commonly-used classifiers in SDP.
pecifically, 𝐾-nearest neighbor (𝐾-NN), Random Forest (RF), Logis-
ic Regression (LR), and Naive Bayes (NB) are adopted. Many re-
earchers (Feng et al., 2020; Gong et al., 2019) adopted these classifiers
o build prediction models in SDP. We implement these classifiers using
he Sklearn package (Pedregosa et al., 2011) to avoid reinventing the
heel.

.4. Performance measures

Performance measures (e.g., F-measure, the Area Under the ROC
urve (AUC), the Matthews Correlation Coefficient (MCC), and 𝑏𝑎𝑙𝑎𝑛𝑐𝑒)
ot significantly impacted by the class imbalance problem are prefer-
ble in SDP. Generally, defective (i.e., minority class) instances are
egarded as positive, while non-defective (i.e., majority class) instances
re regarded as negative in SDP. For the predicted outcomes of a
rediction model, there are four categories, namely the number of
orrectly predicted positive instances (TP), the number of correctly
redicted negative instances (TN), the number of instances that are
ositive but predicted as negative (FN), and the number of instances
hat are negative but predicted as positive (FP). Then, the performance
easures are calculated based on the outcomes of the confusion ma-

rix (Table 3). In this study, we adopt Recall, Precision, F-measure,
UC, and MCC as performance measures to reflect the performance of
rediction models on the whole data of each dataset.

𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

, (9)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 , (10)

𝑇𝑃 + 𝐹𝑃
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Table 2
Description of 21 datasets.
Group Dataset Language Granularity Number of metrics # Instances % Defect ratio

NASA CM1 C Function 37 327 12.84
NASA MW1 C Function 37 253 10.67
NASA PC1 C Function 37 705 8.65
NASA PC3 C Function 37 1077 12.44
NASA PC4 C Function 37 1287 13.75
SOFTLAB AR1 C Function 29 121 7.44
SOFTLAB AR3 C Function 29 163 12.70
SOFTLAB AR4 C Function 29 107 18.69
SOFTLAB AR5 C Function 29 36 22.22
SOFTLAB AR6 C Function 29 101 14.85
AEEEM Equinox Framework Java Class 61 324 39.81
AEEEM Eclipse JDT core Java Class 61 997 20.66
AEEEM Mylyn Java Class 61 1862 13.16
AEEEM Eclipse PDE UI Java Class 61 1497 13.96
PROMISE ant1.3 Java Class 20 125 16.00
PROMISE camel1.0 Java Class 20 339 3.83
PROMISE jedit3.2 Java Class 20 272 33.09
PROMISE log4j1.0 Java Class 20 135 25.19
PROMISE xalan2.4 Java Class 20 723 15.21
ReLink OpenIntents Safe Java File 26 56 39.29
ReLink ZXing Java File 26 399 29.57
Table 3
Confusion matrix.

Predicted positive
(Minority Class)

Predicted negative
(Majority Class)

Actual positive
(Minority Class)

True Positive (TP) False Negative (FN)

Actual negative
(Majority Class)

False Positive (FP) True Negative (TN)

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
(𝛽2 + 1) × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
, (11)

𝑀𝐶𝐶 = 𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁
√

(𝑇𝑃 + 𝐹𝑃 )(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃 )(𝑇𝑁 + 𝐹𝑁)
(12)

In Eq. (11), we set 𝛽 as 1 to make Eq. (11) become F1-measure.
The higher values of F-measure, MCC, and AUC represent the better
performance of prediction models.

5.5. Experimental procedure

The whole experimental procedure is presented in Fig. 3. We run
the steps in the outermost dotted box 10 times.

(1) First, the min–max method is applied to each dataset to adjust
the range of the features of each instance into 0 to 1, which alleviates
the negative impact of the different magnitudes of the features.

(2) Next, the 5-fold cross-validation with the stratification method is
employed to divide the dataset into five folds. The stratification method
is selected to ensure that the defect ratio in each fold is the same as the
original data.

(3) Four folds are used as the training data, and RUS, Cluster, and
Borderline are applied only to those four folds. The left fold is used as
the testing data to validate the performance of the techniques.

(4) For COSTE, SMOTUNED, LTRUS, LTRUS-ratio, and LTRUS-thres,
the four training folds are further divided into five sub-folds.

