
Bug Localization with Semantic and Structural
Features using Convolutional Neural Network

and Cascade Forest

Yan Xiao, Jacky Keung, Qing Mi, Kwabena E. Bennin
Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong

Outline

• Background

• Main focus of existing techniques

• CNN_Forest technique
• Experimental results

• Conclusions and Future works

Background

Coding mistakes Bug report

Bug localization

Describe

Source files
Extr

ac
tLocalize

Search

Outline

• Background

• Main focus of existing techniques
• CNN_Forest technique
• Experimental results

• Conclusions and Future works

Main focus of existing techniques
• Textual similarity

transform the terms in bug reports and source files into textual
representations (vectors) and then measure the textual similarity
between them:
Ø Latent Semantic Indexing (LSI) represents code and queries as vectors,

and estimates the similarity between their vector representations using
the cosine similarity.

Ø Latent Dirichlet Allocation (LDA)-based approach measures the
similarity between the descriptions of bug reports and the topics of
source files estimated by LDA.

Ø Vector Space Model (VSM) transforms bug reports and source files
into feature vectors and then measures the similarity between them.

Textual similarity ≠semantics

Main focus of existing techniques
• The lexical mismatch problem

Ø There is a lexical mismatch problem between the texts in bug reports
and code tokens in source files caused by the ignorance of the semantic
information in them.

Ø Word embedding techniques are commonly applied to obtain vectors of
words in bug reports and source files, and measures the similarity
between them.

Structural information

Main focus of existing techniques
• Lexical mismatch

Ø There is lexical mismatch problem between the texts in bug reports and
code tokens in source files caused by the ignorance of the semantic
information in them.

Ø Word embedding techniques are commonly applied to obtain vectors of
words in bug reports and source files, and measures the similarity
between them.

• Structural features
Ø Compared to natural languages, programs contain rich statistical

properties and more stringent structural information.
Ø NP-CNN employs convolutional neural networks (CNNs) to extract

structural features from both bug reports and source files, and uses a
fully-connected network to fuse features.

Semantic + Structural information

Outline

• Background

• Main focus of existing techniques

• CNN_Forest technique
• Experimental results

• Conclusions and Future works

CNN_Forest technique

Figure 3: The Overall Workflow of CNN Forest.

word2vec

Word
Embedding Output

CNN with
Multiple
Filters

Forests with
Multi-grained

Scanning
word2vec

Feature
Extraction Cascade Forest

Corresponding
Labels

Bug
Reports

Source
Files

Features

Average
Pooling

CNN_Forest technique

Figure 3: The Overall Workflow of CNN Forest.

word2vec

Word
Embedding Output

CNN with
Multiple
Filters

Forests with
Multi-grained

Scanning
word2vec

Feature
Extraction Cascade Forest

Corresponding
Labels

Bug
Reports

Source
Files

Features

Average
Pooling

CNN_Forest technique

Figure 3: The Overall Workflow of CNN Forest.

word2vec

Word
Embedding Output

CNN with
Multiple
Filters

Forests with
Multi-grained

Scanning
word2vec

Feature
Extraction Cascade Forest

Corresponding
Labels

Bug
Reports

Source
Files

Features

Average
Pooling

CNN_Forest technique

Figure 3: The Overall Workflow of CNN Forest.

word2vec

Word
Embedding Output

CNN with
Multiple
Filters

Forests with
Multi-grained

Scanning
word2vec

Feature
Extraction Cascade Forest

Corresponding
Labels

Bug
Reports

Source
Files

Features

Average
Pooling

CNN with Multiple Filters to Extract Features from Bug Reports

Figure 4: The Feature Extraction of Bug Reports using CNN.

nbs
sentences

k dimension
word vectors

Convolutional layer
with multiple filters

Bug report

word2vec

Word vectors of
bug report

Build Identifier: Indigo Service Release ...
The message isn't displayed if the Text ...
In Linux and Windows XP the text is ...
Bug 384175 Win7 Text Set Message ...

…

…

...
nbs

nbw

nbw

nbs

Pooling layer

nbs

nbs

CNN_Forest technique

Figure 3: The Overall Workflow of CNN Forest.

word2vec

Word
Embedding Output

CNN with
Multiple
Filters

Forests with
Multi-grained

Scanning
word2vec

Feature
Extraction Cascade Forest

Corresponding
Labels

Bug
Reports

Source
Files

Features

Average
Pooling

Ensemble of Random Forests with Multi-grained Scanning for Source Files

Figure 5: The Feature Extraction of Source Files using Ensemble of Random Forests.

ncl
lines

k dimension
word vectors

Sliding windows

Source file

word2vec

Word vectors of
source file

public void addSelectionListener (…) {
 checkWidget ();
 if (listener == null) error (…);
 TypedListener typedListener = new …;
 addListener (SWT.Selection…);
 addListener (SWT.DefaultSelection…);
}

…
…

...
ncl

ncw

Complete-random tree forest
and random forest

4ncl(ncw-1)

...
ncl(ncw-2)

...
ncl(ncw-1)

k

...
...

...
...

ncl(ncw-1)

ncl(ncw-2)

Concatenate

CRF

CRF

RF

RF
4ncl(ncw-2)

CNN_Forest technique

Figure 3: The Overall Workflow of CNN Forest.

word2vec

Word
Embedding Output

CNN with
Multiple
Filters

Forests with
Multi-grained

Scanning
word2vec

Feature
Extraction Cascade Forest

Corresponding
Labels

Bug
Reports

Source
Files

Features

Average
Pooling

Cascade Forest

Figure 6: Cascade Forest to Further Extract Features and Learn the
Correlated Relationships between Bug Reports and Source Files.

