
A Heuristic Approach to Break Cycles for the Class
Integration Test Order Generation

Miao Zhang, Jacky Keung, Yan Xiao, Md Alamgir Kabir, Shuo Feng

Department of Computer Science
City University of Hong Kong

Hong Kong
{miazhang9-c, yanxiao6-c, makabir4-c, shuofeng5-c}@my.cityu.edu.hk, Jacky.Keung@cityu.edu.hk

Abstract—It is a general objective to minimize overall
stubbing cost when performing class integration test order
generation. Existing approaches are unable to obtain a cost-
optimal class test order, this is largely due to the lack of
a comprehensive analysis on the factors that affect overall
stubbing cost, i.e., the number of required test stubs and the
corresponding stubbing complexity. To address this issue, we
propose an approach called HBCITO (Heuristic approach to
Break Cycles for the class Integration Test Order generation).
Given a set of removed dependencies, a heuristic algorithm is
employed to search for a near ideal set of class dependencies.
Such dependencies break the same or greater number of cycles
as the initialized dependencies but attract less stubbing cost.
The experimental results show that HBCITO is capable of
generating class test orders with significantly lower stubbing
cost compared with other approaches.

Keywords-integration testing; class integration test order
generation; break cycles; stubbing complexity

I. INTRODUCTION

In integration testing, deciding the order in which classes

are tested is non-trivial due to cycles among class dependen-

cies [1]. When cycles exist, test stubs are inevitable since the

dependent class can be unavailable. Various class test orders

cause different test stubs, and consequently, different overall

stubbing cost. Class integration test order generation aims

to devise an optimal class test order attracting the minimum

stubbing cost.

Most of graph-based approaches are unable to determine

an optimal class test order since their cycle-breaking strate-

gies ignore two factors that impact the stubbing cost, i.e.,

the number of created test stubs and the corresponding

stubbing complexity. This limitation also occurs in search-

based methods due to the lack of sufficient guidance in the

search process.

To minimize overall stubbing cost by fully considering the

aforementioned two factors, we propose a heuristic approach

to break cycles for the class integration test order generation

called HBCITO. Inspired by evolutionary algorithms, we put

forward exploration and exploitation methods to break cycles

when performing class integration test orders generation.

In our approach, a class dependency is first initialized to

remove a part of cycles. Then exploitation is adopted to

search whether there exist other class dependencies that

break the same cycles as the initialized dependency but

attract less stubbing cost. Similarly, exploration is presented

to find better alternatives that break the same number of

cycles as the initialized dependency, which can achieve a

better population diversity. The above process is repeated

until no cycles remaining, and consequently, a class test

order is generated.

Compared with the existing search-based approaches, a

benefit of our method is that it can minimize the search space

for large-scale programs with hundreds of classes. Unlike the

previous search-based methods consider the full permutation

of all classes, only class dependencies that are involved in

cycles are considered in HBCITO.

We evaluate HBCITO by conducting experiments on three

large-scale programs (JHotDraw, jmeter and log4j3) and

three benchmark programs (ANT, ATM, and DNS). The

results show that HBCITO outperforms the competitors in

generating class test orders with minimum stubbing cost.

Meanwhile, HBCITO reduces the search space for six pro-

grams. The main contributions of this paper are as follows:

• A new encoding strategy is introduced to describe

the solution for class integration test order generation,

which minimizes the search space.

• A heuristic algorithm is proposed to balance the two

factors (the number of test stubs and the corresponding

stubbing complexity) that affect the overall stubbing

cost.

The remainder of this paper is organized as follows. Sec-

tion II introduces the background. We present our approach

in Section III. The experiments follow in Section IV. Section

V concludes this work.

II. BACKGROUND

In this section the needed background concepts are pre-

sented, including the preliminary knowledge and a literature

review on the class integration test order generation.

A. Preliminaries

In integration testing, the order in which classes are inte-

grated and tested has a significant impact on the construction

47

2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC)

978-1-7281-2607-4/19/$31.00 ©2019 IEEE
DOI 10.1109/COMPSAC.2019.00016

Authorized licensed use limited to: Shenzhen Technology University. Downloaded on September 23,2021 at 08:35:17 UTC from IEEE Xplore. Restrictions apply.

of test stubs.