(5) The four sub-folds of the five sub-folds are used as the sub-
training data. DE is then applied. Specifically, DE first generates can-
didate solutions for COSTE, SMOTUNED, LTRUS, LTRUS-ratio, and
LTRUS-thres, respectively. The generated candidate solutions for each
technique are then applied to the sub-training data. Next, the sub-
training data processed by the candidate solutions is used to train one
classifier adopted in this study (i.e., the KNN, RF, LR, and NB classifiers)
and build the prediction model. The sub-testing data is used to validate
the performance of the prediction model in terms of MCC. For each
7

candidate solution, this procedure is repeated five times to ensure all
sub-folds are used to train the classifier and validate the performance
of the prediction model. For each iteration of a candidate solution,
an MCC value of the prediction model validated by the sub-testing
data is obtained. After five iterations, the average MCC value for each
candidate solution is calculated. The candidate solution achieving the
highest average MCC value is selected by DE as the optimal parameters
for each technique. Notably, both the sub-training data and the sub-
testing data are generated by dividing the training data. DE is only
employed in this step and is only applied to the training data (Agrawal
& Menzies, 2018).

(6) Once the optimal parameters of COSTE, SMOTUNED, LTRUS,
LTRUS-ratio, and LTRUS-thres are found, these techniques are applied
to the four training folds.

(7) The processed training data is then used to train a new classifier,
which is the same kind of the classifier selected in Step 5 but not the
same one, to build the prediction model. The left testing fold is used
to obtain different performance measures of the prediction model. The
above procedure is repeated five times to ensure each fold is used as
both the training and testing data. Five results of each performance
measure are obtained.

(8) The average value of each performance measure is then calcu-
lated as one outcome.

(9) For the combination of each technique and each classifier on
each dataset, the steps of 1 to 7 are further repeated ten times to
reduce the variance and bias. Ten results of each performance mea-
sure for each dataset are obtained. Lastly, the average value of each
performance measure is calculated based on the ten results, and these
performance measures are used as the evaluation criteria to compare
the performance of each technique. Because 21 datasets are selected
to conduct experiments, 21 results are obtained for each combination
of each technique and each classifier. These results are presented in
Section 6. The default hyperparameters are adopted for all the baseline
techniques.

5.6. Statistical test

To statistically compare the performance of the techniques, we
employ the Wilcoxon signed-rank test (Wilcoxon) (Rey & Neuhäuser,
2011). Wilcoxon is commonly used for pairwise comparison. It is a
non-parametric test. The null hypothesis of Wilcoxon is that the values
are paired and collected from the same distribution. In this study,
we adopt a confidence level of 95%. If the 𝑝-value is less than 0.05,
the null hypothesis is rejected, indicating that the pairwise values are
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Table 4
The performance of LTRUS, RUS, COSTE, SMOTUNED, Borderline, and Cluster on the
selected classifiers across 21 datasets in terms of Recall.

LTRUS RUS COSTE SMOTUNED Borderline Cluster

KNN 0.821 0.666 0.678 0.650 0.631 0.659
𝑝-value <.05 <.05 <.05 <.05 <.05
Cliff’s 𝛿 0.800 0.832 0.633 0.837 0.712
RF 0.810 0.667 0.449 0.496 0.431 0.693
𝑝-value <.05 <.05 <.05 <.05 <.05
Cliff’s 𝛿 0.909 0.995 0.946 0.995 0.628
LR 0.813 0.675 0.661 0.591 0.631 0.687
𝑝-value <.05 <.05 <.05 <.05 <.05
Cliff’s 𝛿 0.628 0.660 0.692 0.694 0.605
NB 0.679 0.534 0.514 0.516 0.506 0.604
𝑝-value <.05 <.05 <.05 <.05 >.05
Cliff’s 𝛿 0.488 0.528 0.512 0.537 0.152

from different distributions, and that there exists statistical significance
between the pairwise values. Otherwise, the null hypothesis cannot be
rejected.

Besides, we employ the effect size (i.e., Cliff’s 𝛿) (Macbeth, Razu-
miejczyk, & Ledesma, 2011) to quantify the difference between differ-
ent techniques. We follow the way that Kampenes, Dybå, Hannay, and
Sjøberg (2007) interprets the effect size. The effect size is negligible (0
< Cliff’s 𝛿 < 0.147), small (0.147 < Cliff’s 𝛿 < 0.33), medium (0.33 <
Cliff’s 𝛿 < 0.474) or large (Cliff’s 𝛿 > 0.474), respectively.