CRF

CRF

RF

RF

CRF

CRF

RF

RF

CRF

CRF

RF

RF

...

CRF

CRF

RF

RF

CRF

CRF

RF

RF

CRF

CRF

RF

RF

CRF

CRF

RF

RF

Average

200nbs
features of
bug reports

4ncl(ncw-1)
features of
source files

4ncl(ncw-2)
features of
source files

Outline

• Background

• Main focus of existing techniques

• CNN_Forest technique

• Experimental results
• Conclusions and Future works

Experimental Preparations

Project Time
Range

of Bug
Reports for
Evaluation

of Bug
Reports for

Tuning

of Bug
Reports for

Training

of Bug
Reports for

Testing

AspectJ1 03/02-01/14 593 100 400 93

Eclipse UI2 10/01-01/14 3,656 1,500 500 1,656

JDT3 10/01-01/14 2,632 1,500 500 632

SWT4 02/02-01/14 2,817 1,500 500 817

Tomcat5 07/02-01/14 1,056 400 500 156

Table I Subject Projects

𝑀𝑅𝑅 =
1
𝑄.
!"#

$
1

𝑓𝑖𝑟𝑠𝑡!

𝑀𝐴𝑃 =
1
𝑄.
!"#

$

.
%"#

&
(𝑁'(𝑟)/𝑟)×𝑖𝑛𝑑(𝑟)

𝑁((𝑖)

Metrics

1 http://eclipse.org/aspectj/
2 http://projects.eclipse.org/projects/eclipse.platform.ui
3 http://www.eclipse.org/jdt/
4 http://www.eclipse.org/swt/
5 http://tomcat.apache.org

Comparisons with other techniques
• validation set:

Ø CNN_CNN uses the same strategy (CNN) to extract features from bug
reports and source files.

Ø Forest_Forest applies the same ensemble of random forests to extract
features of bug reports and source files.

• testing set:
Ø NP-CNN applies CNN to learn unified features from natural and

programming languages.
Ø LR+WE enhances their previously-proposed learning-to-rank model (LR)

by adding new features obtained by word embedding (WE) techniques.
Ø DNNLOC combines deep learning techniques with the information

retrieval techniques to localize the buggy files for bug reports.
Ø BugLocator measures the textural similarity between the texts in bug

reports and source files using the revised Vector Space Model (rVSM).

Intrinsic Evaluation

Project Metrics CNN_Forest CNN_CNN Forest_Forest

AspectJ
MAP 0.458 0.449 0.430

MRR 0.563 0.560 0.549

Eclipse UI
MAP 0.460 0.441 0.465

MRR 0.590 0.561 0.588

JDT
MAP 0.448 0.448 0.435

MRR 0.517 0.502 0.492

SWT
MAP 0.462 0.415 0.439

MRR 0.530 0.507 0.512

Tomcat
MAP 0.627 0.623 0.604

MRR 0.681 0.669 0.647

Table 2: Performance Comparison for Intrinsic Evaluation.

Extrinsic Evaluation

Project Metrics CNN_Forest NP-CNN LR+WE DNNLOC BugLocator

AspectJ
MAP 0.436 0.402 0.302 0.323 0.278

MRR 0.519 0.487 0.454 0.475 0.364

Eclipse
UI

MAP 0.432 0.429 0.398 0.413 0.332

MRR 0.534 0.529 0.461 0.514 0.383

JDT
MAP 0.423 0.405 0.417 0.342 0.290

MRR 0.514 0.463 0.516 0.452 0.367

SWT
MAP 0.394 0.371 0.381 0.369 0.269

MRR 0.482 0.466 0.446 0.445 0.312

Tomcat
MAP 0.550 0.529 0.503 0.523 0.425

MRR 0.614 0.585 0.556 0.604 0.481

Table 3: Performance Comparison with the State-of-the-art Techniques.
Structural Semantic

Textual
Textual

similarity

Why does CNN_Forest work best?
• Word embedding

Ø Convert the texts in bug reports and source files into word vectors.

• CNN with multiple filters
Ø CNN has performed excellently in natural language processing because of

convolving filters.

• Ensemble of random forests with multi-grained scanning
Ø Source files are composed of code tokens that involve more stringent

structural information.

• Cascade forest
Ø Correlated relationships between bug reports and source files are learned

by the alternate cascade structure that is similar to the layer-structure in
deep learning.

Outline

• Background

• Main focus of existing techniques

• CNN_Forest technique
• Experimental results

• Conclusions and Future works

Conclusions
• This paper proposed CNN_Forest, a new CNN and random forest-
based model for bug localization.

• Two different techniques are leveraged to extract features
respectively from bug reports and source code files automatically
according to the differences between natural languages and
programming languages.

• Both semantic and structural information of bug reports and
source files are extracted. The ensemble of random forests is
applied to detect the structural information from the source code.
The alternate cascade forest works as the layer-structure in deep
learning to learn the correlated relationships between bug reports
and source files.

Future works
• Fine-tune the proposed model to further improve its process
automation and prediction performance for bug localization.
Ø evaluation on other kinds of random forest techniques (e.g., extra-trees) to

enhance diversity.

• Focus on projects written in other programming languages.
• Extend the model to aforementined projects for bug localization
with other performance metrics to evaluate their performances.
Ø Accuracy@k

Ø Area Under the receiver operator characteristic Curve (AUC)

• Examine the performance of the proposed model in other
applications of software engineering
Ø defect prediction

Thank you for your attention!