A test stub is built for the source class to emulate the

behaviors of an unavailable dependent class. In order to

measure the stubbing cost for a test stub (i, j), stubbing

complexity is put forward by Briand et al. [2]. It is calculated

as the following:

SCplx(i, j) = [WA ·A(i, j)
2
+WM ·M(i, j)

2
]1/2 (1)

Attribute coupling and method coupling, counting the

number of attribute accesses and method invocations, affect

the stubbing complexity. They are normalized and weighted

to convert into a single objective in (1), which helps to

understand and measure the effort to construct a test stub.

Supposing that classes in a program are integrated and tested

based on the test order o, and all test stubs compose a set

Stubs. The stubbing cost of the entire integration test is

estimated by overall stubbing complexity (OCplx), which

is calculated as follows:

OCplx(o) = ∑
(i, j)∈Stubs

SCplx(i, j) (2)

The aim of class integration test order generation ap-

proaches is to minimize the overall stubbing cost by devising

an optimal class test order.

B. Related Work

Several graph-based [3] and search-based approaches [2]

have been proposed to generate class integration test orders

automatically.

Graph-based approaches first construct a directed diagram

to describe class dependencies, then break all cycles in the

diagram by removing edges, and finally integrate classes

based on topologically sorted order. Kung et al. [3] first

provided a general way to break cycles but did not present

elaborate rules to remove edges. Based on Kung et al.’s

work, Tai and Daniels [4], Le Traon et al. [5] and Briand et

al. [6] proposed different ways to assign a weight for each

edge. Weights measure the number of cycles in which edges

are involved, and consequently, the edge with the highest

weight is removed. Unlike the aforementioned graph-based

approaches, Hewett [7] discarded the process of cycle-

breaking, and adopted an incremental strategy to minimize

the number of test stubs.

However, the number of test stubs is unable to completely

measure the stubbing effort for a given class test order.

Therefore, other factors that affect the stubbing effort were

introduced. For instance, Hanh [8] considered both stub

minimization and testing resource allocation when gener-

ating class test orders. Malloy [9] believed types of class

dependencies affect the stubbing cost and assigned them

different weights. Similarly, Bansal [10] introduced new

dependencies that were omitted by Malloy. Abdurazik and

Offutt [11] proposed nine kinds of coupling relationships

between classes, and adopted cycles-weight ratio to remove

edges.
For search-based methods, Briand et al. [2] first applied

genetic algorithm in the class integration test order genera-

tion problem. Simulated annealing algorithm is adopted by

Borner et al. [12]. Multi-objective optimization algorithms

were introduced to this area, such as ant colony algorithm

adopted by Vergilio et al. [13] and NSGA-II applied by

Assunção et al. [14]. To improve the performance of existing

evolutionary algorithms, Guizzo et al. [15] introduced a

hyper-heuristic to choose evolution operators. Mariani et

al. [16] adopted grammatical evolution to generate multi-

objective evolutionary algorithms automatically. Reinforce-

ment learning is applied by Czibula et al. [17]. For search-

based methods, finding a class test order with satisfactory

result can be a hard task due to huge search space for

complex programs with hundreds of classes.

III. APPROACH

This section introduces HBCITO, a heuristic approach to

break cycles for the class integration test order generation.

The procedure of this approach includes five steps, which

is presented in Figure 1. For a subject program, the inputs

are the class dependencies and related coupling information

(e.g., the number of attribute accesses and method invoca-

tions), which are obtained by static analysis.

 Step 1:
Construct an ORD

 Step 2:
 Identify SCCs

 For each SCC

Step 3: Execute HBCITO

 Step 4:
Break cycles

 Step 5:
Generate class

test orders

Initialize a removed dependency

Heuristic algorithm
(Exploration & exploitation)

Obtain the set of removed
dependencies

Input (for a program):
- class dependencies
- coupling information

Classes

No cycles
exist?