Finally, we employ the win-draw-loss strategy. We record the MCC
alues of each technique and present whether LTRUS performs better
r worse than every other technique across each dataset.

. Experimental results

In this section, we present the experimental results by answering
he research question.

.1. RQ1: How is the performance of LTRUS compared with the baselines

Table 4 shows the Recall values of each technique, with LTRUS
erforming the best across all four classifiers. It significantly outper-
8

orms all the baselines with practical effect sizes. The only exception is
Table 5
The performance of LTRUS, RUS, COSTE, SMOTUNED, Borderline, and Cluster on the
selected classifiers across 21 datasets in terms of Precision.

LTRUS RUS COSTE SMOTUNED Borderline Cluster

KNN 0.375 0.353 0.420 0.390 0.379 0.316
𝑝-value >.05 <.05 >.05 >.05 >.05
Cliff’s 𝛿 0.007 0.211 0.102 0.093 0.166
RF 0.358 0.369 0.462 0.473 0.450 0.320
𝑝-value <.05 <.05 <.05 <.05 >.05
Cliff’s 𝛿 0.075 0.338 0.379 0.329 0.170
LR 0.386 0.372 0.430 0.437 0.390 0.381
𝑝-value >.05 <.05 >.05 >.05 >.05
Cliff’s 𝛿 0.002 0.152 0.168 0.066 0.043
NB 0.444 0.398 0.434 0.421 0.402 0.377
𝑝-value <.05 >.05 >.05 <.05 >.05
Cliff’s 𝛿 0.179 0.016 0.052 0.147 0.179

that the difference between the performance of LTRUS and Cluster is
not significant on the NB classifier, although LTRUS still outperforms
Cluster. The high Recall values of LTRUS reflect that LTRUS is better
at finding minority class instances than the baseline techniques.

Generally, there is a trade-off between Recall and Precision (Buck-
land & Gey, 1994). High Recall values often lead to low Precision
values. As expected, Table 5 shows that LTRUS performs worse than the
three oversampling techniques in terms of Precision on the KNN, RF,
and LR classifiers. Compared with RUS and Cluster, the performance
of LTRUS is better. Especially, LTRUS outperforms all the baselines on
the NB classifier in terms of Precision.

Table 6 shows that LTRUS performs well in terms of F-measure,
with the best performance on the RF and NB classifiers. On the KNN
and LR classifier, While it fails to outperform COSTE on the KNN and
LR classifiers, the difference between the performance of LTRUS and
COSTE on these two classifiers is insignificant. Especially on the NB
classifier, LTRUS significantly outperforms all other baselines with the
practical effect sizes. A similar trend is observed from Table 7, with
LTRUS performing the best on the RF, LR, and NB classifiers in terms
of AUC. It significantly outperforms RUS, SMOTUNED, Borderline, and
Cluster on all classifiers with practical effect sizes.

Recent studies show that AUC and F-measure are biased (Song et al.,

2018). Instead, MCC is unbiased. Therefore, we adopt MCC to obtain
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Table 6
The performance of LTRUS, RUS, COSTE, SMOTUNED, Borderline, and Cluster on the
selected classifiers across 21 datasets in terms of F-measure.

LTRUS RUS COSTE SMOTUNED Borderline Cluster

KNN 0.470 0.428 0.495 0.455 0.455 0.391
𝑝-value <.05 >.05 >.05 >.05 >.05
Cliff’s 𝛿 0.125 0.079 0.070 0.007 0.234
RF 0.464 0.446 0.437 0.464 0.422 0.396
𝑝-value <.05 <.05 >.05 <.05 >.05
Cliff’s 𝛿 0.057 0.061 0.029 0.152 0.259
LR 0.474 0.444 0.487 0.466 0.455 0.439
𝑝-value <.05 >.05 >.05 >.05 >.05
Cliff’s 𝛿 0.093 0.066 0.011 0.075 0.147
NB 0.493 0.410 0.431 0.422 0.412 0.374
𝑝-value <.05 <.05 <.05 <.05 <.05
Cliff’s 𝛿 0.338 0.252 0.274 0.302 0.397

Table 7
The performance of LTRUS, RUS, COSTE, SMOTUNED, Borderline, and Cluster on the
selected classifiers across 21 datasets in terms of AUC.

