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Main focus of existing techniques
• Textual similarity

transform the terms in bug reports and source files into textual
representations (vectors) and then measure the textual similarity
between them:
Ø Latent Semantic Indexing (LSI) represents code and queries as vectors,

and estimates the similarity between their vector representations using
the cosine similarity.

Ø Latent Dirichlet Allocation (LDA)-based approach measures the
similarity between the descriptions of bug reports and the topics of
source files estimated by LDA.

Ø Vector Space Model (VSM) transforms bug reports and source files
into feature vectors and then measures the similarity between them.

Textual similarity ≠semantics



Main focus of existing techniques
• The lexical mismatch problem

Ø There is a lexical mismatch problem between the texts in bug reports
and code tokens in source files caused by the ignorance of the semantic
information in them.

Ø Word embedding techniques are commonly applied to obtain vectors of
words in bug reports and source files, and measures the similarity
between them.

Structural information 



Main focus of existing techniques
• Lexical mismatch

Ø There is lexical mismatch problem between the texts in bug reports and
code tokens in source files caused by the ignorance of the semantic
information in them.

Ø Word embedding techniques are commonly applied to obtain vectors of
words in bug reports and source files, and measures the similarity
between them.

• Structural features
Ø Compared to natural languages, programs contain rich statistical

properties and more stringent structural information.
Ø NP-CNN employs convolutional neural networks (CNNs) to extract

structural features from both bug reports and source files, and uses a
fully-connected network to fuse features.

Semantic + Structural information



Outline

• Background

• Main focus of existing techniques

• CNN_Forest technique
• Experimental results

• Conclusions and Future works



CNN_Forest technique

Figure 3: The Overall Workflow of CNN Forest.
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CNN with Multiple Filters to Extract Features from Bug Reports

Figure 4: The Feature Extraction of Bug Reports using CNN.
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Ensemble of Random Forests with Multi-grained Scanning for Source Files

Figure 5: The Feature Extraction of Source Files using Ensemble of Random Forests.
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Cascade Forest

Figure 6: Cascade Forest to Further Extract Features and Learn the 
Correlated Relationships between Bug Reports and Source Files.
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Experimental Preparations

Project Time 
Range

# of Bug
Reports for 
Evaluation

# of Bug
Reports for 

Tuning

# of Bug
Reports for 

Training

# of Bug
Reports for 

Testing

AspectJ1 03/02-01/14 593 100 400 93

Eclipse UI2 10/01-01/14 3,656 1,500 500 1,656

JDT3 10/01-01/14 2,632 1,500 500 632

SWT4 02/02-01/14 2,817 1,500 500 817

Tomcat5 07/02-01/14 1,056 400 500 156

Table I Subject Projects
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1 http://eclipse.org/aspectj/
2 http://projects.eclipse.org/projects/eclipse.platform.ui
3 http://www.eclipse.org/jdt/ 
4 http://www.eclipse.org/swt/
5 http://tomcat.apache.org



Comparisons with other techniques
• validation set:

Ø CNN_CNN uses the same strategy (CNN) to extract features from bug
reports and source files.

Ø Forest_Forest applies the same ensemble of random forests to extract
features of bug reports and source files.

• testing set:
Ø NP-CNN applies CNN to learn unified features from natural and

programming languages.
Ø LR+WE enhances their previously-proposed learning-to-rank model (LR)

by adding new features obtained by word embedding (WE) techniques.
Ø DNNLOC combines deep learning techniques with the information

retrieval techniques to localize the buggy files for bug reports.
Ø BugLocator measures the textural similarity between the texts in bug

reports and source files using the revised Vector Space Model (rVSM).



Intrinsic Evaluation

Project Metrics CNN_Forest CNN_CNN Forest_Forest

AspectJ
MAP 0.458 0.449 0.430

MRR 0.563 0.560 0.549

Eclipse UI 
MAP 0.460 0.441 0.465

MRR 0.590 0.561 0.588

JDT 
MAP 0.448 0.448 0.435

MRR 0.517 0.502 0.492

SWT 
MAP 0.462 0.415 0.439

MRR 0.530 0.507 0.512

Tomcat 
MAP 0.627 0.623 0.604

MRR 0.681 0.669 0.647

Table 2: Performance Comparison for Intrinsic Evaluation.



Extrinsic Evaluation

Project Metrics CNN_Forest NP-CNN LR+WE DNNLOC BugLocator

AspectJ
MAP 0.436 0.402 0.302 0.323 0.278

MRR 0.519 0.487 0.454 0.475 0.364

Eclipse 
UI 

MAP 0.432 0.429 0.398 0.413 0.332

MRR 0.534 0.529 0.461 0.514 0.383

JDT 
MAP 0.423 0.405 0.417 0.342 0.290

MRR 0.514 0.463 0.516 0.452 0.367

SWT 
MAP 0.394 0.371 0.381 0.369 0.269

MRR 0.482 0.466 0.446 0.445 0.312

Tomcat 
MAP 0.550 0.529 0.503 0.523 0.425

MRR 0.614 0.585 0.556 0.604 0.481

Table 3: Performance Comparison with the State-of-the-art Techniques.
Structural Semantic

Textual
Textual 

similarity



Why does CNN_Forest work best?
• Word embedding

Ø Convert the texts in bug reports and source files into word vectors.

• CNN with multiple filters
Ø CNN has performed excellently in natural language processing because of

convolving filters.

• Ensemble of random forests with multi-grained scanning
Ø Source files are composed of code tokens that involve more stringent

structural information.

• Cascade forest
Ø Correlated relationships between bug reports and source files are learned

by the alternate cascade structure that is similar to the layer-structure in
deep learning.
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Conclusions
• This paper proposed CNN_Forest, a new CNN and random forest-
based model for bug localization.

• Two different techniques are leveraged to extract features
respectively from bug reports and source code files automatically
according to the differences between natural languages and
programming languages.

• Both semantic and structural information of bug reports and
source files are extracted. The ensemble of random forests is
applied to detect the structural information from the source code.
The alternate cascade forest works as the layer-structure in deep
learning to learn the correlated relationships between bug reports
and source files.



Future works
• Fine-tune the proposed model to further improve its process
automation and prediction performance for bug localization.
Ø evaluation on other kinds of random forest techniques (e.g., extra-trees) to

enhance diversity.

• Focus on projects written in other programming languages.
• Extend the model to aforementined projects for bug localization
with other performance metrics to evaluate their performances.
Ø Accuracy@k

Ø Area Under the receiver operator characteristic Curve (AUC)

• Examine the performance of the proposed model in other
applications of software engineering
Ø defect prediction



Thank you for your attention!