Y

N

Figure 1. Procedure of HBCITO

First, an object relation diagram is created to represent

class dependencies for the subject program. In such an

48

Authorized licensed use limited to: Shenzhen Technology University. Downloaded on September 23,2021 at 08:35:17 UTC from IEEE Xplore. Restrictions apply.

object relation diagram, each node represents a class, and

a dependency from the source class to the target class is

presented as a directed edge from the head node to the tail

node. Stubbing complexity is calculated for each dependency

based on the input attribute coupling and method coupling.

Then, the Tarjan’s algorithm [18] is adopted to execute

depth-first search for the object relation diagram and divides

the diagram into multiple strongly connected components

(SCCs). A strongly connected component containing more

than one node is non-trivial. Cycles only exist in such a

non-trivial strongly connected component. That’s because all

pairs of vertices in a cycle are connected, these vertices must

be in the same strongly connected component. So we regard

such strongly connected components as the smallest element

to deal with, and identify all cycles in it.

For each non-trivial SCC, the HBCITO is applied. We

first select a dependency as an initialization of removal, then

apply the heuristic algorithm to search for an alternative that

has the similar effect as removing the initial dependency but

attracts less stubbing cost.

Our heuristic algorithm is inspired by the concept of

exploitation and exploration from evolutionary algorithms.

In evolutionary algorithms, exploration and exploitation are

two main measures to search for optimal solutions. Ex-

ploration searches solutions in new regions of the search

space [19], such as mutation and crossover operators in

genetic algorithm, while exploitation searches solutions in

the neighborhood of the current solutions [19], such as

selection operator based on fitness.

Similarly, in our heuristic algorithm, exploitation is

adopted to search another dependency or a set of other de-

pendencies that break the same cycles with the initial choice

but reduce the stubbing cost, while exploration searches

some dependencies as new selection, which breaks the equal

or greater number of cycles compared to the initial removed

dependency.

The above mentioned heuristic algorithm is repeated until

no cycles remain in the strongly connected component,

and consequently, we obtain a satisfactory set of removed

dependencies. After that, we move to the next strongly

connected component, and apply HBCITO again. If all

cycles are broken, test stubs are built for these removed

dependencies.

Finally, we generate class test orders according to the

following procedure. For each untested class, a dependent

list is used to record its dependent classes. This dependent

list is constructed based on the input class dependencies but

omits the removed dependencies obtained from the last step.

If a class does not depend on other classes, it is added into

the test order directly. Once a class is integrated, it should

be removed from the dependent lists of others. When the

dependent list of a class is null, this class is added into

class test order and removed from others’ dependent list.

This procedure is executed iteratively until all classes have

been integrated and tested.

A. Heuristic Algorithm

Our heuristic algorithm is introduced in Algorithm 1,

taking a set of current removed edges currentEdges as input,

trying to find a set of removed edges RemoveEdges that

break the same cycles, or at least the same number of cycles

with currentEdges. Lines 1-3 are initialization procedure

where setting RemoveEdges to empty, saving cycles that are

broken by currentEdges , and counting their number. Then

two functions exploitation and exploration are invoked to

generate a set of removed edges that can replace the initial

edges (lines 4-5). The results obtained by exploitation and

exploration are compared, and the set with lower stubbing

cost would be reserved (lines 6-10).

In the function exploitation, we search the edge with

minimal stubbing cost for each cycle and add it into the

alternative set (lines 12-14). if the new generated set attracts

less stubbing cost, it would be returned (line 15).

Similarly, in the function exploration, we aim to break the

same or greater number of cycles as currentEdges (lines 18-

21). An alternative set is returned if its stubbing cost is less

than that of currentEdges (line 22).

B. Search Space

In the conventional search-based methods, a vector of

integers is used to represent a class test order, where each

integer corresponds to a class. For a program containing

N classes, the number of all possible class test orders is the

factorial of N (N!). Hence, it is an arduous task to identify an

optimal test order from such a huge search space containing

tens of thousands of candidate solutions.

However, for our approach, a candidate solution for class

integration test order only consists of removed dependencies.

Supposing that only n dependencies are involved in cycles

in a program, the number of all possible solutions in our

method would be 2n−1. It is proven that N! is much greater

than 2N when N is larger than two according to mathemat-

ical theorems. What’s more, we found that the number of

dependencies that are involved in cycles (n) is fewer than

the number of classes (N) for the large-scale programs in

our experiments, i.e., N > n. Therefore, the search space of

our method is smaller than that of the existing search-based

methods, which can reduce the difficulty of searching for an

optimal solution without deteriorating the final results.