LTRUS RUS COSTE SMOTUNED Borderline Cluster

KNN 0.730 0.676 0.732 0.704 0.694 0.646
𝑝-value <.05 >.05 <.05 <.05 <.05
Cliff’s 𝛿 0.442 0.039 0.234 0.279 0.596
RF 0.735 0.704 0.669 0.684 0.659 0.659
𝑝-value <.05 <.05 <.05 <.05 <.05
Cliff’s 𝛿 0.320 0.565 0.410 0.646 0.433
LR 0.743 0.703 0.731 0.702 0.704 0.691
𝑝-value <.05 >.05 <.05 <.05 <.05
Cliff’s 𝛿 0.302 0.052 0.279 0.270 0.388
NB 0.729 0.663 0.674 0.666 0.658 0.628
𝑝-value <.05 <.05 <.05 <.05 <.05
Cliff’s 𝛿 0.546 0.388 0.460 0.519 0.678

an unbiased and more objective conclusion. We use the win-draw-loss
strategy to record the MCC values of LTRUS and the baselines across
every single dataset. It can be seen from Tables 8, 9, 10, 11 that LTRUS
consistently obtains positive win-loss values against RUS, SMOTUNED,
Borderline, and Cluster on all classifiers. The poor performance of RUS
is due to the equal treatment between majority and minority class
instances when balancing the dataset. Cluster performs unsatisfactorily
because setting the 𝐾 value of the 𝐾-means algorithm equal to the num-
ber of the minority class instances cannot reflect the real distribution of
the datasets, leading to removing informative instances instead of re-
serving them. The inferior performance of SMOTUNED and Borderline
is due to the introduced noise when synthesizing instances. Comparing
LTRUS and COSTE, their performances are similar on the KNN, RF,
and LR classifiers, where there is no significant difference between the
performance of LTRUS and COSTE in terms of MCC. Compared with
SMOTUNED and Borderline, COSTE generates high-quality minority
instances. However, it still has a chance to introduce noise. And LTRUS
might lose information when removing majority instances. Therefore,
LTRUS and COSTE are comparative in most classifiers. But the number
of noise introduced by COSTE is beyond the noise-resistant ability (Feng
et al., 2022; Kim et al., 2011) of the NB classifier, leading to significant
degradation in performance. As a result, LTRUS overwhelms COSTE.

Finding 1: The performance of LTRUS is 18.0% better than all
the baselines on average in terms of MCC, reflecting that LTRUS
indeed preserves more instances that contribute more to prediction
models than RUS and Cluster, while still keeping its advantage of
not introducing any noise over the oversampling technique.
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Table 8
MCC values of each technique on the KNN classifier across 21 datasets.

KNN LTRUS RUS COSTE SMOTUNED Borderline Cluster

EQ 0.531 0.408 0.483 0.541 0.423 0.344
JDT 0.498 0.471 0.536 0.481 0.475 0.342
ML 0.314 0.287 0.366 0.324 0.311 0.125
PDE 0.290 0.252 0.303 0.251 0.262 0.125
CM1 0.245 0.164 0.270 0.292 0.161 0.126
MW1 0.333 0.239 0.332 0.305 0.365 0.186
PC1 0.259 0.191 0.319 0.258 0.247 0.171
PC3 0.333 0.314 0.373 0.334 0.324 0.286
PC4 0.335 0.317 0.459 0.445 0.420 0.304
ant1.3 0.361 0.247 0.353 0.204 0.314 0.265
camel1.0 0.104 0.051 0.097 0.082 0.061 0.027
jedit3.2 0.502 0.451 0.524 0.499 0.484 0.458
log4j1.0 0.433 0.348 0.550 0.462 0.474 0.243
xalan2.4 0.262 0.266 0.350 0.275 0.268 0.169
Safe 0.513 0.358 0.432 0.393 0.397 0.357
ZXing 0.302 0.258 0.276 0.253 0.252 0.025
AR1 0.151 −0.153 0.313 0.146 0.155 −0.03
AR3 0.717 0.645 0.519 0.526 0.403 0.563
AR4 0.465 0.369 0.425 0.358 0.275 0.338
AR5 0.614 0.605 0.579 0.612 0.664 0.652
AR6 0.255 0.123 0.344 0.224 0.194 −0.003

Average 0.372 0.296 0.391 0.346 0.330 0.241

𝑝-value <.05 >.05 >.05 <.05 <.05

Cliff’s 𝛿 0.256 0.161 0.111 0.156 0.401

W/D/L 20/0/1 9/0/12 14/0/7 15/0/6 20/0/1

Table 9
MCC values of each technique on the RF classifier across 21 datasets.