IV. EXPERIMENTS

A. Experimental Setup

We select two groups of programs to evaluate the perfor-

mance of HBCITO. Table I shows the information of used

programs, where columns 2 to 7 represent the number of

classes, dependencies, cycles, dependencies that are involved

in cycles, strongly connected components and lines of code,

respectively.

49

Authorized licensed use limited to: Shenzhen Technology University. Downloaded on September 23,2021 at 08:35:17 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Heuristic Algorithm

Input: a set of current removed edges currentEdges
Output: a set of removed edges RemoveEdges
1: RemoveEdges←Φ
2: ListCycles = getCycles(currentEdges)

3: numO fCycles = getCyclesNum(currentEdges)

4: tempEdges1 = exploitation(ListCycles)

5: tempEdges2 = exploration(numO fCycles)

6: if tempEdges1.SCplx() > tempEdges2.SCplx() then
7: RemoveEdges← tempEdges2

8: else
9: RemoveEdges← tempEdges1

10: end if

11: function exploitation(ListCycles)

12: for each cycle c in ListCycles do
13: find the edge in c with the minimal stubbing cost

and add it into tempEdges1

14: end for
15: return tempEdges1 if it causes less stubbing cost

16: end function

17: function exploration(numO fCycles)

18: while totalCycles < numO fCycles do
19: find the edge whose stubbing cost is less than that

of currentEdges and add it into tempEdges2

20: update totalCycles
21: end while
22: return tempEdges2 if it causes less stubbing cost

23: end function

Table I
INFORMATION OF USED PROGRAMS

Systems Classes Deps Cycles OverDeps SCCs LOC

JHotDraw 411 1680 225 199 318 78,150

jmeter 372 1252 729 147 309 32,882

log4j3 261 784 2173 242 156 15,665

ANT 25 83 654 41 14 4093

ATM 21 67 30 29 14 1390

DNS 61 276 16 23 53 6710

As shown in Table I, the number of dependencies that

are involved in cycles is fewer than the total number of

classes except for programs ANT and ATM. It is obvious

that HBCITO can reduce the search space compared with

conventional search-based methods because the number of

all possible solutions for HBCITO is 2n−1 (n is the number

of distinct dependencies in cycles), rather than the factorial

of N (N is the number of classes). We found the search

space for ANT and ATM is also reduced after calculation.

The frist group contains three large-scale programs: jmeter

(a load test tool) and log4j3 (a log tool for Java) are

from SIR1 (Software-artifact Infrastructure Repository), and

JHotDraw is a 2D graphics framework used in the literature

[14]. The second group contains three benchmark programs:

ANT, ATM and DNS from literature [2].

For the first group, we implement three kinds of cycle-

breaking strategies as competitors. For all dependencies that

are involved in cycles:

• NC removes the dependency involved in the greatest

number of cycles.

• SCplx deletes the dependency with the minimal stub-

bing complexity.

• CWR proposed by Abdurazik et al. [11] removes the

dependency with maximal cycles-weight ratio.

If multiple candidate dependencies exist, three strategies

randomly choose one to remove.

For the second group, HBCITO is compared to two typical

class integration test order generation methods:

• GA proposed by Briand et al. [2] applied genetic

algorithm to minimize the overall stubbing complexity

of the class test orders.

• A graph-based method proposed by Abdurazik et al.

[11] eliminated cycles by removing the edge with the

highest cycles-weight ratio, in order to break the most

number of cycles with the minimal stubbing effort.

The overall stubbing complexity (OCplx) and number of

required stubs (Stubs) are used to evaluate the stubbing

cost of constructing test stubs based on generated class test

orders. The lower the values of two indicators, the better

the performance of the class integration test order generation

approaches.

B. Results

Table II presents the range and mean values of OCplx

and Stubs for three large-scale programs. Each method is

executed 30 times for each program. The minimal mean

values of OCplx and Stubs for each program have been

highlighted in bold.