RF LTRUS RUS COSTE SMOTUNED Borderline Cluster

EQ 0.576 0.514 0.517 0.536 0.516 0.568
JDT 0.468 0.475 0.506 0.496 0.503 0.186
ML 0.307 0.329 0.336 0.353 0.352 0.009
PDE 0.252 0.264 0.281 0.297 0.270 0.009
CM1 0.280 0.169 0.114 0.133 0.084 0.161
MW1 0.229 0.213 0.308 0.287 0.283 0.082
PC1 0.300 0.289 0.286 0.257 0.272 0.259
PC3 0.369 0.327 0.285 0.323 0.295 0.343
PC4 0.481 0.489 0.512 0.551 0.506 0.479
ant1.3 0.359 0.320 0.273 0.379 0.255 0.304
camel1.0 0.152 0.133 0.054 0.050 0.188 0.068
jedit3.2 0.527 0.490 0.495 0.497 0.492 0.541
log4j1.0 0.423 0.388 0.434 0.326 0.310 0.317
xalan2.4 0.327 0.295 0.273 0.301 0.244 0.202
Safe 0.471 0.461 0.496 0.454 0.499 0.477
ZXing 0.294 0.222 0.273 0.264 0.237 −0.013
AR1 0.207 0.107 0.141 0.139 0.097 0.206
AR3 0.396 0.387 0.364 0.517 0.353 0.266
AR4 0.411 0.405 0.397 0.514 0.383 0.351
AR5 0.583 0.476 0.554 0.617 0.401 0.565
AR6 0.256 0.214 0.288 0.401 0.251 −0.016

Average 0.365 0.332 0.342 0.366 0.323 0.256

𝑝-value <.05 >.05 >.05 <.05 >.05

Cliff’s 𝛿 0.125 0.066 0.043 0.179 0.356

W/D/L 17/0/4 13/0/8 11/0/10 14/0/7 19/0/2

6.2. RQ2: How is the performance of LTRUS compared with LTRUS-ratio
and LTRUS-thres

Fig. 4 presents the boxplots of the performance of each technique in
terms of MCC values. The black triangle represents the mean value, and
the black line represents the median value in Fig. 4. We can clearly see
that LTRUS-ratio and LTRUS-thres significantly outperform all the other
techniques, including LTRUS, regarding the maximum, median, mean,
and minimum MCC values. Fig. 4 shows that removing the majority
class instances that optimize the threshold or optimize the final defect
ratio as the termination condition instead of setting the final defect
ratio strictly as 0.5 is effective to improve the undersampling technique.
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Table 10
MCC values of each technique on the LR classifier across 21 datasets.

LR LTRUS RUS COSTE SMOTUNED Borderline Cluster

EQ 0.537 0.480 0.492 0.483 0.477 0.457
JDT 0.544 0.504 0.529 0.544 0.520 0.528
ML 0.334 0.326 0.350 0.343 0.340 0.120
PDE 0.298 0.284 0.293 0.318 0.259 0.082
CM1 0.274 0.204 0.247 0.216 0.222 0.141
MW1 0.284 0.310 0.337 0.363 0.327 0.287
PC1 0.285 0.250 0.288 0.284 0.259 0.213
PC3 0.357 0.313 0.345 0.318 0.327 0.270
PC4 0.397 0.402 0.470 0.509 0.448 0.380
ant1.3 0.431 0.379 0.439 0.420 0.456 0.364
camel1.0 0.142 0.082 0.207 0.201 0.247 0.138
jedit3.2 0.549 0.518 0.564 0.535 0.486 0.533
log4j1.0 0.485 0.425 0.518 0.447 0.483 0.359
xalan2.4 0.279 0.308 0.327 0.278 0.279 0.257
Safe 0.469 0.388 0.467 0.313 0.465 0.491
ZXing 0.247 0.156 0.153 0.123 0.133 −0.076
AR1 0.194 0.041 0.119 −0.035 −0.006 0.212
AR3 0.523 0.427 0.563 0.641 0.502 0.641
AR4 0.472 0.431 0.507 0.394 0.308 0.356
AR5 0.723 0.534 0.612 0.612 0.446 0.666
AR6 0.298 0.224 0.384 0.321 0.234 0.233