As shown in Table II, the mean values of OCplx obtained

by HBCITO are the minimal for all three programs. CWR

clearly outperforms NC and SCplx in terms of OCplx for all

programs when it considers both the objectives of reducing

total number of test stubs and minimizing stubbing cost for

each removed dependency. However, calculation of cycles-

weight ratio is a rough means to balance two objectives so

that it is likely to miss a better result. On the other hand,

the values of OCplx obtained by CWR and HBCITO are

relatively deterministic compared with other two strategies,

due to fewer arbitrary decisions in the process of cycle-

breaking. For example, both of them obtain only one value

of OCplx for programs JHotDraw and log4j3.

For program jmeter, it can be observed that not all

solutions obtained by HBCITO perform better than that of

1http://sir.unl.edu/portal/index.html

50

Authorized licensed use limited to: Shenzhen Technology University. Downloaded on September 23,2021 at 08:35:17 UTC from IEEE Xplore. Restrictions apply.

Table II
COMPARISON OF RESULTS FOR LARGE-SCALE PROGRAMS

Systems Methods
OCplx Stubs

Range Mean Range Mean

JHotDraw

NC [1.580-2.186] 1.901 90 90
SCplx [0.977-0.997] 0.986 [94-97] 95.400

CWR 0.963 0.963 [91-92] 91.700

HBCITO 0.957 0.957 91 91

jmeter

NC [1.857-2.665] 2.335 39 39
SCplx [1.467-1.588] 1.528 [55-62] 58.500

CWR [1.305-1.335] 1.320 [42-43] 42.500

HBCITO [1.284-1.325] 1.304 [40-44] 41.933

log4j3

NC [2.440-3.036] 2.725 90 90
SCplx [2.140-2.403] 2.255 [102-118] 109

CWR 1.972 1.972 96 96

HBCITO 1.966 1.966 91 91

CWR, but the value ranges for HBCITO are smaller than

that of CWR. Moreover, for the best result, HBCITO obtains

0.021 (1.305-1.284) lower OCplx than CWR.

In terms of Stubs, it is no doubt that NC would obtain

the minimal number of test stubs. Except for NC, HBC-

ITO constructed fewer test stubs compared with other two

strategies, which means that HBCITO tries to balance the

two objectives (the number of created test stubs and the

corresponding stubbing complexity) when breaking cycles.

Table III
COMPARISON OF RESULTS FOR BENCHMARK PROGRAMS

Systems Methods
OCplx Stubs

Range Mean Range Mean

ANT

GA [3.59-3.86] 3.62 [12-14] 12.16
Abdurazik 4.19 4.19 17 17

HBCITO [2.01-2.57] 2.23 [14-19] 16.32

ATM

GA 2.68 2.68 7 7

Abdurazik 2.68 2.68 7 7

HBCITO [2.17-2.68] 2.56 [6-7] 6.77

DNS

GA 1.47 1.47 [6-7] 6.89

Abdurazik 1.33 1.33 5 5
HBCITO [1-1.18] 1.14 5 5

Table III shows the comparison of results for three bench-

mark programs. The values of two quality indicators for GA

are obtained from reference [2]. For other two approaches,

each method is executed 100 times for each program to be

consistent with experimental settings in [2]. The best results

have been highlighted in bold.

In terms of OCplx, The mean values obtained by HBCITO

are minimal for all programs compared with GA and Abdu-

razik et al.’s approach. All values of OCplx in HBCITO are

lower than the best results of other two methods, although

the range of OCplx in HBCITO is more varying. The

reductions on OCplx achieved by HBCITO compared to the

best results of the other two methods range from 0.12 (2.68-

2.56) on program ATM to 1.36 (3.59-2.23) on program ANT.

In terms of Stubs, HBCITO obtains the minimal values on

two programs. For program ANT, although the best solution

obtained by HBCITO constructed two more stubs than that

of GA, HBCITO achieves a lower overall stubbing cost since

its test stubs emulating fewer attributes and methods.

Among six programs, the highest reduction on OCplx

achieved by HBCITO compared to the best results of others

is about relative 37.88% (1-2.23/3.59) on program ANT,

while the lowest reduction is about 0.30% (1-1.966/1.972)

on program log4j3. The average reduction on stubbing cost

is 9.80% with the standard deviation as 0.15. It can be

concluded that HBCITO performs better than competitors.