Average 0.387 0.333 0.391 0.363 0.343 0.317

𝑝-value <.05 >.05 >.05 <.05 >.05

Cliff’s 𝛿 0.166 0.066 0.029 0.166 0.252

W/D/L 18/0/3 9/0/12 13/1/7 15/1/5 17/0/4

Table 11
MCC values of each technique on the NB classifier across 21 datasets.

NB LTRUS RUS COSTE SMOTUNED Borderline Cluster

EQ 0.534 0.420 0.421 0.430 0.422 0.423
JDT 0.523 0.467 0.479 0.475 0.483 0.470
ML 0.313 0.259 0.275 0.263 0.263 −0.015
PDE 0.348 0.291 0.304 0.305 0.296 0.184
CM1 0.243 0.159 0.184 0.169 0.118 0.028
MW1 0.345 0.269 0.301 0.248 0.263 0.050
PC1 0.335 0.269 0.296 0.276 0.295 0.308
PC3 0.373 0.225 0.200 0.136 0.115 −0.013
PC4 0.453 0.328 0.450 0.424 0.427 0.224
ant1.3 0.447 0.341 0.389 0.374 0.304 0.352
camel1.0 0.221 0.160 0.292 0.282 0.156 0.129
jedit3.2 0.502 0.437 0.441 0.440 0.391 0.381
log4j1.0 0.527 0.463 0.476 0.451 0.463 0.460
xalan2.4 0.354 0.257 0.282 0.279 0.237 0.266
Safe 0.434 0.311 0.321 0.399 0.386 0.375
ZXing 0.232 0.123 0.184 0.197 0.129 −0.073
AR1 0.234 −0.008 −0.091 −0.104 −0.072 0.118
AR3 0.537 0.319 0.526 0.425 0.410 0.236
AR4 0.418 0.370 0.405 0.373 0.432 0.428
AR5 0.724 0.585 0.543 0.543 0.530 0.693
AR6 0.276 0.205 0.219 0.223 0.196 0.068

Average 0.399 0.298 0.328 0.315 0.297 0.243

𝑝-value <.05 <.05 <.05 <.05 <.05

Cliff’s 𝛿 0.406 0.261 0.279 0.351 0.465

W/D/L 21/0/0 20/0/1 20/0/1 20/0/1 20/0/1

Finding 2: LTRUS-ratio and LTRUS-thres both perform 9.7%
better than LTRUS in terms of MCC on average. By optimizing
the final defect ratio or the threshold, the performance of the
undersampling technique could be improved. The conventional
termination condition of the data resampling technique, where the
final defect ratio reaches 0.5, is improper.
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Fig. 4. The boxplots of the MCC values of LTRUS, LTRUS-ratio, LTRUS-thres, RUS,
COSTE, SMOTUNED, and Borderline.

Fig. 5. The defect ratios of the 21 datasets after being processed by LTRUS-ratio and
LTRUS-thres.

6.3. RQ3: How is the comparison between LTRUS-ratio and LTRUS-thres

Fig. 4 shows that LTRUS-ratio and LTRUS-thres perform similarly.
The median MCC values of LTRUS-thres are higher than those of
LTRUS-ratio on the KNN, RF and LR classifiers. The mean MCC values
of LTRUS-ratio are higher than those of LTRUS-thres on the RF, LR and
NB classifiers. The average MCC values of LTRUS-ratio and LTRUS-thres
are the same across the four classifiers, at 0.418.

We also present the final defect ratios of the 21 datasets after
they were processed by LTRUS-ratio and LTRUS-thres. Fig. 5 shows
that the defect ratios of the 21 datasets processed by LTRUS-ratio are
generally larger than those processed by LTRUS-thres. The average final
defect ratios of LTRUS-ratio are 44.38%, 38.65%, 48.99%, and 55.95%
on the KNN, RF, LR, and NB classifiers. Meanwhile, the defect ratios
of LTRUS-thres are only 25.62%, 24.20%, 27.06%, and 29.38% on
the KNN, RF, LR, and NB classifiers respectively. Table 12 shows the
defect ratio of every single dataset after being processed by LTRUS-
ratio and LTRUS-thres. ‘‘NONE’’ in Table 12 represents the original
defect ratio of datasets without any processing. We can see from Ta-
ble 12 that almost all datasets processed by LTRUS-ratio have a higher
defect ratio than those corresponding ones processed by LTRUS-thres,
with the exception of only three datasets. LTRUS-ratio removes more
majority class instances than LTRUS-thres, which means LTRUS-ratio
could mitigate more negative impact of the class imbalance problem
than LTRUS-thres. Meanwhile, LTRUS-thres removes fewer instances
than LTRUS-ratio while achieving similar performance to LTRUS-ratio,
indicating that LTRUS-thres reserves more information provided by the
remaining instances.

Finding 3: The similar performance, but the different defect ra-
tios, shows that different strategies adopted by LTRUS-ratio and
LTRUS-thres benefit the undersampling technique from different
perspectives. Finding an effective way to combine these strategies
could further improve the undersampling technique.
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Table 12
The defect ratio (%) of the 21 datasets after being processed by LTRUS-ratio and LTRUS-thres.

NONE KNN KNN RF RF LR LR NB NB
LTRUS-ratio LTRUS-thres LTRUS-ratio LTRUS-thres LTRUS-ratio LTRUS-thres LTRUS-ratio LTRUS-thres

EQ 39.81 98.32 52.92 90.15 45.33 92.06 54.51 95.73 52.76
JDT 20.66 40.26 25.79 27.98 28.29 43.32 28.42 69.34 31.60
ML 13.16 26.10 18.05 21.69 22.64 43.39 23.42 33.43 22.49
PDE 13.96 23.85 17.01 18.67 26.17 28.19 18.60 57.41 25.27
CM1 12.84 37.62 28.66 52.23 33.81 47.01 26.40 51.09 24.15
MW1 10.67 13.83 11.54 14.51 11.78 22.14 15.13 36.11 12.75
PC1 8.65 20.49 10.33 11.49 8.65 11.50 9.24 25.37 15.23
PC3 12.44 25.06 18.45 35.75 22.55 49.25 25.89 57.52 19.61
PC4 13.75 21.96 17.63 32.47 19.10 24.95 17.01 38.12 23.36
ant1.3 16.00 48.79 22.22 35.22 23.48 51.45 33.86 42.85 26.16
camel1.0 3.83 14.99 12.73 28.13 9.87 16.89 11.10 9.52 5.38
jedit3.2 33.09 60.28 36.40 69.81 35.92 72.40 39.40 85.06 41.52
log4j1.0 25.19 52.06 34.97 48.43 29.22 53.58 32.32 61.58 29.81
xalan2.4 15.21 33.06 22.52 27.16 19.91 32.33 24.89 60.67 26.15
Safe 39.29 94.72 44.22 70.09 41.02 77.44 47.07 95.65 51.35
ZXing 29.57 72.00 41.48 68.48 38.21 96.78 44.44 90.70 61.91
AR1 7.44 35.28 17.81 24.32 10.38 18.00 14.12 47.54 24.24
AR3 12.70 44.95 19.35 30.11 15.31 40.35 18.69 40.97 25.00
AR4 18.69 34.87 23.73 26.53 18.65 55.88 25.11 47.50 26.36
AR5 22.22 81.37 32.72 54.05 30.83 80.32 32.61 67.30 39.92
AR6 14.85 52.07 29.41 24.39 17.10 71.46 26.13 61.45 31.94

Average 18.29 44.38 25.62 38.65 24.20 48.99 27.06 55.95 29.38
7. Discussion

7.1. The analysis of LTRUS-ratio and LTRUS-thres

As stated in Sections 4.2 and 4.3, LTRUS-ratio optimizes the final
defect ratio and does not directly operate on majority class instances.
Whereas LTRUS-thres operates on the data level. Although the per-
formances of LTRUS-ratio and LTRUS-thres are similar, LTRUS-ratio
removes more majority class instances than LTRUS-thres, indicating
that (1) the defect ratio impacts the performance of prediction models
from a global view, (2) the information provided by each instance
impacts the performance of prediction models from a local view, and
(3) there is a trade-off between the global view (i.e., optimizing the
final defect ratio to balance datasets as much as possible) and the local
view (i.e., preserving as many instances that could provide prediction
models with more information). To effectively alleviate the class im-
balance problem, LTRUS-ratio removes extra majority class instances
to achieve the balance between the majority class and the minority
class instances. However, prediction models also lose the information
that could have been provided by these majority class instances but
additionally removed by LTRUS-ratio. As a comparison, LTRUS-thres
removes fewer instances, providing prediction models with more infor-
mation. But the class imbalance problem has a more negative impact
on the performance of LTRUS-thres, leading to a similar performance
to LTRUS-ratio.