Table IV
RUNNING TIME OF HBCITO

Systems Analysis (ms) Identifying (ms) Generation (ms)

JHotDraw 9743 119 484

jmeter 6346 659 731

log4j3 4467 1594 2106

ANT - 66 429

ATM - 11 54

DNS - 14 50

Table IV shows the running time of HBCITO, including

three parts: analyzing the program to obtain class depen-

dencies and coupling information, identifying all cycles, and

generating class test orders. For three benchmark programs,

information about class dependencies was taken from the

Appendix in literature [2], so the analysis time is null. All

experiments are conducted on Intel AI DevCloud.

The analysis time of three large-scale programs is posi-

tively correlated with number of classes, since all class de-

pendencies are analyzed. For identifying time, it is obvious

that the more cycles, the more time spent. For ANT and

jmeter, their number of cycles is similar, but jmeter has 309

SCCs while ANT has only 14 SCCs. Since HBCITO handles

SCC one by one, the identify time of jmeter is more than

that of ANT. For generation time, it is related to the number

of cycles. But for JHotDraw, it takes a little long time, that

is because it has more SCCs containing cycles.

C. Threats to Validity

Although the experimental results demonstrate the effec-

tiveness of HBCITO, it still faces the following threats to

validity:

Firstly, some parameters are used in the heuristic algo-

rithm, such as the number of iterations in the exploration.

The details about it are not shown due to limited space. The

performance of HBCITO can be varied if different parameter

values are used. Our next research direction is to verify the

effect of different values of parameters on the performance

of HBCITO.

51

Authorized licensed use limited to: Shenzhen Technology University. Downloaded on September 23,2021 at 08:35:17 UTC from IEEE Xplore. Restrictions apply.

Secondly, HBCITO is non-determinism in some cases

as the results shown in Table II and III. That’s because

our algorithm can choose different edges as alternative that

leading to various consequences. Therefore, if a software

tester runs these algorithms once, then the output may not

be the best solution. However, the experimental results show

that even the worst solution generated by HBCITO, is still

better than others in most cases. HBCITO might not be the

best choice, but it is a good choice compared with other

approaches.

Thirdly, HBCITO is evaluated on three large-scale pro-

grams and three benchmark programs, but we are unable

to make sure the conclusions can hold for all programs.

In the future, we intend to estimate our approach on more

programs.

V. CONCLUSION

This paper considers the merits in existing search-based

and graph-based approaches, and proposes a heuristic-based

method called HBCITO to break cycles for the class inte-

gration test order generation. Our method first initializes a

class dependency to remove a part of cycles, then heuristic

algorithm is applied to search for a better alternative that

breaks the same cycles or the same number of cycles as

the initialized dependency, but attracts least stubbing cost.

The search space is significantly minimized for complex

programs containing hundreds of classes given HBCITO

only considers certain dependencies that are involved in

cycles. The experimental results show that HBCITO is able

to obtain the class integration test orders with the minimal

stubbing cost among all solutions generated by existing

approaches.

ACKNOWLEDGMENT

This work is supported in part by the General Re-

search Fund of the Research Grants Council of Hong Kong

(No.11208017) and the research funds of City University

of Hong Kong (9678149, 7005028, and 9678149), and the

Research Support Fund by Intel (9220097).

REFERENCES

[1] H. Melton and E. Tempero, “An empirical study of cycles
among classes in Java,” Empir Software Eng, vol. 12, no. 4,
pp. 389-415, 2007.

[2] L. C. Briand, J. Feng, and Y. Labiche, “Experimenting with
genetic algorithms and coupling measures to devise optimal
integration test orders,” Tech. Rep. TR SCE-02-03, Carleton
University, 2002.

[3] D. C. Kung, J. Gao, P. Hsia, J. Lin, and Y. Toyoshima, “Class
firewall, test order, and regression testing of object-oriented
programs,” J. Object-Oriented. Program, vol. 8, no. 2, pp.
51-56,1993.