7.2. The time consumption analysis of LTRUS

Because COSTE, SMOTUNED, and LTRUS all utilize DE to optimize
parameters, their runtime is longer than RUS, Cluster, and Borderline.
The time consumption of DE is mostly governed by the number of
parameters to be optimized (i.e., the searching space). The number of
parameters to be optimized in LTRUS depends on the number of data
metrics. In SDP, the number of data metrics is usually no more than
100, and the maximum number of data metrics adopted in this study is
61. Meanwhile, DE is often applied to solve the optimization problems
with searching space consisting of hundreds or even thousands of
dimensions (Guan, Zhao, Yin, & Li, 2021; Laloy & Vrugt, 2012), which
implies that the runtime of LTRUS is not excessively long.

Furthermore, the process of exploring the optimal parameters for
LTRUS with DE is performed offline. Once the process is complete, the
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final output is simply a linear model. Majority class instances are fed
into the linear model and ranked based on the outputs of the linear
model. The time consumption of this process is negligible. Therefore,
LTRUS is practical in terms of time consumption.

7.3. Threats to validity

To ensure the generalizability of our experimental results, we uti-
lized 21 datasets collected from various repositories. These datasets
were widely adopted in previous studies and vary in terms of features,
granularity, and programming languages. However, there are other
datasets that differ from these datasets, which may lead to different
conclusions. Additionally, we utilized four classifiers that have shown
satisfactory performance in previous studies to generalize our results.

We used five performance measures, including one threshold-
independent measure (AUC) and four threshold-dependent measures
(Recall, Precision, F-measure, and MCC), to evaluate the performance.
There are also other performance measures (e.g., G-mean and Balance).
If those different datasets, classifiers, or performance measures are
adopted, different conclusions may be drawn. Therefore, we detail our
experiments to make it easy for others to replicate our work. Further-
more, biases and variances may be introduced when conducting the
experiments. To minimize these, we adopt the 5-fold cross-validation
with the stratification method to obtain the training and testing data
and repeat the entire experiment ten times.

8. Conclusion and future work

According to previous studies, RUS, the most common and simplest
undersampling technique, performs better than several oversampling
techniques in SDP. However, the loss of important information is
the major drawback of RUS. Besides, rigidly setting the final defect
ratio equal to 0.5 as the termination condition of the undersampling
technique goes against intuition. To solve these issues and improve the
performance of the undersampling technique, we propose the Learning-
To-Rank UnderSampling technique (LTRUS). LTRUS first learns an
optimal linear model for the majority class instances by using DE.
Then, the majority class instances are ranked in descending order
based on the outputs of the linear model. Finally, the majority class
instances are removed from the bottom of the rank to alleviate the class
imbalance problem. The experiments conducted across 21 datasets on
four common classifiers show that LTRUS performs significantly better

than the baselines in terms of F-measure, AUC, and MCC. Furthermore,
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the performances of LTRUS-ratio and LTRUS-thres show that (1) the
conventional termination condition of the undersampling technique
(fixed defect ratio 0.5) is improper, and (2) there is a trade-off lying
in the undersampling technique.

For future work, although we propose LTRUS to mitigate the class
imbalance problem in SDP, we do not introduce any prior knowledge
of SDP into it. Therefore, we believe that LTRUS is applicable to
other fields. We will adopt datasets collected from other fields to
validate the generalizability of LTRUS. Besides, we plan to extend
LTRUS to alleviate the multi-class imbalance problem. We also intend
to explore a mechanism to handle the trade-off between the two
different perspectives (the global view and the local view discussed in
Section 7) to further improve the undersampling technique. Further-
more, whether the optimal parameters of LTRUS are universal among
different classifiers is worthy our further investigation.
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