[4] K. C. Tai and F. J. Daniels, “Test order for inter-class inte-
gration testing of object-oriented software,” In Proceedings of
the 21st International Conference on Computer Software and
Applications. IEEE, 1997, pp. 602-607.

[5] Y. L. Traon, T. Jéron, J.-M. Jézéquel and P. Morel, “Effi-
cient object-oriented integration and regression testing,” IEEE
Trans. Reliab, vol. 49, no. 1, pp. 12-25, 2000.

[6] L. C. Briand, Y. Labiche and Y. Wang, “An investigation
of graph-based class integration test order strategies,” IEEE
Trans. Software Eng, vol. 29, no. 7, pp. 594-607, 2003.

[7] R. Hewett and P. Kijsanayothin, “Automated test order gen-
eration for software component integration testing,” In Pro-
ceedings of the 24th IEEE/ACM International Conference on
Automated Software Engineering. IEEE, 2009, pp. 211-220.

[8] V. L. Hanh, K. Akif, Y. L. Traon, J.-M. Jézéquel, “Selecting
an efficient OO integration testing strategy: an experimen-
tal comparison of actual strategies,” In Proceedings of the
15th European Conference on Object-Oriented Programming.
Springer-Verlag,2001,pp. 381-401.

[9] B. A. Malloy, P. J. Clarke, and E. L. Lloyd, “A parameter-
ized cost model to order classes for class-based testing of
C++ applications,”. In Proceedings of the 14th International
Symposium on Software Reliability Engineering. IEEE, 2003,
pp. 353-364.

[10] P. Bansal, S. Sabharwal and P. Sidhu, “An investigation of
strategies for finding test order during integration testing of
object oriented applications,” In Proceeding of International
Conference on Methods and Models in Computer Science.
IEEE, 2009, pp. 1-8.

[11] A. Abdurazik and J. Offutt, “Using coupling-based weights
for the class integration and test order problem,” Comput. J,
vol. 52, no. 5, pp. 557-570, 2009.

[12] L. Borner and B. Paech, “Integration test order strategies
to consider test focus and simulation effort,” In Proceedings
of the 1st International Conference on Advances in System
Testing and Validation Lifecycle. IEEE, 2009, pp. 80-85.

[13] S. R. Vergilio, A. Pozo, J. C. Árias, R. V. Cabral, T. Nobre,
“Multi-objective optimization algorithms applied to the class
integration and test order problem,” Int. J. Software Tools
Technol. Trans, vol. 14, no. 4, pp. 461-475, 2012.

[14] W. K. G. Assunção, T. E. Colanzi, S. R. Vergilio, A. Pozo,
“A multi-objective optimization approach for the integration
and test order problem,” Information Sciences, vol. 267, no.
2, pp. 119-139, 2014.

[15] G. Guizzo, G. M. Fritsche, S. R. Vergilio, A. T. R. Pozo,
“A hyper-heuristic for the multi-objective integration and test
order problem,” In Proceedings of the 2015 International
Conference on Genetic and Evolutionary Computation. ACM,
2015, pp. 1343-1350.

[16] T. Mariani, G. Guizzo, S. R. Vergilio, A. T. R. Pozo, “Gram-
matical evolution for the multi-objective integration and test
Order problem,” In Proceedings of the 2016 International
Conference on Genetic and Evolutionary Computation. ACM,
2016, pp. 1069-1076.

[17] G. Czibula, I. G. Czibula and Z. Marian, “An effective
approach for determining the class integration test order using
reinforcement learning,” Appl. Soft Comput, vol. 65, pp. 517-
530, 2018.

[18] R. Tarjan, “Depth-first search and linear graph algorithms,”
In Proceedings of the 12th Annual Symposium on Switching
and Automata Theory. IEEE, 1971, pp. 114-121.

[19] M. Črepinšek, S.-H. Liu, and M. Mernik, “Exploration and
exploitation in evolutionary algorithms: A survey,” ACM
Comput. Surv., vol. 45, no. 3, pp. 1-33, 2013.

52

Authorized licensed use limited to: Shenzhen Technology University. Downloaded on September 23,2021 at 08:35:17 UTC from IEEE Xplore. Restrictions apply.

